metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m114-m115

Di­aqua­(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)magnesium–18-crown-6 (1/1)

aLaboratoire de Physico-chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 6 January 2013; accepted 12 January 2013; online 19 January 2013)

In the title compound, [Mg(C44H28N4)(H2O)2]·C12H24O6, the MgII cation lies on an inversion center and is octa­hedrally coordinated by the four N atoms of the deprotonated tetra­phenyl­porphyrin (TPP) ligand and by two water mol­ecules. The asymmetric unit contains one half of the [Mg(TPP)(H2O)2] complex and one half of an 18-crown-6 mol­ecule. The average equatorial magnesium–pyrrole N atom distance (Mg—Np) is 2.071 (1) Å and the axial Mg—O(H2O) bond length is 2.213 (1) Å. The crystal packing is stabilized by two O—H⋯O hydrogen bonds between coordinating water mol­ecules and adjacent 18-crown-6 mol­ecules, and exhibits a one-dimensional supramolecular structure along the a axis. The supramolecular architecture is futher stabilized by weak C—H⋯π inter­actions. The 18-crown-6 mol­ecule is disordered over two sets of sites with an occupancy ratio of 0.8:0.2.

Related literature

For general background to magnesium porphyrin species and their applications, see: Ghosh et al. (2010[Ghosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). Inorg. Chem. 49, 8287-8297.]). For related structures, see: Belghith et al. (2012[Belghith, Y., Daran, J.-C. & Nasri, H. (2012). Acta Cryst. E68, m1104-m1105.]); McArdle (1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); McKee et al. (1984[McKee, V., Choon, O. C. & Rodley, G. A. (1984). Inorg. Chem. 23, 4242-4248.]); Choon et al. (1986[Choon, O. C., McKee, V. & Rodley, G. A. (1986). Inorg. Chim. Acta, 11, 123-126.]); McKee & Rodley (1988[McKee, V. & Rodley, G. A. (1988). Inorg. Chim. Acta, 151, 233-236.]); Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Imaz et al. (2005[Imaz, I., Bravic, G. & Sutter, J.-P. (2005). Chem. Commun. pp. 993-995.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C44H28N4)(H2O)2]·C12H24O6

  • Mr = 937.36

  • Triclinic, [P \overline 1]

  • a = 8.1440 (3) Å

  • b = 12.3080 (4) Å

  • c = 12.4170 (4) Å

  • α = 86.894 (3)°

  • β = 75.163 (3)°

  • γ = 79.529 (3)°

  • V = 1183.06 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.56 × 0.51 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire1) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.946, Tmax = 0.981

  • 23613 measured reflections

  • 4650 independent reflections

  • 4013 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.04

  • 4650 reflections

  • 400 parameters

  • 119 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the N2/C6–C9 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2A 0.97 (2) 2.08 (2) 2.984 (2) 153 (2)
O1—H2O1⋯O2Ai 0.97 (2) 2.22 (2) 3.105 (2) 150 (2)
O1—H1O1⋯O2B 0.97 (2) 2.33 (2) 3.297 (10) 170 (2)
O1—H2O1⋯O2Bi 0.97 (2) 2.19 (2) 2.962 (8) 135 (1)
C15—H15⋯Cg4ii 0.93 2.96 3.730 (2) 141
C27A—H27ACg2iii 0.97 2.86 3.671 (5) 142
C26B—H26DCg2 0.97 2.89 3.678 (11) 139
C27B—H27DCg2iii 0.97 2.94 3.715 (17) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our research on the crystal structures of porphyrin complexes (Belghith et al., 2012) we herein report the synthesis and crystal structure of the bis-aqua-Mg tetraphenylporhyrin derivative [Mg(TPP)(H2O)2].(18-C-6). In this complex, the coordination geometry of the Mg2+ ion is octahedral with four Mg—N(pyrrole) bonds in the equatorial porphyrin plane and two Mg—O bonds with the two symmetry related water axial ligands. The average equatorial distance (Mg–Np) equal to 2.071 (1) Å lies in the range [2.065 (4) - 2.092 (7) Å] of the related porphyrin species [Mg(TPP)(4-pic)2] (4-pic = 4-picoline: C6H7N) (McKee et al., 1984) and [Mg(TPP)(H2O)] (Choon et al., 1986).

The axial Mg—O(H2O) bond length [2.213 (1) Å] is quite longer than in the related derivative [Mg(TPP)(H2O)] (2.053 (5) Å) (McKee & Rodley, 1988) but is within the range [2.063 (2) - 2.75 (2) Å] found for several magnesium-aqua non-porphyrin complexes (CSD refcodes DEZNIG; Gryz et al., 2007 and FIVYEP; Imaz et al., 2005) (CDS, version 5.32 Allen, 2002).

The crystal structure of our derivative resembles to one-dimensional coordination polymer where each one of two [Mg(TPP)] moieties is linked to an ether crown 18-C-6 molecule via H bonds between the oxygen atom O2A of this species and the O1 atom of the water axial ligand of the [Mg(TPP)(H2O)2] derivative (Fig. 2).

These linear chains are parallel to the a axis and are mainly sustained by weak C—H···Cg interactions, where Cg is the centroid of the pyrrole or phenyl rings (Table 1).

Related literature top

For general background to magnesium porphyrin species and their applications, see: Ghosh et al. (2010). For related structures, see: Belghith et al. (2012); McArdle (1995); McKee et al. (1984); Choon et al. (1986); McKee & Rodley (1988); Gryz et al. (2007); Imaz et al. (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

To a solution of [Mg(TPP)] (15 mg, 0.024 mmol) in chlorobenzene (15 ml) was added an excess of (18-crown-6) (100 mg, 0.378 mmol). The reaction mixture was stirred at room temperature and at the end of the reaction, the color of the solution gradually changes from purple to blue – purple. The resulting material was crystallized by diffusion of hexanes through the chlorobenzene solution which yielded [Mg(TPP)(H2O)2].(18-C-6). The two water molecules coordinated to the magnesium come from the hygroscopic 18-crown-6 reagent used in excess.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms, with U(H) = 1.2Ueq(C).

The 18-crown-6 is disordered in two conformations A and B (A is the major conformation) with occupancy coefficients fixed at 80% and 20% respectively.

For the atoms of conformation B, the DFIX and SIMU/ISOR restraints (McArdle, 1995) commands in the SHELXL97 software were used. The DFIX constraint instruction was used for some distances in the conformation A: C25A—O2A, C25A—O26A and C23A—C24A while the DANG constraint instruction was also used for the distance C28A—O3A.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of the structure of [Mg(TPP)(H2O)2].(18-C-6) showing the atom-numbering scheme. Displacement ellipsoids are drawn at 45%. [Symmtry code: (i) -x, -y, -z + 1].
[Figure 2] Fig. 2. Drawing showing the packing in the lattice of [Mg(TPP)(H2O)2].(18-C-6) viewed down the b axis. H atoms have been omitted for clarity.
Diaqua(5,10,15,20-tetraphenylporphyrinato-κ4N)magnesium– 1,4,7,10,13,16-hexaoxacyclooctadecane (1/1) top
Crystal data top
[Mg(C44H28N4)(H2O)2]·C12H24O6Z = 1
Mr = 937.36F(000) = 496
Triclinic, P1Dx = 1.316 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1440 (3) ÅCell parameters from 14229 reflections
b = 12.3080 (4) Åθ = 2.9–28.4°
c = 12.4170 (4) ŵ = 0.10 mm1
α = 86.894 (3)°T = 180 K
β = 75.163 (3)°Prism, purple
γ = 79.529 (3)°0.56 × 0.51 × 0.19 mm
V = 1183.06 (7) Å3
Data collection top
Oxford Diffraction Xcalibur (Sapphire1)
diffractometer
4650 independent reflections
Radiation source: fine-focus sealed tube4013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.2632 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 1515
Tmin = 0.946, Tmax = 0.981l = 1515
23613 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.6503P]
where P = (Fo2 + 2Fc2)/3
4650 reflections(Δ/σ)max < 0.001
400 parametersΔρmax = 0.46 e Å3
119 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mg(C44H28N4)(H2O)2]·C12H24O6γ = 79.529 (3)°
Mr = 937.36V = 1183.06 (7) Å3
Triclinic, P1Z = 1
a = 8.1440 (3) ÅMo Kα radiation
b = 12.3080 (4) ŵ = 0.10 mm1
c = 12.4170 (4) ÅT = 180 K
α = 86.894 (3)°0.56 × 0.51 × 0.19 mm
β = 75.163 (3)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire1)
diffractometer
4650 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4013 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.981Rint = 0.031
23613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044119 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
4650 reflectionsΔρmin = 0.28 e Å3
400 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.00000.00000.50000.01893 (17)
O10.27384 (14)0.00267 (10)0.49625 (10)0.0273 (3)
H1O10.323 (3)0.0256 (18)0.5592 (13)0.050*
H2O10.360 (2)0.0260 (18)0.4278 (12)0.050*
N10.05837 (16)0.03608 (10)0.66901 (10)0.0189 (3)
N20.06769 (16)0.16696 (10)0.53555 (10)0.0185 (3)
C10.04664 (19)0.13929 (12)0.71606 (12)0.0197 (3)
C20.1086 (2)0.12941 (13)0.83554 (13)0.0253 (3)
H20.11200.18710.88720.030*
C30.1607 (2)0.02077 (13)0.85834 (13)0.0256 (3)
H30.20930.01030.92840.031*
C40.12687 (19)0.03831 (12)0.75337 (12)0.0203 (3)
C50.15851 (19)0.15423 (12)0.74036 (12)0.0202 (3)
C60.12549 (19)0.21291 (12)0.63867 (12)0.0198 (3)
C70.1471 (2)0.33201 (13)0.62737 (13)0.0239 (3)
H70.18220.38270.68510.029*
C80.1069 (2)0.35562 (12)0.51726 (13)0.0234 (3)
H80.10910.42560.48480.028*
C90.05984 (19)0.25119 (12)0.45940 (12)0.0193 (3)
C100.01238 (19)0.23950 (12)0.65711 (12)0.0198 (3)
C110.0337 (2)0.34328 (12)0.72424 (12)0.0215 (3)
C120.1988 (2)0.40022 (13)0.71999 (14)0.0277 (4)
H120.29360.37340.67550.033*
C130.2240 (3)0.49656 (14)0.78129 (15)0.0346 (4)
H130.33530.53390.77770.042*
C140.0846 (3)0.53712 (14)0.84755 (15)0.0355 (4)
H140.10150.60140.88920.043*
C150.0798 (3)0.48205 (15)0.85186 (15)0.0373 (4)
H150.17430.50970.89580.045*
C160.1050 (2)0.38552 (14)0.79099 (14)0.0311 (4)
H160.21660.34850.79500.037*
C170.2409 (2)0.22080 (12)0.84322 (12)0.0214 (3)
C180.1582 (2)0.22428 (13)0.92774 (13)0.0262 (3)
H180.04820.18340.92100.031*
C190.2371 (2)0.28757 (14)1.02156 (13)0.0295 (4)
H190.17970.28941.07710.035*
C200.4005 (2)0.34789 (14)1.03309 (13)0.0296 (4)
H200.45350.39061.09610.036*
C210.4850 (2)0.34448 (14)0.95063 (14)0.0319 (4)
H210.59580.38440.95850.038*
C220.4054 (2)0.28192 (14)0.85624 (14)0.0275 (4)
H220.46310.28080.80070.033*
C23A0.5253 (4)0.1823 (3)0.7059 (2)0.0620 (12)0.80
H23A0.63780.16050.68260.074*0.80
H23B0.53410.24680.75390.074*0.80
O4A0.4741 (2)0.20837 (18)0.61214 (18)0.0495 (5)0.80
C24A0.3972 (4)0.0906 (3)0.7682 (2)0.0682 (10)0.80
H24A0.28280.10970.78660.082*0.80
H24B0.42580.07750.83700.082*0.80
O2A0.4010 (3)0.0049 (2)0.70026 (15)0.0583 (5)0.80
C25A0.3047 (6)0.1004 (4)0.7585 (5)0.0708 (16)0.80
H25A0.36390.12060.81100.085*0.80
H25B0.19250.08590.80010.085*0.80
C26A0.2830 (3)0.1925 (3)0.6784 (3)0.0665 (10)0.80
H26A0.23310.17050.62180.080*0.80
H26B0.20670.25630.71680.080*0.80
C27A0.4410 (6)0.3090 (3)0.5543 (3)0.0657 (11)0.80
H27A0.55290.33180.53490.079*0.80
H27B0.35730.37030.59190.079*0.80
C28A0.3963 (4)0.2866 (3)0.4501 (2)0.0658 (9)0.80
H28A0.28780.25950.46800.079*0.80
H28B0.38310.35430.40710.079*0.80
O3A0.4463 (2)0.2189 (2)0.62918 (17)0.0605 (6)0.80
C23B0.485 (2)0.1672 (8)0.7359 (12)0.0502 (12)0.20
H23C0.37290.18750.76760.060*0.20
H23D0.54970.17830.79250.060*0.20
C24B0.3936 (16)0.0228 (9)0.7901 (8)0.0497 (11)0.20
H24C0.48580.04470.81570.060*0.20
H24D0.32060.01080.85230.060*0.20
C25B0.290 (2)0.1223 (19)0.750 (2)0.0485 (11)0.20
H25C0.20360.10070.71790.058*0.20
H25D0.23240.17280.81030.058*0.20
C26B0.3267 (13)0.2581 (8)0.6048 (9)0.0466 (11)0.20
H26C0.25330.31430.65580.056*0.20
H26D0.25380.22650.56890.056*0.20
C27B0.453 (2)0.3115 (11)0.5178 (11)0.0464 (12)0.20
H27C0.39230.37640.48740.056*0.20
H27D0.53640.33460.55080.056*0.20
C28B0.5792 (17)0.2380 (10)0.6372 (11)0.0500 (13)0.20
H28C0.68170.20960.59710.060*0.20
H28D0.61390.31310.66110.060*0.20
O2B0.4649 (11)0.0550 (7)0.7021 (7)0.0507 (11)0.20
O3B0.4086 (12)0.1731 (7)0.6670 (7)0.0473 (10)0.20
O4B0.5366 (12)0.2356 (7)0.4328 (7)0.0463 (12)0.20
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0259 (4)0.0142 (3)0.0152 (3)0.0009 (3)0.0041 (3)0.0010 (3)
O10.0240 (6)0.0324 (6)0.0247 (6)0.0030 (5)0.0060 (5)0.0011 (5)
N10.0217 (6)0.0157 (6)0.0181 (6)0.0000 (5)0.0050 (5)0.0011 (5)
N20.0218 (6)0.0166 (6)0.0162 (6)0.0011 (5)0.0047 (5)0.0009 (5)
C10.0203 (7)0.0195 (7)0.0189 (7)0.0011 (6)0.0060 (6)0.0010 (6)
C20.0327 (9)0.0228 (8)0.0183 (8)0.0021 (6)0.0050 (6)0.0026 (6)
C30.0340 (9)0.0235 (8)0.0163 (7)0.0016 (7)0.0030 (6)0.0012 (6)
C40.0222 (7)0.0205 (7)0.0171 (7)0.0005 (6)0.0045 (6)0.0022 (6)
C50.0221 (7)0.0193 (7)0.0185 (7)0.0002 (6)0.0057 (6)0.0034 (6)
C60.0212 (7)0.0184 (7)0.0195 (7)0.0007 (6)0.0061 (6)0.0030 (6)
C70.0309 (8)0.0180 (7)0.0224 (8)0.0007 (6)0.0075 (6)0.0043 (6)
C80.0315 (8)0.0154 (7)0.0237 (8)0.0029 (6)0.0084 (6)0.0010 (6)
C90.0202 (7)0.0169 (7)0.0206 (7)0.0015 (5)0.0061 (6)0.0003 (6)
C100.0201 (7)0.0182 (7)0.0208 (7)0.0020 (6)0.0058 (6)0.0015 (6)
C110.0315 (8)0.0163 (7)0.0170 (7)0.0025 (6)0.0074 (6)0.0017 (6)
C120.0316 (9)0.0249 (8)0.0265 (8)0.0020 (7)0.0092 (7)0.0017 (7)
C130.0434 (10)0.0252 (9)0.0355 (10)0.0053 (7)0.0183 (8)0.0001 (7)
C140.0617 (12)0.0185 (8)0.0255 (9)0.0017 (8)0.0139 (8)0.0036 (7)
C150.0500 (11)0.0271 (9)0.0297 (9)0.0097 (8)0.0001 (8)0.0056 (7)
C160.0330 (9)0.0263 (8)0.0300 (9)0.0026 (7)0.0030 (7)0.0038 (7)
C170.0282 (8)0.0164 (7)0.0178 (7)0.0024 (6)0.0034 (6)0.0006 (6)
C180.0286 (8)0.0265 (8)0.0220 (8)0.0001 (6)0.0067 (6)0.0022 (6)
C190.0400 (10)0.0301 (9)0.0192 (8)0.0059 (7)0.0085 (7)0.0024 (6)
C200.0414 (10)0.0233 (8)0.0187 (8)0.0019 (7)0.0007 (7)0.0047 (6)
C210.0314 (9)0.0286 (9)0.0290 (9)0.0063 (7)0.0027 (7)0.0054 (7)
C220.0308 (9)0.0269 (8)0.0235 (8)0.0010 (7)0.0083 (7)0.0039 (6)
C23A0.042 (2)0.091 (3)0.054 (3)0.0160 (18)0.0204 (18)0.040 (2)
O4A0.0354 (10)0.0570 (13)0.0543 (13)0.0082 (9)0.0101 (9)0.0096 (10)
C24A0.060 (2)0.115 (3)0.0319 (14)0.032 (2)0.0086 (13)0.0206 (17)
O2A0.0538 (13)0.0805 (16)0.0346 (10)0.0104 (11)0.0002 (9)0.0045 (10)
C25A0.047 (2)0.106 (5)0.053 (3)0.029 (3)0.0190 (19)0.045 (3)
C26A0.0301 (15)0.077 (2)0.089 (3)0.0051 (14)0.0012 (15)0.050 (2)
C27A0.056 (2)0.068 (2)0.078 (3)0.0151 (16)0.020 (2)0.008 (2)
C28A0.0435 (17)0.076 (2)0.076 (2)0.0041 (15)0.0145 (16)0.0034 (18)
O3A0.0388 (11)0.0919 (18)0.0554 (13)0.0145 (11)0.0143 (10)0.0184 (13)
C23B0.0502 (13)0.0501 (13)0.0497 (13)0.0081 (7)0.0120 (7)0.0002 (7)
C24B0.0495 (12)0.0499 (12)0.0491 (12)0.0080 (7)0.0117 (7)0.0003 (7)
C25B0.0482 (12)0.0488 (12)0.0483 (12)0.0084 (7)0.0120 (7)0.0004 (7)
C26B0.0461 (12)0.0469 (12)0.0472 (12)0.0086 (7)0.0120 (7)0.0007 (7)
C27B0.0459 (13)0.0468 (13)0.0471 (13)0.0086 (7)0.0125 (7)0.0001 (7)
C28B0.0501 (14)0.0499 (14)0.0498 (14)0.0082 (8)0.0125 (8)0.0002 (8)
O2B0.0504 (12)0.0504 (12)0.0499 (12)0.0074 (7)0.0112 (7)0.0010 (7)
O3B0.0470 (12)0.0478 (12)0.0474 (12)0.0088 (7)0.0117 (7)0.0008 (7)
O4B0.0457 (14)0.0465 (14)0.0471 (14)0.0084 (8)0.0127 (8)0.0009 (8)
Geometric parameters (Å, º) top
Mg1—N22.0697 (12)C21—C221.383 (2)
Mg1—N2i2.0697 (12)C21—H210.9300
Mg1—N12.0717 (12)C22—H220.9300
Mg1—N1i2.0717 (12)C23A—O4A1.404 (3)
Mg1—O12.2130 (11)C23A—C24A1.488 (4)
Mg1—O1i2.2130 (11)C23A—H23A0.9700
O1—H1O10.972 (10)C23A—H23B0.9700
O1—H2O10.972 (10)O4A—C28Aii1.389 (4)
N1—C41.3659 (19)C24A—O2A1.410 (3)
N1—C11.3669 (18)C24A—H24A0.9700
N2—C61.3615 (19)C24A—H24B0.9700
N2—C91.3638 (19)O2A—C25A1.410 (5)
C1—C101.411 (2)C25A—C26A1.484 (3)
C1—C21.444 (2)C25A—H25A0.9700
C2—C31.350 (2)C25A—H25B0.9700
C2—H20.9300C26A—O3A1.402 (3)
C3—C41.446 (2)C26A—H26A0.9700
C3—H30.9300C26A—H26B0.9700
C4—C51.411 (2)C27A—O3A1.409 (3)
C5—C61.409 (2)C27A—C28A1.483 (3)
C5—C171.493 (2)C27A—H27A0.9700
C6—C71.448 (2)C27A—H27B0.9700
C7—C81.350 (2)C28A—O4Aii1.389 (4)
C7—H70.9300C28A—H28A0.9700
C8—C91.447 (2)C28A—H28B0.9700
C8—H80.9300C23B—O2B1.413 (6)
C9—C10i1.407 (2)C23B—C28B1.497 (6)
C10—C9i1.407 (2)C23B—H23C0.9700
C10—C111.495 (2)C23B—H23D0.9700
C11—C161.386 (2)C24B—O2B1.427 (6)
C11—C121.388 (2)C24B—C25B1.497 (6)
C12—C131.386 (2)C24B—H24C0.9700
C12—H120.9300C24B—H24D0.9700
C13—C141.378 (3)C25B—O3B1.420 (6)
C13—H130.9300C25B—H25C0.9700
C14—C151.375 (3)C25B—H25D0.9700
C14—H140.9300C26B—O3B1.435 (6)
C15—C161.385 (2)C26B—C27B1.500 (6)
C15—H150.9300C26B—H26C0.9700
C16—H160.9300C26B—H26D0.9700
C17—C221.387 (2)C27B—O4B1.400 (6)
C17—C181.391 (2)C27B—H27C0.9700
C18—C191.382 (2)C27B—H27D0.9700
C18—H180.9300C28B—O4Bii1.433 (15)
C19—C201.377 (2)C28B—H28C0.9700
C19—H190.9300C28B—H28D0.9700
C20—C211.378 (3)O4B—C28Bii1.433 (15)
C20—H200.9300
N2—Mg1—N2i180.0C20—C21—C22120.24 (16)
N2—Mg1—N189.79 (5)C20—C21—H21119.9
N2i—Mg1—N190.21 (5)C22—C21—H21119.9
N2—Mg1—N1i90.21 (5)C21—C22—C17120.94 (15)
N2i—Mg1—N1i89.79 (5)C21—C22—H22119.5
N1—Mg1—N1i180.0C17—C22—H22119.5
N2—Mg1—O192.86 (5)O4A—C23A—C24A109.8 (3)
N2i—Mg1—O187.14 (5)O4A—C23A—H23A109.7
N1—Mg1—O191.48 (4)C24A—C23A—H23A109.7
N1i—Mg1—O188.52 (4)O4A—C23A—H23B109.7
N2—Mg1—O1i87.14 (5)C24A—C23A—H23B109.7
N2i—Mg1—O1i92.86 (5)H23A—C23A—H23B108.2
N1—Mg1—O1i88.52 (4)C28Aii—O4A—C23A108.6 (2)
N1i—Mg1—O1i91.48 (4)O2A—C24A—C23A108.2 (2)
O1—Mg1—O1i180.0O2A—C24A—H24A110.1
Mg1—O1—H1O1123.5 (14)C23A—C24A—H24A110.1
Mg1—O1—H2O1117.8 (14)O2A—C24A—H24B110.1
H1O1—O1—H2O1108.9 (19)C23A—C24A—H24B110.1
C4—N1—C1107.47 (12)H24A—C24A—H24B108.4
C4—N1—Mg1126.28 (10)C24A—O2A—C25A112.3 (3)
C1—N1—Mg1126.10 (10)O2A—C25A—C26A109.6 (4)
C6—N2—C9107.51 (12)O2A—C25A—H25A109.8
C6—N2—Mg1126.51 (10)C26A—C25A—H25A109.8
C9—N2—Mg1125.97 (10)O2A—C25A—H25B109.8
N1—C1—C10125.43 (13)C26A—C25A—H25B109.8
N1—C1—C2109.09 (13)H25A—C25A—H25B108.2
C10—C1—C2125.46 (14)O3A—C26A—C25A107.9 (3)
C3—C2—C1107.21 (13)O3A—C26A—H26A110.1
C3—C2—H2126.4C25A—C26A—H26A110.1
C1—C2—H2126.4O3A—C26A—H26B110.1
C2—C3—C4107.15 (14)C25A—C26A—H26B110.1
C2—C3—H3126.4H26A—C26A—H26B108.4
C4—C3—H3126.4O3A—C27A—C28A114.9 (3)
N1—C4—C5125.54 (13)O3A—C27A—H27A108.5
N1—C4—C3109.05 (13)C28A—C27A—H27A108.5
C5—C4—C3125.41 (14)O3A—C27A—H27B108.5
C6—C5—C4126.02 (14)C28A—C27A—H27B108.5
C6—C5—C17116.87 (13)H27A—C27A—H27B107.5
C4—C5—C17117.07 (13)O4Aii—C28A—C27A109.7 (3)
N2—C6—C5125.61 (13)O4Aii—C28A—H28A109.7
N2—C6—C7109.11 (13)C27A—C28A—H28A109.7
C5—C6—C7125.28 (14)O4Aii—C28A—H28B109.7
C8—C7—C6107.17 (14)C27A—C28A—H28B109.7
C8—C7—H7126.4H28A—C28A—H28B108.2
C6—C7—H7126.4C26A—O3A—C27A113.0 (3)
C7—C8—C9106.88 (13)O2B—C23B—C28B109.3 (10)
C7—C8—H8126.6O2B—C23B—H23C109.8
C9—C8—H8126.6C28B—C23B—H23C109.8
N2—C9—C10i125.84 (13)O2B—C23B—H23D109.8
N2—C9—C8109.24 (13)C28B—C23B—H23D109.8
C10i—C9—C8124.92 (14)H23C—C23B—H23D108.3
C9i—C10—C1126.30 (14)O2B—C24B—C25B109.7 (16)
C9i—C10—C11116.47 (13)O2B—C24B—H24C109.7
C1—C10—C11117.18 (13)C25B—C24B—H24C109.7
C16—C11—C12118.25 (14)O2B—C24B—H24D109.7
C16—C11—C10122.71 (14)C25B—C24B—H24D109.7
C12—C11—C10119.04 (14)H24C—C24B—H24D108.2
C13—C12—C11120.79 (16)O3B—C25B—C24B106.3 (10)
C13—C12—H12119.6O3B—C25B—H25C110.5
C11—C12—H12119.6C24B—C25B—H25C110.5
C14—C13—C12120.16 (17)O3B—C25B—H25D110.5
C14—C13—H13119.9C24B—C25B—H25D110.5
C12—C13—H13119.9H25C—C25B—H25D108.7
C15—C14—C13119.68 (16)O3B—C26B—C27B113.2 (12)
C15—C14—H14120.2O3B—C26B—H26C108.9
C13—C14—H14120.2C27B—C26B—H26C108.9
C14—C15—C16120.15 (17)O3B—C26B—H26D108.9
C14—C15—H15119.9C27B—C26B—H26D108.9
C16—C15—H15119.9H26C—C26B—H26D107.8
C15—C16—C11120.96 (17)O4B—C27B—C26B109.0 (10)
C15—C16—H16119.5O4B—C27B—H27C109.9
C11—C16—H16119.5C26B—C27B—H27C109.9
C22—C17—C18118.08 (14)O4B—C27B—H27D109.9
C22—C17—C5119.67 (14)C26B—C27B—H27D109.9
C18—C17—C5122.25 (14)H27C—C27B—H27D108.3
C19—C18—C17120.96 (15)O4Bii—C28B—C23B107.2 (13)
C19—C18—H18119.5O4Bii—C28B—H28C110.3
C17—C18—H18119.5C23B—C28B—H28C110.3
C20—C19—C18120.19 (16)O4Bii—C28B—H28D110.3
C20—C19—H19119.9C23B—C28B—H28D110.3
C18—C19—H19119.9H28C—C28B—H28D108.5
C19—C20—C21119.59 (15)C23B—O2B—C24B115.3 (10)
C19—C20—H20120.2C25B—O3B—C26B113.4 (10)
C21—C20—H20120.2C27B—O4B—C28Bii106.0 (12)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N2/C6–C9 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2A0.97 (2)2.08 (2)2.984 (2)153 (2)
O1—H2O1···O2Aii0.97 (2)2.22 (2)3.105 (2)150 (2)
O1—H1O1···O2B0.97 (2)2.33 (2)3.297 (10)170 (2)
O1—H2O1···O2Bii0.97 (2)2.19 (2)2.962 (8)135 (1)
C15—H15···Cg4iii0.932.963.730 (2)141
C27A—H27A···Cg2iv0.972.863.671 (5)142
C26B—H26D···Cg20.972.893.678 (11)139
C27B—H27D···Cg2iv0.972.943.715 (17)139
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mg(C44H28N4)(H2O)2]·C12H24O6
Mr937.36
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)8.1440 (3), 12.3080 (4), 12.4170 (4)
α, β, γ (°)86.894 (3), 75.163 (3), 79.529 (3)
V3)1183.06 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.56 × 0.51 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire1)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.946, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
23613, 4650, 4013
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.04
No. of reflections4650
No. of parameters400
No. of restraints119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the N2/C6–C9 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2A0.97 (2)2.083 (19)2.984 (2)153.2 (18)
O1—H2O1···O2Ai0.972 (16)2.222 (16)3.105 (2)150.4 (16)
O1—H1O1···O2B0.97 (2)2.334 (23)3.297 (10)170 (2)
O1—H2O1···O2Bi0.97 (2)2.190 (19)2.962 (8)135 (1)
C15—H15···Cg4ii0.93002.963.730 (2)141
C27A—H27A···Cg2iii0.97002.863.671 (5)142
C26B—H26D···Cg20.97002.893.678 (11)139
C27B—H27D···Cg2iii0.97002.943.715 (17)139
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelghith, Y., Daran, J.-C. & Nasri, H. (2012). Acta Cryst. E68, m1104–m1105.  CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChoon, O. C., McKee, V. & Rodley, G. A. (1986). Inorg. Chim. Acta, 11, 123–126.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, A., Mobin, S. M., Fröhlich, R., Butcher, R. J., Maity, D. K. & Ravikanth, M. (2010). Inorg. Chem. 49, 8287–8297.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationImaz, I., Bravic, G. & Sutter, J.-P. (2005). Chem. Commun. pp. 993–995.  CSD CrossRef Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcKee, V., Choon, O. C. & Rodley, G. A. (1984). Inorg. Chem. 23, 4242–4248.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcKee, V. & Rodley, G. A. (1988). Inorg. Chim. Acta, 151, 233–236.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m114-m115
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds