metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′,2′′-nitrilo­triacetamide-κ3O,N,O′)nickel(II) dinitrate tetra­hydrate

aInstitute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: xhdengyy@yahoo.com.cn

(Received 17 December 2012; accepted 23 December 2012; online 9 January 2013)

In the title compound, [Ni(C6H12N4O3)2](NO3)2·4H2O, the NiII cation is located on an inversion center and is N,O,O′-chelated by two nitrilo­tris­(acetamide) mol­ecules in a distorted octa­hedral geometry. The complex cations, nitrate anions and lattice water mol­ecules are connected by O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure.

Related literature

For related metal complexes, see: Niraj et al. (2012[Niraj, K., Benzamin, D. W., Sanjib, K. & Lallan, M. (2012). Polyhedron, 33, 425-434.]); Biswajit et al. (2009[Biswajit, D., Somnath, R. C., Eringathodi, S., Atish, D. J. & Subrata, M. (2009). J. Mol. Struct. 921, 268-273.]); Ben Amor et al. (1998[Ben Amor, F., Bourguiba, N., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 197-199.]). For the synthesis of the ligand, see: Donald & George (1974[Donald, H. T. & George, C. H. (1974). US patent No. 3799981.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H12N4O3)2](NO3)2·4H2O

  • Mr = 631.17

  • Triclinic, [P \overline 1]

  • a = 8.557 (7) Å

  • b = 9.212 (8) Å

  • c = 9.367 (8) Å

  • α = 91.180 (14)°

  • β = 96.215 (14)°

  • γ = 111.136 (14)°

  • V = 683.2 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.33 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.731, Tmax = 0.779

  • 3732 measured reflections

  • 2352 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.05

  • 2352 reflections

  • 190 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O8i 0.86 2.14 2.988 (3) 169
N2—H2B⋯O6ii 0.86 2.19 3.027 (4) 165
N3—H3A⋯O4iii 0.86 2.28 3.056 (4) 150
N3—H3B⋯O3ii 0.86 1.99 2.848 (3) 173
N4—H4A⋯O7iv 0.86 2.22 3.002 (3) 152
N4—H4B⋯O7 0.86 2.32 3.068 (4) 145
O7—H7A⋯O4 0.87 (2) 2.08 (2) 2.913 (4) 162 (3)
O7—H7B⋯O8v 0.87 (2) 1.98 (2) 2.843 (3) 174 (4)
O8—H8A⋯O1iii 0.86 (2) 2.18 (2) 3.018 (3) 165 (3)
O8—H8B⋯O4 0.86 (2) 2.19 (2) 2.999 (4) 157 (3)
O8—H8B⋯O6 0.86 (2) 2.40 (3) 3.107 (4) 141 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination chemistry of nitrilotriacetic acid with metal ions is explored extensively owing to their flexible coordinating nature, but nitrilotriacetamide (H3NTA) is hardly studied (Niraj et al., 2012; Biswajit et al., 2009; Ben Amor et al., 1998). This is the first report of a bis(H3NTA)–nickel(II) structure in which only H3NTA acts as a tridentate ligand.

Complex I consists of a Ni(H3NTA)2 cation, two nitrate anions and four solvent water molecules (Scheme). Ni(II) has an octahedral coordination environment which is centrosymmetric as Ni(II) occupies an inversion center. The Ni atom is coordinated in a planar geometry by the nitrilotriacetamide N and O atoms. Two trans axial sites of this coordination environment is occupied by O2 and its symmetry related O2' oxygen atoms from ligands(Fig. 1). In the equatorial plane the Ni—N1 distance is 2.131 (2) Å and the Ni—O1 distance is 2.098 (2) Å. The axial Ni—O2 bond is appreciably shortented which is 2.036 (2) Å. A few more selected bond distances and bond angles are presented in Table 1. The molecules are stacked along the a axis and display N—H···O and O—H···O hydrogen-bonds interaction (Fig. 2).

Related literature top

For related metal complexes, see: Niraj et al. (2012); Biswajit et al. (2009); Ben Amor et al. (1998). For the synthesis of the ligand, see: Donald & George (1974).

Experimental top

The synthesis of nitrilotriacetamide was carried out according to US patent 3799981 (Donald & George, 1974). The title compound was synthesized by adding solid Ni(NO3)2.6H2O (291 mg, 1 mmol) to a solution of ligands (376 mg, 2 mmol) in ethanol/water (2:1, 20 ml), then the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was allowed to stand in air for 1 d, and blue crystals were formed at the bottom of the vessel on slow evaporation of the solvent at room temperature.Yield: 73%.

Refinement top

Water H atoms were located in a difference Fourier map and the positional parameters were refined, Uiso(H) = 1.5Ueq(O). Other H atoms were included in calculated positions with C—H = 0.93 or 0.97 and N—H = 0.86 Å, and refined using a riding-model with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packed diagram for the title compound, viewed down the a axis with hydrogen bonds drawn as dashed lines.
Bis(2,2',2''-nitrilotriacetamide-κ3O,N,O')nickel(II) dinitrate tetrahydrate top
Crystal data top
[Ni(C6H12N4O3)2](NO3)2·4H2OZ = 1
Mr = 631.17F(000) = 330
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.557 (7) ÅCell parameters from 2322 reflections
b = 9.212 (8) Åθ = 2.4–28.2°
c = 9.367 (8) ŵ = 0.80 mm1
α = 91.180 (14)°T = 296 K
β = 96.215 (14)°Block, blue
γ = 111.136 (14)°0.42 × 0.38 × 0.33 mm
V = 683.2 (10) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2352 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.731, Tmax = 0.779k = 1010
3732 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3085P]
where P = (Fo2 + 2Fc2)/3
2352 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.31 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Ni(C6H12N4O3)2](NO3)2·4H2Oγ = 111.136 (14)°
Mr = 631.17V = 683.2 (10) Å3
Triclinic, P1Z = 1
a = 8.557 (7) ÅMo Kα radiation
b = 9.212 (8) ŵ = 0.80 mm1
c = 9.367 (8) ÅT = 296 K
α = 91.180 (14)°0.42 × 0.38 × 0.33 mm
β = 96.215 (14)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2219 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.779Rint = 0.014
3732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2352 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Experimental. Selected IR data (cm-1): 3315 (s), 3192 (s), 2935(w), 2783(w), 1666(s), 1596(s), 1276(m), 1134(m), 997(m), 867(m), 729(w), 561(s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50001.00000.02392 (14)
O11.0488 (2)0.43473 (17)1.20851 (16)0.0346 (4)
O30.7111 (2)0.06864 (18)0.86966 (18)0.0445 (4)
O20.78448 (19)0.51673 (16)1.05845 (18)0.0341 (4)
O40.3921 (3)0.3138 (2)0.7047 (3)0.0796 (8)
O50.3643 (3)0.0742 (3)0.7446 (3)0.0766 (7)
O60.1436 (3)0.1309 (3)0.6829 (3)0.0760 (7)
O80.1390 (3)0.4509 (2)0.58844 (19)0.0503 (5)
H8A0.070 (4)0.467 (4)0.640 (3)0.075*
H8B0.188 (4)0.396 (4)0.635 (3)0.075*
O70.6156 (3)0.2788 (2)0.5043 (2)0.0618 (6)
H7A0.563 (4)0.311 (4)0.564 (4)0.093*
H7B0.685 (4)0.361 (3)0.470 (4)0.093*
N40.6721 (3)0.0015 (2)0.6398 (2)0.0488 (6)
H4A0.61500.09640.60830.059*
H4B0.69050.07220.58160.059*
N10.8516 (2)0.25706 (19)0.97289 (18)0.0255 (4)
N30.5292 (2)0.3768 (2)1.1244 (2)0.0383 (5)
H3A0.51500.45981.15330.046*
H3B0.45260.28681.13080.046*
N21.0204 (3)0.2211 (2)1.3335 (2)0.0504 (6)
H2A1.05470.27651.41380.060*
H2B0.99310.12161.33250.060*
N50.3008 (3)0.1727 (3)0.7132 (3)0.0495 (6)
C40.6690 (3)0.3874 (2)1.0699 (2)0.0278 (4)
C10.9486 (3)0.1859 (2)1.0730 (2)0.0301 (5)
H1A1.04410.17941.02990.036*
H1B0.87670.08131.09200.036*
C60.7323 (3)0.0313 (2)0.7789 (2)0.0313 (5)
C21.0099 (3)0.2884 (2)1.2128 (2)0.0316 (5)
C50.8390 (3)0.2040 (2)0.8193 (2)0.0322 (5)
H5A0.95220.22420.79560.039*
H5B0.79180.26690.75990.039*
C30.6822 (3)0.2338 (2)1.0189 (3)0.0346 (5)
H3C0.66230.16351.09630.041*
H3D0.59530.18550.93880.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0223 (2)0.0156 (2)0.0283 (2)0.00044 (14)0.00210 (14)0.00082 (14)
O10.0430 (9)0.0214 (8)0.0311 (8)0.0035 (7)0.0013 (7)0.0001 (6)
O30.0518 (11)0.0231 (8)0.0437 (9)0.0027 (7)0.0006 (8)0.0012 (7)
O20.0284 (8)0.0193 (7)0.0515 (9)0.0033 (6)0.0110 (7)0.0018 (6)
O40.0941 (18)0.0344 (11)0.1007 (18)0.0035 (11)0.0446 (15)0.0048 (11)
O50.0583 (14)0.0618 (14)0.109 (2)0.0227 (12)0.0036 (13)0.0220 (13)
O60.0538 (13)0.0572 (13)0.123 (2)0.0250 (11)0.0171 (13)0.0198 (13)
O80.0604 (13)0.0489 (11)0.0404 (10)0.0185 (10)0.0068 (9)0.0036 (8)
O70.0663 (14)0.0445 (11)0.0573 (13)0.0015 (10)0.0122 (10)0.0014 (9)
N40.0606 (14)0.0304 (11)0.0401 (11)0.0019 (10)0.0052 (10)0.0068 (9)
N10.0240 (9)0.0187 (8)0.0296 (9)0.0033 (7)0.0013 (7)0.0007 (7)
N30.0323 (10)0.0231 (9)0.0577 (13)0.0052 (8)0.0156 (9)0.0004 (9)
N20.0761 (16)0.0300 (11)0.0355 (11)0.0115 (11)0.0064 (10)0.0045 (9)
N50.0567 (15)0.0376 (12)0.0546 (13)0.0139 (11)0.0196 (11)0.0053 (10)
C40.0258 (10)0.0242 (11)0.0303 (11)0.0062 (9)0.0010 (8)0.0019 (8)
C10.0325 (11)0.0195 (10)0.0342 (11)0.0060 (9)0.0007 (9)0.0019 (8)
C60.0305 (11)0.0234 (11)0.0358 (11)0.0050 (9)0.0040 (9)0.0054 (9)
C20.0307 (11)0.0252 (11)0.0332 (11)0.0050 (9)0.0017 (9)0.0021 (9)
C50.0372 (12)0.0216 (10)0.0292 (11)0.0011 (9)0.0024 (9)0.0001 (8)
C30.0247 (11)0.0211 (10)0.0529 (14)0.0017 (9)0.0079 (10)0.0008 (9)
Geometric parameters (Å, º) top
Ni1—O22.036 (2)N1—C51.490 (3)
Ni1—O2i2.036 (2)N1—C31.499 (3)
Ni1—O1i2.098 (2)N1—C11.499 (3)
Ni1—O12.098 (2)N3—C41.323 (3)
Ni1—N12.131 (2)N3—H3A0.8600
Ni1—N1i2.131 (2)N3—H3B0.8600
O1—C21.270 (3)N2—C21.311 (3)
O3—C61.244 (3)N2—H2A0.8600
O2—C41.259 (3)N2—H2B0.8600
O4—N51.262 (3)C4—C31.530 (3)
O5—N51.239 (3)C1—C21.525 (3)
O6—N51.256 (3)C1—H1A0.9700
O8—H8A0.856 (17)C1—H1B0.9700
O8—H8B0.859 (17)C6—C51.537 (3)
O7—H7A0.868 (18)C5—H5A0.9700
O7—H7B0.866 (18)C5—H5B0.9700
N4—C61.335 (3)C3—H3C0.9700
N4—H4A0.8600C3—H3D0.9700
N4—H4B0.8600
O2—Ni1—O2i180.0C2—N2—H2B120.0
O2—Ni1—O1i92.01 (7)H2A—N2—H2B120.0
O2i—Ni1—O1i87.99 (7)O5—N5—O6119.8 (2)
O2—Ni1—O187.99 (7)O5—N5—O4121.1 (3)
O2i—Ni1—O192.01 (7)O6—N5—O4119.1 (3)
O1i—Ni1—O1180.000 (1)O2—C4—N3122.14 (19)
O2—Ni1—N183.50 (8)O2—C4—C3121.45 (19)
O2i—Ni1—N196.50 (7)N3—C4—C3116.40 (18)
O1i—Ni1—N199.63 (7)N1—C1—C2108.21 (17)
O1—Ni1—N180.37 (7)N1—C1—H1A110.1
O2—Ni1—N1i96.50 (7)C2—C1—H1A110.1
O2i—Ni1—N1i83.50 (8)N1—C1—H1B110.1
O1i—Ni1—N1i80.37 (7)C2—C1—H1B110.1
O1—Ni1—N1i99.63 (7)H1A—C1—H1B108.4
N1—Ni1—N1i180.0O3—C6—N4123.8 (2)
C2—O1—Ni1112.16 (13)O3—C6—C5121.5 (2)
C4—O2—Ni1114.27 (14)N4—C6—C5114.6 (2)
H8A—O8—H8B109 (2)O1—C2—N2122.5 (2)
H7A—O7—H7B107 (2)O1—C2—C1119.24 (18)
C6—N4—H4A120.0N2—C2—C1118.3 (2)
C6—N4—H4B120.0N1—C5—C6115.90 (17)
H4A—N4—H4B120.0N1—C5—H5A108.3
C5—N1—C3112.27 (17)C6—C5—H5A108.3
C5—N1—C1112.83 (17)N1—C5—H5B108.3
C3—N1—C1111.36 (17)C6—C5—H5B108.3
C5—N1—Ni1108.65 (12)H5A—C5—H5B107.4
C3—N1—Ni1107.87 (12)N1—C3—C4112.21 (16)
C1—N1—Ni1103.32 (13)N1—C3—H3C109.2
C4—N3—H3A120.0C4—C3—H3C109.2
C4—N3—H3B120.0N1—C3—H3D109.2
H3A—N3—H3B120.0C4—C3—H3D109.2
C2—N2—H2A120.0H3C—C3—H3D107.9
O2—Ni1—O1—C2100.65 (16)O1i—Ni1—N1—C1147.65 (13)
O2i—Ni1—O1—C279.35 (16)O1—Ni1—N1—C132.35 (13)
O1i—Ni1—O1—C2177 (100)N1i—Ni1—N1—C1136 (100)
N1—Ni1—O1—C216.91 (15)Ni1—O2—C4—N3171.21 (17)
N1i—Ni1—O1—C2163.09 (15)Ni1—O2—C4—C39.8 (3)
O2i—Ni1—O2—C4178 (100)C5—N1—C1—C2159.20 (17)
O1i—Ni1—O2—C4106.73 (15)C3—N1—C1—C273.5 (2)
O1—Ni1—O2—C473.27 (15)Ni1—N1—C1—C242.05 (18)
N1—Ni1—O2—C47.27 (15)Ni1—O1—C2—N2175.82 (19)
N1i—Ni1—O2—C4172.73 (15)Ni1—O1—C2—C14.2 (3)
O2—Ni1—N1—C5118.55 (14)N1—C1—C2—O133.3 (3)
O2i—Ni1—N1—C561.45 (14)N1—C1—C2—N2146.7 (2)
O1i—Ni1—N1—C527.60 (14)C3—N1—C5—C659.4 (2)
O1—Ni1—N1—C5152.40 (14)C1—N1—C5—C667.4 (2)
N1i—Ni1—N1—C5103 (100)Ni1—N1—C5—C6178.62 (15)
O2—Ni1—N1—C33.40 (13)O3—C6—C5—N125.7 (3)
O2i—Ni1—N1—C3176.60 (13)N4—C6—C5—N1157.0 (2)
O1i—Ni1—N1—C394.34 (14)C5—N1—C3—C4119.78 (19)
O1—Ni1—N1—C385.66 (14)C1—N1—C3—C4112.6 (2)
N1i—Ni1—N1—C318 (100)Ni1—N1—C3—C40.1 (2)
O2—Ni1—N1—C1121.40 (14)O2—C4—C3—N16.6 (3)
O2i—Ni1—N1—C158.60 (14)N3—C4—C3—N1174.31 (19)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O8ii0.862.142.988 (3)169
N2—H2B···O6iii0.862.193.027 (4)165
N3—H3A···O4iv0.862.283.056 (4)150
N3—H3B···O3iii0.861.992.848 (3)173
N4—H4A···O7v0.862.223.002 (3)152
N4—H4B···O70.862.323.068 (4)145
O7—H7A···O40.87 (2)2.08 (2)2.913 (4)162 (3)
O7—H7B···O8vi0.87 (2)1.98 (2)2.843 (3)174 (4)
O8—H8A···O1iv0.86 (2)2.18 (2)3.018 (3)165 (3)
O8—H8B···O40.86 (2)2.19 (2)2.999 (4)157 (3)
O8—H8B···O60.86 (2)2.40 (3)3.107 (4)141 (3)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z+2; (iv) x+1, y+1, z+2; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H12N4O3)2](NO3)2·4H2O
Mr631.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.557 (7), 9.212 (8), 9.367 (8)
α, β, γ (°)91.180 (14), 96.215 (14), 111.136 (14)
V3)683.2 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.42 × 0.38 × 0.33
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.731, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
3732, 2352, 2219
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.05
No. of reflections2352
No. of parameters190
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O8i0.862.142.988 (3)168.8
N2—H2B···O6ii0.862.193.027 (4)164.9
N3—H3A···O4iii0.862.283.056 (4)149.6
N3—H3B···O3ii0.861.992.848 (3)173.4
N4—H4A···O7iv0.862.223.002 (3)151.6
N4—H4B···O70.862.323.068 (4)145.3
O7—H7A···O40.868 (18)2.075 (19)2.913 (4)162 (3)
O7—H7B···O8v0.866 (18)1.980 (19)2.843 (3)174 (4)
O8—H8A···O1iii0.856 (17)2.18 (2)3.018 (3)165 (3)
O8—H8B···O40.859 (17)2.188 (19)2.999 (4)157 (3)
O8—H8B···O60.859 (17)2.40 (3)3.107 (4)141 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by the Inter­national Cooperation Special Fund of the Ministry of Science and Technology, China (No. 2011DFB31620). We are grateful to Professor Dr S.-M. Qiu of Hubei Academy of Agricultural Science for his valuable suggestions.

References

First citationBen Amor, F., Bourguiba, N., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 197–199.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiswajit, D., Somnath, R. C., Eringathodi, S., Atish, D. J. & Subrata, M. (2009). J. Mol. Struct. 921, 268–273.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonald, H. T. & George, C. H. (1974). US patent No. 3799981.  Google Scholar
First citationNiraj, K., Benzamin, D. W., Sanjib, K. & Lallan, M. (2012). Polyhedron, 33, 425–434.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds