metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1H-imidazole-4-carboxyl­ato-κ2N3,O)cobalt(II)

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco, UPV/EHU, PO Box 644, E-48080 Bilbao, Spain
*Correspondence e-mail: juanma.zorrilla@ehu.es

(Received 18 December 2012; accepted 4 January 2013; online 9 January 2013)

The title compound, [Co(C4H3N2O2)2(H2O)2], contains a CoII cation on a twofold rotation axis, exhibiting a distorted octa­hedral coordination geometry. The equatorial plane is formed by two N,O-bidentate 1H-imidazole-4-carboxyl­ate ligands and the axial positions are occupied by water mol­ecules. The crystal packing consists of a three-dimensional network stabilized by O—H⋯O and N—H⋯O hydrogen bonds, together with weak ππ inter­actions [centroid–centroid distance = 3.577 (2) Å] between the imidazole rings.

Related literature

For the isostructural zinc(II) and cadmium(II) complexes, see: Yin et al. (2009[Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]); Shuai et al. (2011[Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.]). For related homoleptic compounds, see: Kondo et al. (2003[Kondo, M., Shimizu, E., Horiba, T., Tanaka, H., Fuwa, Y., Nabari, K., Unoura, K., Naito, T., Maeda, K. & Uchida, H. (2003). Chem. Lett. 32, 944-945.]); Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Zheng et al. (2011[Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H3N2O2)2(H2O)2]

  • Mr = 317.13

  • Orthorhombic, P c c n

  • a = 7.1236 (16) Å

  • b = 11.6305 (2) Å

  • c = 13.5496 (4) Å

  • V = 1122.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.56 mm−1

  • T = 100 K

  • 0.09 × 0.04 × 0.03 mm

Data collection
  • Agilent SuperNova (single source at offset) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.947, Tmax = 1.000

  • 2396 measured reflections

  • 1162 independent reflections

  • 1025 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.08

  • 1162 reflections

  • 95 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N3 2.0763 (17)
Co1—O1W 2.1074 (15)
Co1—O1 2.1774 (14)
N3—Co1—N3i 97.39 (9)
N3—Co1—O1W 98.62 (6)
N3—Co1—O1 78.47 (6)
O1W—Co1—O1 83.04 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.88 1.89 2.766 (2) 172
O1W—H1WA⋯O2iii 0.86 (2) 1.91 (2) 2.760 (2) 171 (3)
O1W—H1WB⋯O2iv 0.85 (2) 1.98 (2) 2.812 (2) 167 (2)
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, [Co(C4H3N2O2)2(H2O)2] crystallizes in the orthorhombic crystal system, space group Pccn, and it is isostructural with the zinc and cadmium complexes previously reported by Yin et al. (2009) and Shuai et al. (2011). As expected, the Co—O and Co—N distances (Table 1) are similar to those of the ZnII analogue and shorter than those of the CdII derivative. Table 2 summarizes the geometrical parameters of the O—H···O and N—H···O hydrogen bonding interactions. The centroid-to-centroid distance between interacting imidazole rings is 3.577 (2) Å.

Related literature top

For the isostructural zinc(II) and cadmium(II) complexes, see: Yin et al. (2009); Shuai et al. (2011). For related homoleptic compounds, see: Kondo et al. (2003); Gryz et al. (2007); Zheng et al. (2011).

Experimental top

To a solution of CoCl2.6H2O (12 mg, 0.05 mmol) in 15 ml of water 4-imidazole carboxylic acid (6 mg, 0.05 mmol) was added and the resulting solution was stirred for 30 min at room temperature. Prismatic red crystals were obtained by slow evaporation after several days. IR (cm-1): 3148 (s), 2934 (s), 1685 (m), 1588 (vs), 1555 (vs), 1528 (s), 1462 (s), 1406 (vs), 1333 (m), 1234 (s), 1177 (m), 1101 (m), 1005 (m), 930 (m), 845 (m), 820 (m), 791 (m), 731 (w), 658 (s), 610 (m), 492 (m).

Refinement top

All atoms except H were refined anisotropically. H atoms of the water molecule were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.84 (2) Å. All imidazole H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Co(C4H3N2O2)2(H2O)2] showing atom labelling for the asymmetric unit and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the crystal packing along the crystallographic a axis (hydrogen bonds represented as dashed lines).
(I) top
Crystal data top
[Co(C4H3N2O2)2(H2O)2]F(000) = 644
Mr = 317.13Dx = 1.876 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1055 reflections
a = 7.1236 (16) Åθ = 1.8–28.1°
b = 11.6305 (2) ŵ = 1.56 mm1
c = 13.5496 (4) ÅT = 100 K
V = 1122.6 (3) Å3Prism, red
Z = 40.09 × 0.04 × 0.03 mm
Data collection top
Agilent SuperNova (single source at offset)
diffractometer
1162 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1025 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.2439 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1014
Tmin = 0.947, Tmax = 1.000l = 517
2396 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0201P)2 + 1.0008P]
where P = (Fo2 + 2Fc2)/3
1162 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Co(C4H3N2O2)2(H2O)2]V = 1122.6 (3) Å3
Mr = 317.13Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.1236 (16) ŵ = 1.56 mm1
b = 11.6305 (2) ÅT = 100 K
c = 13.5496 (4) Å0.09 × 0.04 × 0.03 mm
Data collection top
Agilent SuperNova (single source at offset)
diffractometer
1162 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1025 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.018
2396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.32 e Å3
1162 reflectionsΔρmin = 0.25 e Å3
95 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.750.250.13009 (3)0.00874 (13)
O1W0.8972 (2)0.09575 (13)0.15593 (11)0.0140 (3)
O10.54278 (18)0.17114 (12)0.22690 (10)0.0120 (3)
O20.26134 (18)0.08371 (12)0.22474 (10)0.0113 (3)
N30.5553 (2)0.18870 (15)0.02894 (12)0.0107 (4)
N10.3584 (2)0.12877 (15)0.08496 (13)0.0125 (4)
H10.30940.11570.14350.015*
C40.4058 (3)0.13338 (17)0.07356 (15)0.0098 (4)
C60.4028 (3)0.12899 (16)0.18291 (15)0.0096 (4)
C50.2836 (3)0.09571 (18)0.00325 (15)0.0118 (4)
H50.16970.05490.01360.014*
C20.5204 (3)0.18489 (18)0.06678 (15)0.0123 (4)
H20.59890.21730.11620.015*
H1WA1.007 (3)0.099 (3)0.180 (2)0.047 (9)*
H1WB0.847 (4)0.050 (2)0.1974 (17)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0080 (2)0.0098 (2)0.0084 (2)0.00165 (15)00
O1W0.0110 (8)0.0146 (8)0.0163 (8)0.0018 (6)0.0014 (7)0.0039 (7)
O10.0102 (7)0.0140 (7)0.0116 (7)0.0016 (6)0.0011 (6)0.0008 (6)
O20.0087 (7)0.0137 (7)0.0116 (7)0.0007 (6)0.0021 (6)0.0019 (6)
N30.0095 (8)0.0111 (9)0.0115 (8)0.0003 (7)0.0013 (7)0.0009 (7)
N10.0130 (9)0.0151 (9)0.0094 (8)0.0007 (7)0.0031 (7)0.0005 (7)
C40.0101 (10)0.0072 (10)0.0120 (10)0.0000 (8)0.0007 (8)0.0006 (8)
C60.0105 (10)0.0071 (9)0.0113 (10)0.0041 (8)0.0009 (8)0.0000 (8)
C50.0122 (10)0.0113 (10)0.0118 (9)0.0007 (8)0.0012 (9)0.0001 (9)
C20.0121 (10)0.0137 (11)0.0111 (10)0.0008 (8)0.0005 (8)0.0009 (9)
Geometric parameters (Å, º) top
Co1—N32.0763 (17)N3—C21.321 (3)
Co1—N3i2.0763 (17)N3—C41.383 (2)
Co1—O1Wi2.1074 (15)N1—C21.349 (3)
Co1—O1W2.1074 (15)N1—C51.364 (3)
Co1—O1i2.1774 (14)N1—H10.88
Co1—O12.1774 (14)C4—C51.363 (3)
O1W—H1WA0.849 (17)C4—C61.483 (3)
O1W—H1WB0.853 (17)C5—H50.95
O1—C61.261 (2)C2—H20.95
O2—C61.271 (2)
N3—Co1—N3i97.39 (9)C2—N3—C4105.60 (17)
N3—Co1—O1Wi93.98 (6)C2—N3—Co1141.72 (15)
N3i—Co1—O1Wi98.62 (6)C4—N3—Co1112.67 (13)
N3—Co1—O1W98.62 (6)C2—N1—C5108.11 (17)
N3i—Co1—O1W93.98 (6)C2—N1—H1125.9
O1Wi—Co1—O1W160.87 (9)C5—N1—H1125.9
N3—Co1—O1i174.42 (6)C5—C4—N3109.62 (18)
N3i—Co1—O1i78.47 (6)C5—C4—C6132.70 (18)
O1Wi—Co1—O1i83.04 (6)N3—C4—C6117.64 (17)
O1W—Co1—O1i85.47 (6)O1—C6—O2125.27 (18)
N3—Co1—O178.47 (6)O1—C6—C4116.60 (17)
N3i—Co1—O1174.42 (6)O2—C6—C4118.13 (17)
O1Wi—Co1—O185.47 (6)C4—C5—N1105.79 (17)
O1W—Co1—O183.04 (6)C4—C5—H5127.1
O1i—Co1—O1105.91 (7)N1—C5—H5127.1
Co1—O1W—H1WA119 (2)N3—C2—N1110.87 (18)
Co1—O1W—H1WB115.7 (19)N3—C2—H2124.6
H1WA—O1W—H1WB100 (3)N1—C2—H2124.6
C6—O1—Co1114.52 (12)
N3—Co1—O1—C61.93 (13)Co1—N3—C4—C5179.84 (13)
N3i—Co1—O1—C644.3 (6)C2—N3—C4—C6177.35 (18)
O1Wi—Co1—O1—C693.08 (13)Co1—N3—C4—C61.8 (2)
O1W—Co1—O1—C6102.24 (13)Co1—O1—C6—O2176.57 (15)
O1i—Co1—O1—C6174.51 (15)Co1—O1—C6—C43.4 (2)
N3i—Co1—N3—C25.2 (2)C5—C4—C6—O1178.9 (2)
O1Wi—Co1—N3—C294.1 (2)N3—C4—C6—O13.6 (3)
O1W—Co1—N3—C2100.4 (2)C5—C4—C6—O21.1 (3)
O1i—Co1—N3—C236.6 (7)N3—C4—C6—O2176.37 (17)
O1—Co1—N3—C2178.6 (2)N3—C4—C5—N10.3 (2)
N3i—Co1—N3—C4176.15 (16)C6—C4—C5—N1177.4 (2)
O1Wi—Co1—N3—C484.61 (14)C2—N1—C5—C40.2 (2)
O1W—Co1—N3—C480.96 (14)C4—N3—C2—N10.8 (2)
O1i—Co1—N3—C4142.1 (6)Co1—N3—C2—N1179.56 (16)
O1—Co1—N3—C40.06 (13)C5—N1—C2—N30.7 (2)
C2—N3—C4—C50.7 (2)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.881.892.766 (2)172
O1W—H1WA···O2iii0.86 (2)1.91 (2)2.760 (2)171 (3)
O1W—H1WB···O2iv0.85 (2)1.98 (2)2.812 (2)167 (2)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C4H3N2O2)2(H2O)2]
Mr317.13
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)100
a, b, c (Å)7.1236 (16), 11.6305 (2), 13.5496 (4)
V3)1122.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.09 × 0.04 × 0.03
Data collection
DiffractometerAgilent SuperNova (single source at offset)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.947, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
2396, 1162, 1025
Rint0.018
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.08
No. of reflections1162
No. of parameters95
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Co1—N32.0763 (17)Co1—O12.1774 (14)
Co1—O1W2.1074 (15)
N3—Co1—N3i97.39 (9)N3—Co1—O178.47 (6)
N3—Co1—O1W98.62 (6)O1W—Co1—O183.04 (6)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.881.892.766 (2)172
O1W—H1WA···O2iii0.86 (2)1.91 (2)2.760 (2)171 (3)
O1W—H1WB···O2iv0.85 (2)1.98 (2)2.812 (2)167 (2)
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+1/2, y, z+1/2.
 

Acknowledgements

This work was financially supported by Eusko Jaurlaritza/Gobierno Vasco (grant Nos. IT477-10 and S-PE11UN062) and the Universidad de País Vasco UPV/EHU (grant No. UFI11/53). BA and AP thank EJ/GV for their predoctoral fellowships.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationKondo, M., Shimizu, E., Horiba, T., Tanaka, H., Fuwa, Y., Nabari, K., Unoura, K., Naito, T., Maeda, K. & Uchida, H. (2003). Chem. Lett. 32, 944–945.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.  CAS Google Scholar
First citationZheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds