organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,4E)-1,5-Bis[2-(tri­fluoro­meth­yl)phen­yl]penta-1,4-dien-3-one

aDepartment of Biomedicinal Chemistry, Inje University, Gimhae, Gyeongnam 621 749, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 600 036, TamilNadu, India
*Correspondence e-mail: parthisivam@yahoo.co.in

(Received 25 November 2012; accepted 21 December 2012; online 4 January 2013)

In the title compound, C19H12F6O, a monoketone derivative of curcumin, both double bonds have a trans conformation. The mol­ecule is mostly planar with all C and O atoms essentially coplanar, with the exception of one benzene ring, which is tilted by 17.18 (1)° with respect to the plane of the remainder of the mol­ecule. The r.m.s. deviation from planarity of the coplanar section is 0.0097 Å. The crystal packing features weak C—H⋯O and C—H⋯F inter­actions.

Related literature

For the synthesis of chalcones, see: Tully et al. (2001[Tully, W., Main, L. & Nicholson, B. K. (2001). J. Organomet. Chem. 633, 162-172.]). For the biological properties of chalcones, see: Buescher & Yang (2000[Buescher, R. & Yang, L. (2000). Turmeric in Natural Food Colorants, edited by G. J. Lauro & F. J. Francis, pp. 205-226. New York: Marcel Dekker.]); Kumar et al. (2003[Kumar, A. P., Aggarwal, B. B. & Bharti, A. C. (2003). Anticancer Res. 23, 363-398.]), Hsu & Cheng (2007[Hsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471-480.]). For their physical properties, see: Fichou et al. (1988[Fichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429-430.]); Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629-o1630.]). For similar structures, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3213-o3214.]); Nizam Mohideen et al. (2007[Nizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.]); Harrison et al. (2006[Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522-o1523.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12F6O

  • Mr = 370.29

  • Monoclinic, P c

  • a = 11.3123 (12) Å

  • b = 4.7907 (4) Å

  • c = 15.1697 (16) Å

  • β = 101.834 (3)°

  • V = 804.63 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.986

  • 5185 measured reflections

  • 2608 independent reflections

  • 1931 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 1.04

  • 2608 reflections

  • 235 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯F3i 0.93 2.62 3.399 (4) 141 (2)
C1—H1⋯O1ii 0.93 2.72 3.290 (5) 121 (1)
Symmetry codes: (i) x-1, y-1, z; (ii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a bischalcone, and is a monoketone derivative of curcumin. Curcumin is a naturally abundant beta-diketone derived from the rizome of curcuma longa (Buescher & Yang, 2000). Numerous studies have shown that curcumin possesses multiple pharmacological properties. Several clinical trials of curcumin were carried out in patients with pancreatic cancer, multiple myeloma, rheumatoid arthritis, cystic fibrosis, inflammatory bowel disease, psoriasis, and other disorders (Kumar et al., 2003; Hsu & Cheng, 2007). Since the stereochemistry of the synthesized molecule is an important criterion for its biological actions, it is of of desirable to establish the structure of the synthesized molecule.

Crystalline chalcone derivatives are also of interest due to their their second harmonic generation properties, particularly, their often are good blue light emitters. The NLO properties of the molecules are also associated with their molecular geometry (Fichou et al., 1988; Butcher et al., 2006), and accordingly, a single-crystal XRD study of the title bischalcone was undertaken to obtain detailed information on its molecular conformation.

In the title compound, C19H12F6O, both double bonds have trans configuration. The molecule is mostly planar with all carbon and oxygen atoms coplanar with the exception of one phenyl ring (C1—C6), which is tilted by 17.18 (1)° against the plane of the remainder of the molecule. The root mean square deviation from planarity of the coplanar section Ph—C=C—C(O)—C=C (C8—C18) is 0.0097 Å.

The bond lengths of the conjugated chalcone backbone C5—C13 [C5–C8 = 1.460 (4), C8–C9 = 1.322 (4), C9–C10 = 1.460 (4), C10–C11 = 1.470 (4), C11–C12 = 1.311 (4) and C12–C13 = 1.456 Å] show alternate localized single and double bonds as in its ortho-chloro analog (Nizam Mohideen et al., 2007). This indicates the absence of delocalization of the double bonds in the chalcone skeleton C5—C13.

The crystal packing of this molecule is stabilized by weak intermolecular C—H···O, C—H···F and C—H···π interactions (Table 1).

Related literature top

For the synthesis of chalcones, see: Tully et al. (2001). For the biological properties of chalcones, see: Buescher & Yang (2000); Kumar et al. (2003), Hsu & Cheng (2007). For their physical properties, see: Fichou et al. (1988); Butcher et al. (2006). For similar structures, see: Butcher et al. (2007); Nizam Mohideen et al. (2007); Harrison et al. (2006).

Experimental top

The title compound, 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one was synthesized by a modified procedure of Tully et al. (2001) using the milder base ammonium acetate instead of sodium hydroxide and a better yield (86%) was obtained. 20 mmol of 2-trifluoromethylbenzaldehyde (2.634 ml), 15 mmol of acetone (1.11 ml) and 1 g of ammonium acetate were combined in one-pot and stirred gently in ethanol as the solvent (20 ml). The complete consumption of the starting materials was monitored by TLC. After completion, the reaction mass was filtered, washed with cold ethanol and dried. The compound was characterized by melting point, IR and NMR. The analytical and spectral data are as reported previously (Tully et al., 2001). X-ray diffraction quality crystals of the title compound were obtained by slow evaporation of an ethanol solution.

Refinement top

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram showing C—H···O, C—H···F and C—H···π interactions.
(1E,4E)-1,5-Bis[2-(trifluoromethyl)phenyl]penta-1,4-dien-3-one top
Crystal data top
C19H12F6OF(000) = 376
Mr = 370.29Dx = 1.528 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2360 reflections
a = 11.3123 (12) Åθ = 2.7–24.1°
b = 4.7907 (4) ŵ = 0.14 mm1
c = 15.1697 (16) ÅT = 298 K
β = 101.834 (3)°Block, colourless
V = 804.63 (14) Å30.35 × 0.25 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2608 independent reflections
Radiation source: fine-focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 27.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.952, Tmax = 0.986k = 55
5185 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2469P]
where P = (Fo2 + 2Fc2)/3
2608 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H12F6OV = 804.63 (14) Å3
Mr = 370.29Z = 2
Monoclinic, PcMo Kα radiation
a = 11.3123 (12) ŵ = 0.14 mm1
b = 4.7907 (4) ÅT = 298 K
c = 15.1697 (16) Å0.35 × 0.25 × 0.10 mm
β = 101.834 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2608 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1931 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.986Rint = 0.020
5185 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2608 reflectionsΔρmin = 0.14 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1775 (4)1.5554 (9)1.1292 (2)0.0761 (11)
H11.13421.57561.17470.091*
C21.2832 (4)1.6949 (8)1.1343 (2)0.0784 (11)
H21.31101.81601.18190.094*
C31.3481 (3)1.6560 (7)1.0689 (2)0.0673 (9)
H31.42201.74611.07360.081*
C41.3062 (3)1.4847 (6)0.9956 (2)0.0501 (7)
C51.1957 (2)1.3456 (6)0.98898 (19)0.0466 (7)
C61.1349 (3)1.3854 (7)1.0575 (2)0.0619 (9)
H61.06191.29331.05490.074*
C71.3802 (3)1.4515 (8)0.9268 (2)0.0654 (10)
C81.1460 (3)1.1721 (7)0.9110 (2)0.0533 (8)
H81.18291.18770.86180.064*
C91.0547 (3)0.9955 (7)0.9024 (2)0.0508 (8)
H91.01680.96880.95070.061*
C101.0119 (3)0.8412 (7)0.8190 (2)0.0492 (7)
C110.9120 (3)0.6426 (6)0.81579 (19)0.0505 (8)
H110.88020.61770.86710.061*
C120.8662 (3)0.4996 (6)0.7433 (2)0.0478 (7)
H120.90040.53170.69340.057*
C130.7685 (2)0.2965 (6)0.73090 (18)0.0420 (6)
C140.7286 (2)0.1566 (6)0.64946 (17)0.0428 (7)
C150.6361 (3)0.0368 (6)0.6405 (2)0.0540 (8)
H150.61050.12840.58590.065*
C160.5820 (3)0.0946 (7)0.7110 (2)0.0617 (9)
H160.52080.22720.70470.074*
C170.6184 (3)0.0439 (7)0.7910 (2)0.0595 (8)
H170.58060.00840.83880.071*
C180.7107 (3)0.2348 (7)0.80077 (19)0.0518 (8)
H180.73510.32530.85570.062*
C190.7851 (3)0.2061 (7)0.5705 (2)0.0578 (8)
F11.3299 (2)1.5590 (5)0.84801 (15)0.0944 (7)
F21.4881 (2)1.5699 (6)0.94957 (17)0.1057 (9)
F31.4031 (2)1.1853 (6)0.9114 (2)0.1095 (9)
F40.7781 (2)0.4718 (5)0.54360 (14)0.0860 (7)
F50.89964 (19)0.1390 (5)0.58521 (14)0.0902 (7)
F60.7316 (2)0.0638 (5)0.49807 (13)0.0954 (7)
O11.0559 (2)0.8784 (5)0.75344 (16)0.0824 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.083 (3)0.090 (3)0.058 (2)0.016 (2)0.0204 (19)0.011 (2)
C20.096 (3)0.076 (3)0.059 (2)0.025 (2)0.005 (2)0.0118 (19)
C30.063 (2)0.073 (2)0.060 (2)0.0199 (18)0.0003 (17)0.0054 (19)
C40.0462 (15)0.0481 (18)0.0545 (18)0.0042 (14)0.0065 (13)0.0089 (15)
C50.0479 (17)0.0427 (17)0.0481 (17)0.0016 (13)0.0076 (14)0.0024 (14)
C60.061 (2)0.068 (2)0.058 (2)0.0144 (16)0.0168 (16)0.0079 (17)
C70.057 (2)0.067 (3)0.073 (2)0.0142 (19)0.0140 (17)0.0020 (19)
C80.0503 (17)0.054 (2)0.0572 (19)0.0016 (15)0.0149 (14)0.0019 (15)
C90.0577 (18)0.0486 (18)0.0474 (17)0.0004 (14)0.0138 (14)0.0002 (13)
C100.0544 (18)0.0456 (19)0.0466 (17)0.0013 (14)0.0080 (14)0.0025 (14)
C110.0614 (19)0.0500 (19)0.0408 (17)0.0002 (15)0.0124 (14)0.0058 (13)
C120.0562 (18)0.0440 (18)0.0439 (16)0.0005 (14)0.0119 (14)0.0004 (13)
C130.0470 (15)0.0385 (16)0.0404 (15)0.0054 (13)0.0089 (12)0.0002 (12)
C140.0504 (16)0.0353 (16)0.0416 (16)0.0080 (13)0.0070 (13)0.0015 (12)
C150.0589 (18)0.0463 (18)0.0511 (18)0.0045 (16)0.0021 (15)0.0066 (15)
C160.0523 (18)0.056 (2)0.074 (2)0.0040 (16)0.0067 (16)0.0041 (17)
C170.0603 (19)0.060 (2)0.062 (2)0.0020 (17)0.0219 (16)0.0124 (17)
C180.0622 (19)0.0524 (19)0.0420 (17)0.0007 (15)0.0134 (14)0.0028 (14)
C190.070 (2)0.056 (2)0.0466 (19)0.0075 (17)0.0097 (16)0.0062 (16)
F10.1087 (16)0.114 (2)0.0642 (14)0.0084 (15)0.0272 (12)0.0071 (13)
F20.0714 (14)0.133 (2)0.120 (2)0.0401 (15)0.0359 (13)0.0138 (16)
F30.1025 (17)0.0725 (17)0.176 (3)0.0065 (13)0.0802 (17)0.0137 (16)
F40.135 (2)0.0631 (15)0.0670 (12)0.0083 (14)0.0377 (12)0.0116 (11)
F50.0785 (14)0.1231 (19)0.0772 (13)0.0270 (13)0.0352 (11)0.0012 (14)
F60.1393 (18)0.0984 (17)0.0467 (11)0.0143 (15)0.0144 (12)0.0244 (12)
O10.0925 (18)0.0963 (19)0.0667 (16)0.0401 (16)0.0356 (14)0.0247 (14)
Geometric parameters (Å, º) top
C1—C21.358 (5)C10—C111.470 (4)
C1—C61.366 (5)C11—C121.310 (4)
C1—H10.9300C11—H110.9300
C2—C31.362 (5)C12—C131.456 (4)
C2—H20.9300C12—H120.9300
C3—C41.385 (4)C13—C181.386 (4)
C3—H30.9300C13—C141.397 (4)
C4—C51.401 (4)C14—C151.383 (4)
C4—C71.474 (5)C14—C191.488 (4)
C5—C61.372 (4)C15—C161.364 (4)
C5—C81.460 (4)C15—H150.9300
C6—H60.9300C16—C171.371 (5)
C7—F11.318 (4)C16—H160.9300
C7—F21.326 (4)C17—C181.373 (4)
C7—F31.331 (4)C17—H170.9300
C8—C91.321 (4)C18—H180.9300
C8—H80.9300C19—F51.309 (4)
C9—C101.460 (4)C19—F61.329 (4)
C9—H90.9300C19—F41.334 (4)
C10—O11.213 (4)
C2—C1—C6120.1 (4)C9—C10—C11118.2 (3)
C2—C1—H1119.9C12—C11—C10122.4 (3)
C6—C1—H1119.9C12—C11—H11118.8
C1—C2—C3119.4 (3)C10—C11—H11118.8
C1—C2—H2120.3C11—C12—C13128.1 (3)
C3—C2—H2120.3C11—C12—H12115.9
C2—C3—C4121.2 (3)C13—C12—H12115.9
C2—C3—H3119.4C18—C13—C14117.2 (3)
C4—C3—H3119.4C18—C13—C12120.6 (2)
C3—C4—C5119.5 (3)C14—C13—C12122.3 (3)
C3—C4—C7118.8 (3)C15—C14—C13120.6 (3)
C5—C4—C7121.7 (3)C15—C14—C19118.0 (3)
C6—C5—C4117.3 (3)C13—C14—C19121.4 (3)
C6—C5—C8121.5 (3)C16—C15—C14120.8 (3)
C4—C5—C8121.2 (3)C16—C15—H15119.6
C1—C6—C5122.4 (3)C14—C15—H15119.6
C1—C6—H6118.8C15—C16—C17119.6 (3)
C5—C6—H6118.8C15—C16—H16120.2
F1—C7—F2105.8 (3)C17—C16—H16120.2
F1—C7—F3106.2 (3)C16—C17—C18120.1 (3)
F2—C7—F3104.7 (3)C16—C17—H17120.0
F1—C7—C4113.4 (3)C18—C17—H17120.0
F2—C7—C4113.3 (3)C17—C18—C13121.8 (3)
F3—C7—C4112.7 (3)C17—C18—H18119.1
C9—C8—C5127.5 (3)C13—C18—H18119.1
C9—C8—H8116.3F5—C19—F6106.4 (3)
C5—C8—H8116.3F5—C19—F4106.3 (3)
C8—C9—C10121.6 (3)F6—C19—F4104.4 (3)
C8—C9—H9119.2F5—C19—C14113.4 (3)
C10—C9—H9119.2F6—C19—C14112.7 (3)
O1—C10—C9121.2 (3)F4—C19—C14112.9 (3)
O1—C10—C11120.7 (3)
C6—C1—C2—C32.3 (6)O1—C10—C11—C120.3 (5)
C1—C2—C3—C42.4 (6)C9—C10—C11—C12178.6 (3)
C2—C3—C4—C50.9 (5)C10—C11—C12—C13179.6 (3)
C2—C3—C4—C7179.7 (4)C11—C12—C13—C180.5 (4)
C3—C4—C5—C60.7 (4)C11—C12—C13—C14179.6 (3)
C7—C4—C5—C6178.6 (3)C18—C13—C14—C150.7 (4)
C3—C4—C5—C8177.5 (3)C12—C13—C14—C15179.5 (3)
C7—C4—C5—C83.1 (4)C18—C13—C14—C19179.5 (3)
C2—C1—C6—C50.7 (6)C12—C13—C14—C190.6 (4)
C4—C5—C6—C10.8 (5)C13—C14—C15—C160.0 (4)
C8—C5—C6—C1177.4 (3)C19—C14—C15—C16178.9 (3)
C3—C4—C7—F1113.3 (3)C14—C15—C16—C171.1 (5)
C5—C4—C7—F167.3 (4)C15—C16—C17—C181.5 (5)
C3—C4—C7—F27.4 (5)C16—C17—C18—C130.8 (5)
C5—C4—C7—F2172.0 (3)C14—C13—C18—C170.2 (4)
C3—C4—C7—F3126.0 (3)C12—C13—C18—C17179.9 (3)
C5—C4—C7—F353.4 (4)C15—C14—C19—F5117.0 (3)
C6—C5—C8—C913.8 (5)C13—C14—C19—F561.9 (4)
C4—C5—C8—C9168.1 (3)C15—C14—C19—F64.0 (4)
C5—C8—C9—C10178.0 (3)C13—C14—C19—F6177.1 (3)
C8—C9—C10—O12.9 (5)C15—C14—C19—F4121.9 (3)
C8—C9—C10—C11178.3 (3)C13—C14—C19—F459.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F3i0.932.623.399 (4)141 (2)
C1—H1···O1ii0.932.723.290 (5)121 (1)
C3—H3···Cg10.933.32 (2)4.096 (3)142 (1)
Symmetry codes: (i) x1, y1, z; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H12F6O
Mr370.29
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)11.3123 (12), 4.7907 (4), 15.1697 (16)
β (°) 101.834 (3)
V3)804.63 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.952, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5185, 2608, 1931
Rint0.020
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 1.04
No. of reflections2608
No. of parameters235
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···F3i0.9302.623.399 (4)141.4 (18)
C1—H1···O1ii0.9302.7203.290 (5)120.68 (2)
C3—H3···Cg10.9303.32 (2)4.096 (3)141.93 (2)
Symmetry codes: (i) x1, y1, z; (ii) x, y+2, z+1/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuescher, R. & Yang, L. (2000). Turmeric in Natural Food Colorants, edited by G. J. Lauro & F. J. Francis, pp. 205–226. New York: Marcel Dekker.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Sarojini, B. K., Yathirajan, H. S., Bindya, S. & Narayana, B. (2007). Acta Cryst. E63, o3213–o3214.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Mithun, A. (2006). Acta Cryst. E62, o1629–o1630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFichou, D., Watanabe, T., Takeda, T., Miyata, S., Goto, Y. & Nakayama, M. (1988). Jpn J. Appl. Phys. 27, 429–430.  CrossRef Web of Science Google Scholar
First citationHarrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471–480.  CrossRef PubMed Google Scholar
First citationKumar, A. P., Aggarwal, B. B. & Bharti, A. C. (2003). Anticancer Res. 23, 363–398.  Web of Science PubMed Google Scholar
First citationNizam Mohideen, M., Thenmozhi, S., Subbiah Pandi, A., Murugan, R. & Narayanan, S. S. (2007). Acta Cryst. E63, o4379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTully, W., Main, L. & Nicholson, B. K. (2001). J. Organomet. Chem. 633, 162–172.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds