metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m81-m82

μ-2,3,5,6-Tetra­kis(pyridin-2-yl)pyrazine-bis­­[(2,2′:6′,2′′-terpyridine)­ruthenium(II)] tetra­kis­(hexa­fluoridophosphate) aceto­nitrile tetra­solvate

aLos Alamos National Laboratory, MPA Division, Los Alamos, NM 87545, USA
*Correspondence e-mail: rcrocha@lanl.gov

(Received 26 November 2012; accepted 18 December 2012; online 9 January 2013)

In the title compound [Ru2(C15H11N3)2(C24H16N6)](PF6)4·4CH3CN, two of the counter-ions and one of the solvent mol­ecules are disordered with occupancies for the major components between 0.57 (2) and 0.64 (1). The structure of the dinuclear tetracation exhibits significant distortion from planarity in the bridging 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (tppz) ligand, which has a saddle-like geometry with an average dihedral angle of 42.96 (18)° between adjacent pyridine rings. The metal–ligand coordination environment is nearly equivalent for the two RuII atoms, which have a distorted octa­hedral geometry due to the restricted bite angle [157.57 (13)–159.28 (12)°] of their two mer-arranged tridendate ligands [2,2′:6′,2′′-terpyridine (tpy) and tppz] orthogonal to each other. At the peripheral tpy ligands, the average Ru—N bond distance is 2.072 (4) Å for the outer N atoms trans to each other (Nouter) and 1.984 (1) Å for the central N atoms (Ncentral). At the bridging tppz ligand, the average metal–ligand distances are significantly shorter [2.058 (4) Å for Ru—Nouter and 1.965 (1) Å for Ru—Ncentral] as a result of both the geometric constraints and the stronger π-acceptor ability of the pyrazine-centered bridge. The dihedral angle between the two tpy planes is 27.11 (6)°. The intra­molecular linear distance between the two Ru atoms is 6.6102 (7) Å.

Related literature

For a previously reported solvent-free structure of this compound, see: Yoshikawa et al. (2011[Yoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T., Takashima, H. & Tsukahara, K. (2011). J. Phys. Org. Chem. 24, 1110-1118.]). For the crystal structure of a related diruthenium(II) compound containing the {(tpy)Ru(tppz)} moiety, see: Chen et al. (2011[Chen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595-5604.]). For details of the synthesis, see: Arana & Abruña (1993[Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194-203.]); Rocha et al. (2008[Rocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503-506.]); Thummel & Chirayil (1988[Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.]); Vogler et al. (1996[Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155-162.]); Wadman et al. (2009[Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.]). For general properties of this compound, see: Arana & Abruña (1993[Arana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194-203.]); Dattelbaum et al. (2002[Dattelbaum, D. M., Hartshorn, C. M. & Meyer, T. J. (2002). J. Am. Chem. Soc. 124, 4938-4939.]); Flores-Torres et al. (2006[Flores-Torres, S., Hutchison, G. R., Stoltzberg, L. J. & Abruña, H. D. (2006). J. Am. Chem. Soc. 128, 1513-1522.]); Gourdon & Launay (1998[Gourdon, A. & Launay, J.-P. (1998). Inorg. Chem. 37, 5336-5341.]); Jones et al. (1998[Jones, S. W., Vrana, L. M. & Brewer, K. J. (1998). J. Organomet. Chem. 554, 29-40.]); Thummel & Chirayil (1988[Thummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77-81.]); Vogler et al. (1996[Vogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155-162.]); Wadman et al. (2009[Wadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685-5696.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru2(C15H11N3)2(C24H16N6)](PF6)4·4C2H3N

  • Mr = 1801.20

  • Monoclinic, P 21 /c

  • a = 11.8871 (9) Å

  • b = 31.824 (2) Å

  • c = 18.5168 (14) Å

  • β = 95.880 (1)°

  • V = 6968.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 120 K

  • 0.18 × 0.10 × 0.08 mm

Data collection
  • Bruker D8 with APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.893, Tmax = 0.950

  • 67490 measured reflections

  • 12753 independent reflections

  • 8864 reflections with I > 2σ(I)

  • Rint = 0.107

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.102

  • S = 1.10

  • 12753 reflections

  • 1101 parameters

  • 78 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The PF6- salt of the symmetric dinuclear complex [(tpy)RuII(µ-tppz)RuII(tpy)]4+ (I) in acetonitrile crystallized in the monoclinic space group (P21/c). Its crystal structure is shown in Figs. 1 and 2, and discussed below.

A structure of the compound [(tpy)Ru(tppz)Ru(tpy)](PF6)4 was recently reported (Yoshikawa et al., 2011). In this case, the compound crystallized in the triclinic (P1) space group, without containing solvent molecules in the unit. However, the relatively poor quality of that structure (R-factor = 15.61%) and relatively large deviations in metal-ligand bond distances (0.02 Å) and angles (0.6–0.8°) precludes an accurate comparison with the data reported here. A better comparative analysis involves the only other crystallographically characterized compound featuring the {(tpy)Ru(tppz)Ru} fragment, the PF6- salt of the photocatalyst [(tpy)RuII(tppz)RuII(bpy)(Cl)]3+ (II; Chen et al., 2011).

In the {(tpy)Ru(tppz)} moiety of II, the average Ru—N distances (tpy: Ru—Nouter = 2.071 (4) Å and Ru—Ncentral = 1.984 (4) Å; tppz: Ru—Nouter = 2.056 (4) Å and Ru—Ncentral = 1.963 (4) Å) and bite angles of the mer-coordinated tpy and tppz (157.59 (17)°–159.43 (16)°) are nearly identical to those observed for I. Also similar but even more pronounced in II is the highly distorted saddle-like conformation adopted by the bridging tppz ligand, with an average torsion angle of 52.2 (3)° between adjacent pyridyl rings.

In [(tpy)Ru(tppz)Ru(tpy)](PF6)4×4MeCN, the cation (I) packs in alternating layers with the PF6- anions and solvent molecules packed between the cations. No significant interactions are present between different layers. Two of the PF6- counterions and one of the MeCN solvent molecules are disordered (Fig. 2). The percentage of the major disordered component is 62 (2)% for the first anion (atoms P2, F7 to F12), 57 (2)% for the second anion (P4, F19 to F24), and 64 (1)% for the solvent molecule (N13, C55, C56).

Related literature top

For a previously reported solvent-free structure of this compound, see: Yoshikawa et al. (2011). For the crystal structure of a related diruthenium(II) compound containing the {(tpy)Ru(tppz)} moiety, see: Chen et al. (2011). For details of the synthesis, see: Arana & Abruña (1993); Rocha et al. (2008); Thummel & Chirayil (1988); Vogler et al. (1996); Wadman et al. (2009). For general properties of this compound, see: Arana & Abruña (1993); Dattelbaum et al. (2002); Flores-Torres et al. (2006); Gourdon & Launay (1998); Jones et al. (1998); Thummel & Chirayil (1988); Vogler et al. (1996); Wadman et al. (2009).

Experimental top

The synthesis of [(tpy)RuII(tppz)RuII(tpy)](PF6)4 was performed by two methods. A) In this route, we took advantage of our previously reported precursor to tppz-bridged dimers, the mixed-valent solvento complex [(EtOH)Cl2RuII(tppz)RuIIICl3] (Chen et al., 2011; Rocha et al., 2008). This precursor was utilized in a reaction with 2 equiv of tpy in EtOH heated at reflux for 8 h, under an Ar atmosphere. Et3N in stoichiometric excess was added as a reductant. Following substitution of the Cl- ligands, the tpy-capped dimer was collected as a solid salt by filtration of the precipitate formed upon addition of a concentrated aqueous solution of NH4PF6 to the reactional mixture. The compound was further purified via alumina column chromatography (MeCN:toluene 1:1 as eluent) and the final product isolated/air-dried by vacuum filtration following precipitation of the salt into Et2O. B) In this method, we followed a literature procedures (Arana & Abruña, 1993; Vogler et al., 1996) by reacting tppz with 2 equiv of the mononuclear RuIIICl3(tpy) complex for 24 h in refluxing EtOH/H2O (2:1 vol. mixture), under Ar and with excess Et3N added. The solid product was isolated and purified as described for method A. The identity of the cation [(tpy)RuII(tppz)RuII(tpy)]4+ (I) in solution was also confirmed by electrochemical and spectroscopic measurements. Single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into concentrated MeCN solutions of [(tpy)Ru(tppz)Ru(tpy)](PF6)4.

Refinement top

Two PF6- counterions and one MeCN solvent molecule were disordered, and each refined in two positions. The site-occupancy-factors (sof) of disordered pairs of atoms were refined and tied to sum to 1.0. The sof for the first anion (atoms P2, F7 to F12) was refined to 0.62 (2). The sof for the second anion (atoms P4, F19 to F24) was refined to 0.57 (2). The MeCN sof (atoms N13, C55, C56) was refined to 0.64 (1). For the first anion, only atoms F7, F9, F10, and F12 were disordered. Bond distances of disordered molecule pairs were restrained to have identical values. The disordered atoms P4 and P4' were constrained to have identical temperature factors. For the disordered MeCN molecule, atoms were restrained to have similar Uij components. All H atoms were idealized and refined as riding atoms, with C-H = 0.93 Å (aromatic) or 0.96 Å (methyl) and Uiso(H) = 1.2 (aromatic) or 1.5 (methyl) times Ueq(C). Methyl torsion angles were refined from electron density.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two views of the single-crystal structure of the cation (I) in [(tpy)Ru(tppz)Ru(tpy)](PF6)4×4MeCN. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Single-crystal structure of [(tpy)Ru(tppz)Ru(tpy)](PF6)4×4MeCN, with all counterions and solvent molecules included. Also shown is the observed disorder in two of the PF6- anions (P2,F7–F12 and P4,F19–F24) and one of the MeCN solvent molecules (N13,C55,C56). Displacement ellipsoids are drawn at th e 50% probability level. H atoms are omitted for clarity.
µ-2,3,5,6-Tetrakis(pyridin-2-yl)pyrazine-bis[(2,2':6',2''- terpyridine)ruthenium(II)] tetrakis(hexafluoridophosphate) acetonitrile tetrasolvate top
Crystal data top
[Ru2(C15H11N3)2(C24H16N6)](PF6)4·4C2H3NF(000) = 3592
Mr = 1801.20Dx = 1.717 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5749 reflections
a = 11.8871 (9) Åθ = 4.4–44.8°
b = 31.824 (2) ŵ = 0.64 mm1
c = 18.5168 (14) ÅT = 120 K
β = 95.880 (1)°Block, green
V = 6968.0 (9) Å30.18 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker D8 with APEXII CCD
diffractometer
12753 independent reflections
Radiation source: fine-focus sealed tube8864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ω scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1414
Tmin = 0.893, Tmax = 0.950k = 3838
67490 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
12753 reflections(Δ/σ)max = 0.001
1101 parametersΔρmax = 0.75 e Å3
78 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ru2(C15H11N3)2(C24H16N6)](PF6)4·4C2H3NV = 6968.0 (9) Å3
Mr = 1801.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8871 (9) ŵ = 0.64 mm1
b = 31.824 (2) ÅT = 120 K
c = 18.5168 (14) Å0.18 × 0.10 × 0.08 mm
β = 95.880 (1)°
Data collection top
Bruker D8 with APEXII CCD
diffractometer
12753 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
8864 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.950Rint = 0.107
67490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04578 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.10Δρmax = 0.75 e Å3
12753 reflectionsΔρmin = 0.50 e Å3
1101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.28004 (3)0.035873 (10)0.746568 (18)0.01496 (9)
Ru20.07869 (3)0.229580 (10)0.741853 (18)0.01721 (10)
P10.25514 (9)0.90082 (4)0.56200 (6)0.0227 (3)
P20.28371 (11)0.44051 (4)0.55316 (7)0.0335 (3)
P30.68786 (11)0.30383 (4)0.57181 (7)0.0338 (3)
F10.25658 (19)0.90561 (7)0.64831 (12)0.0268 (6)
F20.24448 (19)0.85077 (7)0.56958 (14)0.0324 (6)
F30.38934 (19)0.89688 (8)0.56969 (13)0.0331 (6)
F40.2513 (2)0.89662 (8)0.47551 (13)0.0372 (7)
F50.26664 (19)0.95111 (7)0.55527 (12)0.0263 (6)
F60.12030 (19)0.90529 (7)0.55462 (13)0.0279 (6)
F80.3444 (3)0.39580 (9)0.55286 (16)0.0592 (9)
F110.2215 (3)0.48488 (10)0.55481 (17)0.0639 (10)
F70.3737 (7)0.4580 (2)0.6111 (5)0.061 (3)0.620 (16)
F90.2061 (7)0.42705 (18)0.6146 (5)0.052 (3)0.620 (16)
F100.1800 (9)0.4271 (2)0.4950 (6)0.097 (4)0.620 (16)
F120.3450 (10)0.4581 (3)0.4896 (6)0.077 (4)0.620 (16)
F7'0.2920 (19)0.4335 (3)0.6394 (4)0.075 (7)0.380 (16)
F9'0.1765 (9)0.4112 (5)0.5478 (11)0.098 (7)0.380 (16)
F10'0.2855 (15)0.4379 (6)0.4691 (5)0.071 (6)0.380 (16)
F12'0.4061 (9)0.4613 (3)0.5608 (13)0.086 (7)0.380 (16)
F130.6356 (2)0.31570 (8)0.64503 (16)0.0503 (8)
F140.6916 (4)0.25661 (10)0.5933 (2)0.1006 (15)
F150.8113 (2)0.31061 (10)0.61355 (15)0.0609 (9)
F160.7432 (3)0.29210 (10)0.50021 (15)0.0635 (9)
F170.6918 (3)0.35241 (9)0.55080 (15)0.0578 (9)
F180.5676 (3)0.29980 (11)0.5294 (2)0.0859 (12)
P40.2383 (7)0.1122 (3)0.4097 (5)0.0257 (6)0.57 (2)
F190.3620 (9)0.0939 (5)0.4252 (8)0.058 (4)0.57 (2)
F200.1908 (10)0.0826 (3)0.4676 (3)0.048 (3)0.57 (2)
F210.2668 (14)0.1450 (4)0.4736 (7)0.054 (3)0.57 (2)
F220.1166 (7)0.1327 (5)0.3952 (5)0.051 (3)0.57 (2)
F230.2835 (11)0.1430 (4)0.3528 (6)0.068 (3)0.57 (2)
F240.2076 (12)0.0789 (4)0.3475 (7)0.069 (4)0.57 (2)
P4'0.2409 (10)0.1081 (4)0.4068 (7)0.0257 (6)0.43 (2)
F19'0.3744 (9)0.1053 (5)0.4070 (9)0.038 (4)0.43 (2)
F20'0.2414 (12)0.0637 (5)0.4463 (10)0.068 (6)0.43 (2)
F21'0.2594 (15)0.1316 (8)0.4826 (9)0.076 (7)0.43 (2)
F22'0.1071 (8)0.1098 (5)0.4053 (7)0.040 (3)0.43 (2)
F23'0.2421 (14)0.1526 (3)0.3683 (11)0.065 (5)0.43 (2)
F24'0.2257 (12)0.0861 (5)0.3299 (8)0.042 (4)0.43 (2)
N10.3936 (3)0.03905 (10)0.66882 (18)0.0181 (8)
N20.3472 (3)0.02106 (10)0.75424 (17)0.0173 (8)
N30.1865 (3)0.00855 (10)0.82253 (17)0.0193 (8)
N40.1428 (3)0.02977 (10)0.66999 (17)0.0167 (8)
N50.2211 (3)0.09345 (10)0.74346 (17)0.0149 (7)
N60.3934 (3)0.06344 (10)0.82402 (17)0.0163 (8)
N70.0196 (3)0.21001 (10)0.63882 (17)0.0167 (8)
N80.1398 (3)0.17199 (10)0.74223 (17)0.0160 (8)
N90.1634 (3)0.22700 (10)0.84401 (17)0.0175 (8)
N100.2107 (3)0.26278 (10)0.70475 (17)0.0204 (8)
N110.0202 (3)0.28805 (10)0.74401 (17)0.0196 (8)
N120.0772 (3)0.21994 (10)0.78029 (18)0.0209 (8)
N150.4640 (5)0.16296 (15)0.6902 (3)0.0695 (16)
N160.8158 (7)0.08326 (18)0.7468 (3)0.110 (3)
C10.4069 (4)0.07013 (14)0.6217 (2)0.0265 (11)
H10.36200.09400.62310.032*
C20.4843 (4)0.06829 (16)0.5711 (2)0.0349 (12)
H20.49130.09050.53930.042*
C30.5510 (4)0.03303 (16)0.5685 (3)0.0358 (12)
H30.60500.03140.53570.043*
C40.5367 (4)0.00044 (15)0.6148 (2)0.0283 (11)
H40.58010.02380.61290.034*
C50.4577 (3)0.00342 (13)0.6645 (2)0.0218 (10)
C60.4335 (3)0.03055 (13)0.7148 (2)0.0229 (10)
C70.4878 (4)0.06887 (14)0.7234 (3)0.0324 (12)
H70.54730.07560.69660.039*
C80.4517 (4)0.09672 (15)0.7725 (3)0.0380 (13)
H80.48680.12280.77850.046*
C90.3652 (4)0.08701 (14)0.8130 (3)0.0360 (13)
H90.34200.10600.84660.043*
C100.3126 (4)0.04804 (13)0.8030 (2)0.0239 (10)
C110.2183 (4)0.03205 (13)0.8403 (2)0.0238 (10)
C120.1585 (4)0.05518 (15)0.8870 (3)0.0382 (13)
H120.18010.08260.89900.046*
C130.0672 (4)0.03753 (16)0.9158 (3)0.0418 (14)
H130.02700.05300.94720.050*
C140.0355 (4)0.00323 (16)0.8978 (2)0.0356 (12)
H140.02650.01560.91620.043*
C150.0984 (4)0.02503 (14)0.8517 (2)0.0264 (11)
H150.07850.05270.84040.032*
C160.0985 (3)0.00642 (12)0.6426 (2)0.0186 (10)
H160.13830.03120.65270.022*
C170.0039 (3)0.00814 (13)0.6002 (2)0.0217 (10)
H170.03180.03370.58180.026*
C180.0641 (3)0.02809 (13)0.5853 (2)0.0220 (10)
H180.13330.02750.55690.026*
C190.0198 (3)0.06579 (13)0.6135 (2)0.0183 (9)
H190.06060.09060.60520.022*
C200.0844 (3)0.06646 (12)0.6537 (2)0.0166 (9)
C210.1359 (3)0.10381 (12)0.6913 (2)0.0158 (9)
C220.2681 (3)0.12141 (12)0.7936 (2)0.0151 (9)
C230.3740 (3)0.10548 (13)0.8336 (2)0.0186 (9)
C240.4533 (3)0.13076 (13)0.8722 (2)0.0197 (10)
H240.44140.15950.87560.024*
C250.5505 (3)0.11264 (13)0.9058 (2)0.0244 (10)
H250.60490.12920.93190.029*
C260.5665 (4)0.07012 (13)0.9005 (2)0.0242 (10)
H260.62960.05730.92490.029*
C270.4869 (3)0.04663 (13)0.8580 (2)0.0211 (10)
H270.49920.01800.85290.025*
C280.0338 (3)0.23341 (13)0.5858 (2)0.0207 (10)
H280.05630.26050.59690.025*
C290.0568 (3)0.21909 (12)0.5156 (2)0.0191 (10)
H290.09710.23570.48060.023*
C300.0194 (3)0.17995 (13)0.4977 (2)0.0203 (10)
H300.03010.17040.45010.024*
C310.0343 (3)0.15503 (12)0.5520 (2)0.0172 (9)
H310.06050.12850.54080.021*
C320.0491 (3)0.16933 (12)0.6225 (2)0.0166 (9)
C330.1078 (3)0.14650 (12)0.6842 (2)0.0152 (9)
C340.2115 (3)0.15964 (12)0.7997 (2)0.0158 (9)
C350.2151 (3)0.18920 (12)0.8611 (2)0.0174 (9)
C360.2575 (3)0.18020 (13)0.9310 (2)0.0233 (10)
H360.28670.15370.94260.028*
C370.2570 (4)0.21042 (14)0.9842 (2)0.0269 (11)
H370.28620.20451.03160.032*
C380.2123 (3)0.24982 (14)0.9662 (2)0.0253 (10)
H380.21480.27121.00060.030*
C390.1646 (3)0.25648 (13)0.8968 (2)0.0222 (10)
H390.13150.28240.88530.027*
C400.3096 (4)0.24702 (13)0.6877 (2)0.0232 (10)
H400.32150.21820.69110.028*
C410.3941 (4)0.27222 (13)0.6653 (2)0.0256 (10)
H410.46230.26060.65470.031*
C420.3758 (4)0.31444 (14)0.6589 (2)0.0292 (11)
H420.43060.33170.64210.035*
C430.2758 (4)0.33143 (14)0.6775 (2)0.0281 (11)
H430.26390.36030.67460.034*
C440.1933 (4)0.30535 (13)0.7005 (2)0.0219 (10)
C450.0855 (4)0.31972 (13)0.7234 (2)0.0243 (11)
C460.0477 (4)0.36090 (13)0.7270 (2)0.0314 (12)
H460.09100.38300.71210.038*
C470.0548 (4)0.36862 (14)0.7531 (2)0.0352 (12)
H470.08050.39610.75600.042*
C480.1195 (4)0.33595 (14)0.7749 (2)0.0319 (12)
H480.18840.34120.79290.038*
C490.0805 (4)0.29505 (13)0.7697 (2)0.0227 (10)
C500.1377 (4)0.25614 (14)0.7883 (2)0.0245 (11)
C510.2441 (4)0.25438 (16)0.8121 (2)0.0337 (12)
H510.28420.27900.81780.040*
C520.2905 (4)0.21650 (17)0.8274 (3)0.0445 (14)
H520.36220.21530.84330.053*
C530.2303 (4)0.18012 (17)0.8190 (3)0.0422 (13)
H530.26030.15410.82940.051*
C540.1243 (4)0.18309 (14)0.7947 (2)0.0292 (11)
H540.08420.15850.78810.035*
N130.0164 (8)0.1179 (3)0.8910 (5)0.068 (3)0.639 (11)
C550.0032 (12)0.1310 (3)0.9445 (7)0.056 (3)0.639 (11)
C560.006 (2)0.1500 (7)1.0178 (13)0.062 (6)0.639 (11)
H56A0.04210.17691.01800.094*0.639 (11)
H56B0.04670.13201.05270.094*0.639 (11)
H56C0.07030.15341.03020.094*0.639 (11)
C570.4656 (4)0.26977 (16)0.8956 (3)0.0340 (12)
N13'0.112 (2)0.0966 (5)0.9245 (9)0.112 (10)0.361 (11)
C55'0.070 (3)0.1201 (6)0.9621 (10)0.070 (7)0.361 (11)
C56'0.010 (5)0.1545 (15)1.003 (3)0.089 (15)0.361 (11)
H56D0.06950.14941.00740.133*0.361 (11)
H56E0.03570.15611.05070.133*0.361 (11)
H56F0.02650.18060.97810.133*0.361 (11)
N140.4391 (3)0.24561 (14)0.8530 (2)0.0425 (11)
C580.5019 (4)0.30040 (16)0.9534 (3)0.0525 (15)
H58A0.55890.28790.98720.079*
H58B0.43820.30830.97830.079*
H58C0.53230.32490.93210.079*
C590.5485 (6)0.16313 (16)0.6670 (3)0.0489 (16)
C600.6584 (5)0.16184 (17)0.6398 (3)0.0640 (18)
H60A0.69380.18890.64590.096*
H60B0.64950.15460.58920.096*
H60C0.70480.14120.66630.096*
C610.7993 (5)0.0490 (2)0.7523 (3)0.0512 (15)
C620.7804 (5)0.00479 (17)0.7588 (3)0.0589 (17)
H62A0.70810.00010.77620.088*
H62B0.83870.00720.79230.088*
H62C0.78170.00830.71210.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01606 (19)0.01215 (18)0.01674 (19)0.00127 (14)0.00196 (14)0.00011 (14)
Ru20.0201 (2)0.01344 (19)0.01807 (19)0.00433 (15)0.00167 (15)0.00166 (15)
P10.0194 (6)0.0221 (7)0.0266 (7)0.0011 (5)0.0021 (5)0.0013 (5)
P20.0376 (8)0.0355 (8)0.0278 (7)0.0062 (6)0.0048 (6)0.0005 (6)
P30.0380 (8)0.0253 (7)0.0379 (8)0.0073 (6)0.0027 (6)0.0078 (6)
F10.0291 (15)0.0270 (14)0.0245 (14)0.0054 (11)0.0043 (11)0.0011 (11)
F20.0264 (15)0.0183 (14)0.0521 (18)0.0015 (11)0.0018 (13)0.0053 (12)
F30.0191 (14)0.0351 (16)0.0455 (17)0.0015 (12)0.0057 (12)0.0005 (13)
F40.0368 (17)0.0472 (18)0.0269 (15)0.0078 (13)0.0008 (12)0.0110 (13)
F50.0304 (15)0.0200 (13)0.0294 (15)0.0019 (11)0.0066 (12)0.0039 (11)
F60.0183 (13)0.0254 (14)0.0398 (16)0.0003 (11)0.0014 (11)0.0067 (12)
F80.094 (3)0.0336 (18)0.053 (2)0.0041 (17)0.0224 (18)0.0046 (15)
F110.068 (2)0.062 (2)0.066 (2)0.0283 (18)0.0262 (18)0.0213 (18)
F70.046 (5)0.038 (4)0.094 (7)0.010 (3)0.025 (4)0.018 (4)
F90.056 (5)0.038 (3)0.068 (6)0.007 (3)0.030 (4)0.025 (3)
F100.115 (7)0.081 (5)0.080 (7)0.034 (5)0.055 (6)0.024 (4)
F120.121 (9)0.053 (5)0.070 (7)0.012 (5)0.071 (6)0.015 (4)
F7'0.16 (2)0.046 (7)0.019 (5)0.048 (10)0.006 (7)0.006 (4)
F9'0.033 (6)0.127 (12)0.138 (18)0.025 (7)0.028 (8)0.018 (11)
F10'0.112 (14)0.074 (11)0.025 (5)0.055 (9)0.003 (7)0.002 (6)
F12'0.046 (7)0.043 (6)0.17 (2)0.023 (5)0.021 (9)0.016 (10)
F130.0499 (19)0.0447 (18)0.061 (2)0.0099 (15)0.0293 (16)0.0184 (15)
F140.204 (5)0.0232 (19)0.080 (3)0.005 (2)0.039 (3)0.0015 (18)
F150.0428 (19)0.095 (3)0.0421 (19)0.0274 (18)0.0063 (15)0.0161 (18)
F160.085 (3)0.069 (2)0.0383 (19)0.0147 (19)0.0131 (17)0.0218 (17)
F170.096 (3)0.0345 (18)0.0394 (18)0.0012 (17)0.0082 (17)0.0002 (14)
F180.048 (2)0.100 (3)0.105 (3)0.004 (2)0.017 (2)0.047 (2)
P40.0226 (7)0.0271 (16)0.0282 (9)0.0022 (9)0.0056 (6)0.0040 (10)
F190.033 (5)0.098 (9)0.042 (6)0.047 (5)0.001 (4)0.001 (5)
F200.062 (6)0.030 (5)0.053 (4)0.010 (4)0.007 (3)0.009 (3)
F210.056 (6)0.044 (5)0.062 (6)0.016 (4)0.014 (4)0.029 (4)
F220.028 (4)0.081 (8)0.044 (4)0.024 (5)0.002 (3)0.011 (5)
F230.065 (7)0.086 (8)0.054 (5)0.004 (5)0.018 (5)0.029 (5)
F240.093 (8)0.071 (7)0.046 (6)0.024 (5)0.013 (5)0.041 (5)
P4'0.0226 (7)0.0271 (16)0.0282 (9)0.0022 (9)0.0056 (6)0.0040 (10)
F19'0.024 (5)0.043 (6)0.046 (9)0.006 (4)0.000 (4)0.015 (6)
F20'0.046 (7)0.039 (8)0.114 (10)0.012 (6)0.022 (6)0.045 (7)
F21'0.031 (8)0.143 (18)0.052 (8)0.022 (9)0.001 (6)0.057 (10)
F22'0.022 (4)0.038 (7)0.062 (6)0.003 (4)0.005 (4)0.010 (5)
F23'0.060 (10)0.020 (5)0.107 (12)0.002 (5)0.029 (7)0.022 (6)
F24'0.030 (6)0.056 (7)0.038 (7)0.025 (6)0.009 (5)0.019 (5)
N10.0149 (19)0.0183 (19)0.021 (2)0.0022 (15)0.0005 (15)0.0010 (16)
N20.019 (2)0.0140 (18)0.0180 (19)0.0019 (15)0.0035 (15)0.0024 (15)
N30.021 (2)0.019 (2)0.0173 (19)0.0043 (16)0.0003 (16)0.0003 (16)
N40.0180 (19)0.0160 (19)0.0169 (19)0.0018 (15)0.0056 (15)0.0002 (15)
N50.0135 (18)0.0169 (19)0.0142 (18)0.0005 (15)0.0012 (15)0.0003 (15)
N60.0180 (19)0.0124 (18)0.0190 (19)0.0018 (15)0.0050 (15)0.0016 (15)
N70.0164 (19)0.0172 (19)0.0165 (19)0.0029 (15)0.0022 (15)0.0014 (15)
N80.0193 (19)0.0136 (18)0.0152 (19)0.0009 (15)0.0030 (15)0.0003 (15)
N90.020 (2)0.0138 (19)0.0193 (19)0.0008 (15)0.0035 (15)0.0021 (15)
N100.024 (2)0.019 (2)0.018 (2)0.0008 (16)0.0003 (16)0.0025 (15)
N110.026 (2)0.0165 (19)0.0148 (19)0.0041 (16)0.0021 (16)0.0067 (15)
N120.023 (2)0.022 (2)0.019 (2)0.0052 (16)0.0040 (16)0.0026 (16)
N150.086 (4)0.046 (3)0.078 (4)0.018 (3)0.016 (3)0.013 (3)
N160.216 (8)0.040 (4)0.078 (5)0.014 (4)0.030 (5)0.010 (3)
C10.029 (3)0.024 (3)0.026 (3)0.003 (2)0.001 (2)0.004 (2)
C20.042 (3)0.043 (3)0.022 (3)0.015 (3)0.010 (2)0.002 (2)
C30.027 (3)0.048 (3)0.035 (3)0.014 (3)0.013 (2)0.010 (3)
C40.023 (3)0.034 (3)0.029 (3)0.003 (2)0.005 (2)0.011 (2)
C50.016 (2)0.024 (3)0.025 (3)0.0004 (19)0.0007 (19)0.007 (2)
C60.021 (2)0.021 (2)0.025 (3)0.003 (2)0.005 (2)0.007 (2)
C70.030 (3)0.031 (3)0.034 (3)0.015 (2)0.013 (2)0.006 (2)
C80.046 (3)0.021 (3)0.043 (3)0.017 (2)0.015 (3)0.001 (2)
C90.052 (3)0.018 (3)0.036 (3)0.002 (2)0.006 (3)0.009 (2)
C100.036 (3)0.013 (2)0.021 (3)0.003 (2)0.002 (2)0.0008 (19)
C110.032 (3)0.020 (2)0.019 (2)0.005 (2)0.000 (2)0.001 (2)
C120.053 (4)0.029 (3)0.032 (3)0.016 (3)0.005 (3)0.006 (2)
C130.057 (4)0.040 (3)0.030 (3)0.025 (3)0.016 (3)0.000 (3)
C140.034 (3)0.046 (3)0.029 (3)0.009 (3)0.013 (2)0.006 (2)
C150.030 (3)0.026 (3)0.024 (3)0.007 (2)0.004 (2)0.007 (2)
C160.022 (2)0.010 (2)0.023 (2)0.0006 (18)0.0027 (19)0.0040 (18)
C170.027 (3)0.015 (2)0.023 (2)0.0052 (19)0.004 (2)0.0007 (19)
C180.020 (2)0.024 (3)0.022 (2)0.005 (2)0.0007 (19)0.000 (2)
C190.017 (2)0.018 (2)0.020 (2)0.0017 (18)0.0021 (19)0.0007 (18)
C200.018 (2)0.015 (2)0.016 (2)0.0019 (18)0.0028 (18)0.0000 (18)
C210.019 (2)0.016 (2)0.014 (2)0.0002 (18)0.0062 (18)0.0001 (18)
C220.020 (2)0.013 (2)0.014 (2)0.0004 (17)0.0060 (18)0.0008 (17)
C230.019 (2)0.020 (2)0.018 (2)0.0009 (19)0.0044 (18)0.0010 (19)
C240.023 (2)0.016 (2)0.019 (2)0.0019 (19)0.0014 (19)0.0029 (18)
C250.020 (2)0.029 (3)0.024 (3)0.004 (2)0.002 (2)0.004 (2)
C260.023 (3)0.026 (3)0.021 (2)0.004 (2)0.005 (2)0.005 (2)
C270.025 (3)0.018 (2)0.020 (2)0.0075 (19)0.003 (2)0.0008 (19)
C280.021 (2)0.017 (2)0.024 (3)0.0027 (19)0.0024 (19)0.0024 (19)
C290.019 (2)0.019 (2)0.018 (2)0.0007 (18)0.0043 (18)0.0033 (18)
C300.022 (2)0.023 (2)0.016 (2)0.0064 (19)0.0024 (19)0.0014 (19)
C310.018 (2)0.012 (2)0.022 (2)0.0019 (17)0.0026 (18)0.0024 (18)
C320.016 (2)0.017 (2)0.017 (2)0.0008 (18)0.0026 (18)0.0034 (18)
C330.017 (2)0.015 (2)0.014 (2)0.0019 (17)0.0043 (18)0.0000 (18)
C340.017 (2)0.014 (2)0.017 (2)0.0034 (18)0.0050 (18)0.0020 (18)
C350.018 (2)0.016 (2)0.019 (2)0.0001 (18)0.0052 (18)0.0004 (18)
C360.029 (3)0.020 (2)0.020 (2)0.004 (2)0.001 (2)0.000 (2)
C370.033 (3)0.030 (3)0.016 (2)0.004 (2)0.001 (2)0.002 (2)
C380.029 (3)0.025 (3)0.022 (3)0.000 (2)0.002 (2)0.006 (2)
C390.025 (3)0.016 (2)0.025 (3)0.0071 (19)0.002 (2)0.004 (2)
C400.026 (3)0.020 (2)0.023 (2)0.000 (2)0.003 (2)0.0002 (19)
C410.023 (3)0.029 (3)0.024 (3)0.004 (2)0.000 (2)0.001 (2)
C420.032 (3)0.032 (3)0.023 (3)0.014 (2)0.001 (2)0.005 (2)
C430.046 (3)0.018 (2)0.019 (3)0.009 (2)0.001 (2)0.003 (2)
C440.033 (3)0.017 (2)0.014 (2)0.002 (2)0.0072 (19)0.0017 (19)
C450.034 (3)0.014 (2)0.022 (3)0.006 (2)0.008 (2)0.0020 (19)
C460.047 (3)0.014 (2)0.031 (3)0.003 (2)0.009 (2)0.000 (2)
C470.048 (3)0.015 (3)0.040 (3)0.012 (2)0.007 (3)0.004 (2)
C480.035 (3)0.032 (3)0.028 (3)0.018 (2)0.005 (2)0.011 (2)
C490.030 (3)0.023 (3)0.016 (2)0.012 (2)0.001 (2)0.0050 (19)
C500.025 (3)0.035 (3)0.013 (2)0.010 (2)0.0009 (19)0.007 (2)
C510.027 (3)0.043 (3)0.031 (3)0.015 (2)0.003 (2)0.006 (2)
C520.032 (3)0.050 (4)0.055 (4)0.005 (3)0.022 (3)0.003 (3)
C530.032 (3)0.045 (3)0.052 (4)0.002 (3)0.018 (3)0.002 (3)
C540.030 (3)0.027 (3)0.033 (3)0.005 (2)0.010 (2)0.000 (2)
N130.080 (7)0.039 (5)0.082 (7)0.021 (5)0.000 (6)0.004 (5)
C550.066 (9)0.032 (6)0.069 (9)0.016 (6)0.012 (6)0.001 (6)
C560.092 (17)0.027 (7)0.077 (11)0.002 (8)0.051 (10)0.009 (7)
C570.020 (3)0.036 (3)0.046 (3)0.007 (2)0.004 (2)0.006 (3)
N13'0.23 (3)0.056 (12)0.038 (10)0.041 (13)0.055 (13)0.011 (8)
C55'0.118 (19)0.050 (13)0.046 (12)0.039 (13)0.025 (14)0.018 (10)
C56'0.054 (18)0.10 (3)0.11 (3)0.00 (2)0.011 (17)0.02 (2)
N140.033 (3)0.048 (3)0.047 (3)0.004 (2)0.005 (2)0.003 (2)
C580.042 (3)0.034 (3)0.079 (4)0.001 (3)0.006 (3)0.010 (3)
C590.077 (5)0.030 (3)0.041 (4)0.014 (3)0.012 (3)0.009 (3)
C600.107 (6)0.044 (4)0.043 (4)0.014 (4)0.018 (4)0.001 (3)
C610.073 (4)0.047 (4)0.036 (3)0.009 (3)0.015 (3)0.003 (3)
C620.066 (4)0.048 (4)0.059 (4)0.015 (3)0.012 (3)0.019 (3)
Geometric parameters (Å, º) top
Ru1—N51.960 (3)C13—C141.382 (6)
Ru1—N21.979 (3)C13—H130.9300
Ru1—N42.058 (3)C14—C151.378 (6)
Ru1—N62.060 (3)C14—H140.9300
Ru1—N32.071 (3)C15—H150.9300
Ru1—N12.074 (3)C16—C171.381 (5)
Ru2—N81.971 (3)C16—H160.9300
Ru2—N111.989 (3)C17—C181.370 (5)
Ru2—N92.051 (3)C17—H170.9300
Ru2—N72.061 (3)C18—C191.390 (5)
Ru2—N102.067 (3)C18—H180.9300
Ru2—N122.074 (3)C19—C201.379 (5)
P1—F31.592 (2)C19—H190.9300
P1—F61.601 (2)C20—C211.478 (5)
P1—F41.603 (3)C21—C331.402 (5)
P1—F11.604 (2)C22—C341.401 (5)
P1—F21.605 (2)C22—C231.483 (5)
P1—F51.612 (2)C23—C241.382 (5)
P2—F71.539 (6)C24—C251.381 (5)
P2—F121.550 (6)C24—H240.9300
P2—F10'1.560 (10)C25—C261.371 (6)
P2—F9'1.574 (10)C25—H250.9300
P2—F12'1.590 (10)C26—C271.387 (6)
P2—F91.595 (5)C26—H260.9300
P2—F111.595 (3)C27—H270.9300
P2—F81.596 (3)C28—C291.379 (5)
P2—F7'1.605 (8)C28—H280.9300
P2—F101.608 (6)C29—C301.374 (5)
P3—F141.554 (3)C29—H290.9300
P3—F181.564 (3)C30—C311.384 (5)
P3—F161.584 (3)C30—H300.9300
P3—F131.594 (3)C31—C321.376 (5)
P3—F171.596 (3)C31—H310.9300
P3—F151.602 (3)C32—C331.468 (5)
P4—F231.573 (9)C34—C351.473 (5)
P4—F201.576 (8)C35—C361.370 (5)
P4—F191.580 (8)C36—C371.377 (6)
P4—F241.581 (9)C36—H360.9300
P4—F221.584 (8)C37—C381.389 (6)
P4—F211.587 (9)C37—H370.9300
P4'—F24'1.582 (11)C38—C391.367 (5)
P4'—F21'1.585 (11)C38—H380.9300
P4'—F23'1.587 (11)C39—H390.9300
P4'—F19'1.589 (11)C40—C411.382 (6)
P4'—F22'1.589 (11)C40—H400.9300
P4'—F20'1.590 (11)C41—C421.364 (6)
N1—C11.339 (5)C41—H410.9300
N1—C51.373 (5)C42—C431.382 (6)
N2—C101.341 (5)C42—H420.9300
N2—C61.352 (5)C43—C441.384 (6)
N3—C151.334 (5)C43—H430.9300
N3—C111.376 (5)C44—C451.464 (6)
N4—C161.343 (5)C45—C461.390 (5)
N4—C201.376 (5)C46—C471.377 (6)
N5—C221.364 (5)C46—H460.9300
N5—C211.366 (5)C47—C481.378 (6)
N6—C271.332 (5)C47—H470.9300
N6—C231.372 (5)C48—C491.388 (5)
N7—C281.339 (5)C48—H480.9300
N7—C321.383 (5)C49—C501.470 (6)
N8—C341.352 (5)C50—C511.382 (6)
N8—C331.369 (5)C51—C521.367 (6)
N9—C391.354 (5)C51—H510.9300
N9—C351.373 (5)C52—C531.378 (6)
N10—C401.345 (5)C52—H520.9300
N10—C441.371 (5)C53—C541.384 (6)
N11—C491.351 (5)C53—H530.9300
N11—C451.351 (5)C54—H540.9300
N12—C541.338 (5)N13—C551.100 (10)
N12—C501.374 (5)C55—C561.484 (18)
N15—C591.132 (7)C56—H56A0.9600
N16—C611.114 (7)C56—H56B0.9600
C1—C21.379 (6)C56—H56C0.9600
C1—H10.9300C57—N141.124 (6)
C2—C31.378 (6)C57—C581.478 (7)
C2—H20.9300N13'—C55'1.105 (16)
C3—C41.367 (6)C55'—C56'1.47 (2)
C3—H30.9300C56'—H56D0.9600
C4—C51.384 (5)C56'—H56E0.9600
C4—H40.9300C56'—H56F0.9600
C5—C61.474 (6)C58—H58A0.9600
C6—C71.382 (6)C58—H58B0.9600
C7—C81.370 (6)C58—H58C0.9600
C7—H70.9300C59—C601.449 (8)
C8—C91.369 (6)C60—H60A0.9600
C8—H80.9300C60—H60B0.9600
C9—C101.393 (6)C60—H60C0.9600
C9—H90.9300C61—C621.432 (8)
C10—C111.467 (6)C62—H62A0.9600
C11—C121.386 (6)C62—H62B0.9600
C12—C131.377 (7)C62—H62C0.9600
C12—H120.9300
N5—Ru1—N2176.41 (13)C4—C5—C6124.0 (4)
N5—Ru1—N479.19 (13)N2—C6—C7120.4 (4)
N2—Ru1—N4104.39 (13)N2—C6—C5112.7 (3)
N5—Ru1—N680.12 (13)C7—C6—C5126.9 (4)
N2—Ru1—N696.29 (13)C8—C7—C6118.3 (5)
N4—Ru1—N6159.28 (12)C8—C7—H7120.9
N5—Ru1—N3101.38 (13)C6—C7—H7120.9
N2—Ru1—N378.91 (13)C9—C8—C7121.4 (4)
N4—Ru1—N389.18 (12)C9—C8—H8119.3
N6—Ru1—N393.68 (12)C7—C8—H8119.3
N5—Ru1—N1100.95 (13)C8—C9—C10118.7 (4)
N2—Ru1—N178.93 (13)C8—C9—H9120.7
N4—Ru1—N193.01 (12)C10—C9—H9120.7
N6—Ru1—N192.11 (12)N2—C10—C9119.7 (4)
N3—Ru1—N1157.57 (13)N2—C10—C11113.4 (4)
N8—Ru2—N11178.32 (14)C9—C10—C11126.9 (4)
N8—Ru2—N979.26 (13)N3—C11—C12120.1 (4)
N11—Ru2—N999.13 (13)N3—C11—C10114.7 (4)
N8—Ru2—N779.21 (13)C12—C11—C10125.1 (4)
N11—Ru2—N7102.40 (13)C13—C12—C11120.0 (5)
N9—Ru2—N7158.45 (13)C13—C12—H12120.0
N8—Ru2—N10100.63 (13)C11—C12—H12120.0
N11—Ru2—N1078.89 (14)C12—C13—C14119.7 (4)
N9—Ru2—N1090.55 (13)C12—C13—H13120.1
N7—Ru2—N1092.59 (12)C14—C13—H13120.1
N8—Ru2—N12101.72 (13)C15—C14—C13118.0 (5)
N11—Ru2—N1278.74 (14)C15—C14—H14121.0
N9—Ru2—N1292.80 (13)C13—C14—H14121.0
N7—Ru2—N1292.36 (13)N3—C15—C14123.5 (4)
N10—Ru2—N12157.63 (13)N3—C15—H15118.3
F3—P1—F6179.39 (15)C14—C15—H15118.3
F3—P1—F490.49 (14)N4—C16—C17122.5 (4)
F6—P1—F489.79 (14)N4—C16—H16118.8
F3—P1—F190.57 (13)C17—C16—H16118.8
F6—P1—F189.14 (13)C18—C17—C16119.5 (4)
F4—P1—F1178.79 (15)C18—C17—H17120.2
F3—P1—F290.07 (13)C16—C17—H17120.2
F6—P1—F290.47 (13)C17—C18—C19118.8 (4)
F4—P1—F290.58 (14)C17—C18—H18120.6
F1—P1—F290.00 (13)C19—C18—H18120.6
F3—P1—F589.60 (13)C20—C19—C18120.1 (4)
F6—P1—F589.85 (13)C20—C19—H19120.0
F4—P1—F589.98 (14)C18—C19—H19120.0
F1—P1—F589.45 (13)N4—C20—C19120.7 (4)
F2—P1—F5179.36 (16)N4—C20—C21113.8 (3)
F7—P2—F1293.0 (5)C19—C20—C21125.0 (4)
F7—P2—F10'129.4 (7)N5—C21—C33116.9 (3)
F7—P2—F9'139.3 (7)N5—C21—C20112.4 (3)
F12—P2—F9'127.3 (7)C33—C21—C20130.6 (4)
F10'—P2—F9'90.0 (7)N5—C22—C34117.1 (4)
F10'—P2—F12'90.3 (8)N5—C22—C23112.6 (3)
F9'—P2—F12'168.2 (8)C34—C22—C23130.3 (4)
F7—P2—F990.7 (4)N6—C23—C24121.3 (4)
F12—P2—F9171.6 (4)N6—C23—C22114.4 (3)
F10'—P2—F9139.9 (7)C24—C23—C22124.0 (4)
F12'—P2—F9129.7 (8)C25—C24—C23119.0 (4)
F7—P2—F1187.6 (3)C25—C24—H24120.5
F12—P2—F1187.2 (3)C23—C24—H24120.5
F10'—P2—F1196.9 (5)C26—C25—C24119.7 (4)
F9'—P2—F1198.7 (6)C26—C25—H25120.2
F12'—P2—F1193.0 (4)C24—C25—H25120.2
F9—P2—F1185.5 (2)C25—C26—C27118.8 (4)
F7—P2—F892.4 (3)C25—C26—H26120.6
F12—P2—F894.0 (3)C27—C26—H26120.6
F10'—P2—F884.1 (5)N6—C27—C26122.7 (4)
F9'—P2—F880.5 (6)N6—C27—H27118.7
F12'—P2—F887.8 (4)C26—C27—H27118.7
F9—P2—F893.3 (2)N7—C28—C29122.7 (4)
F11—P2—F8178.79 (18)N7—C28—H28118.6
F12—P2—F7'145.0 (7)C29—C28—H28118.6
F10'—P2—F7'168.2 (6)C30—C29—C28119.2 (4)
F9'—P2—F7'87.0 (7)C30—C29—H29120.4
F12'—P2—F7'90.4 (8)C28—C29—H29120.4
F11—P2—F7'94.9 (4)C29—C30—C31118.8 (4)
F8—P2—F7'84.2 (4)C29—C30—H30120.6
F7—P2—F10172.8 (4)C31—C30—H30120.6
F12—P2—F1088.6 (5)C32—C31—C30120.2 (4)
F12'—P2—F10143.2 (8)C32—C31—H31119.9
F9—P2—F1086.9 (4)C30—C31—H31119.9
F11—P2—F1085.6 (3)C31—C32—N7120.4 (4)
F8—P2—F1094.4 (3)C31—C32—C33125.3 (4)
F7'—P2—F10126.4 (7)N7—C32—C33113.8 (3)
F14—P3—F1892.9 (2)N8—C33—C21117.1 (3)
F14—P3—F1689.06 (19)N8—C33—C32112.9 (3)
F18—P3—F1689.84 (19)C21—C33—C32130.0 (4)
F14—P3—F1390.81 (18)N8—C34—C22117.3 (4)
F18—P3—F1391.75 (18)N8—C34—C35112.8 (3)
F16—P3—F13178.40 (19)C22—C34—C35129.8 (4)
F14—P3—F17176.7 (2)C36—C35—N9120.9 (4)
F18—P3—F1790.30 (19)C36—C35—C34125.1 (4)
F16—P3—F1789.95 (17)N9—C35—C34113.8 (3)
F13—P3—F1790.09 (16)C35—C36—C37120.1 (4)
F14—P3—F1590.3 (2)C35—C36—H36120.0
F18—P3—F15176.8 (2)C37—C36—H36120.0
F16—P3—F1589.83 (17)C36—C37—C38119.3 (4)
F13—P3—F1588.58 (16)C36—C37—H37120.4
F17—P3—F1586.48 (18)C38—C37—H37120.4
F23—P4—F20178.1 (8)C39—C38—C37118.5 (4)
F23—P4—F1988.6 (7)C39—C38—H38120.8
F20—P4—F1992.7 (6)C37—C38—H38120.8
F23—P4—F2490.0 (7)N9—C39—C38122.9 (4)
F20—P4—F2491.3 (7)N9—C39—H39118.5
F19—P4—F2491.5 (7)C38—C39—H39118.5
F23—P4—F2290.0 (6)N10—C40—C41122.3 (4)
F20—P4—F2288.6 (6)N10—C40—H40118.9
F19—P4—F22177.3 (8)C41—C40—H40118.9
F24—P4—F2290.8 (7)C42—C41—C40118.9 (4)
F23—P4—F2191.6 (8)C42—C41—H41120.6
F20—P4—F2187.1 (6)C40—C41—H41120.6
F19—P4—F2189.0 (8)C41—C42—C43119.8 (4)
F24—P4—F21178.3 (9)C41—C42—H42120.1
F22—P4—F2188.7 (8)C43—C42—H42120.1
F24'—P4'—F21'177.5 (11)C42—C43—C44119.8 (4)
F24'—P4'—F23'89.7 (9)C42—C43—H43120.1
F21'—P4'—F23'88.2 (10)C44—C43—H43120.1
F24'—P4'—F19'89.9 (9)N10—C44—C43120.2 (4)
F21'—P4'—F19'88.7 (9)N10—C44—C45115.0 (4)
F23'—P4'—F19'89.8 (8)C43—C44—C45124.8 (4)
F24'—P4'—F22'88.7 (8)N11—C45—C46119.4 (4)
F21'—P4'—F22'92.7 (9)N11—C45—C44113.3 (4)
F23'—P4'—F22'91.0 (8)C46—C45—C44127.3 (4)
F19'—P4'—F22'178.4 (11)C47—C46—C45119.2 (4)
F24'—P4'—F20'90.9 (9)C47—C46—H46120.4
F21'—P4'—F20'91.1 (9)C45—C46—H46120.4
F23'—P4'—F20'179.1 (11)C46—C47—C48120.6 (4)
F19'—P4'—F20'89.6 (8)C46—C47—H47119.7
F22'—P4'—F20'89.7 (7)C48—C47—H47119.7
C1—N1—C5117.9 (4)C47—C48—C49119.1 (4)
C1—N1—Ru1128.1 (3)C47—C48—H48120.4
C5—N1—Ru1113.9 (3)C49—C48—H48120.4
C10—N2—C6121.5 (4)N11—C49—C48119.5 (4)
C10—N2—Ru1119.0 (3)N11—C49—C50113.0 (3)
C6—N2—Ru1119.2 (3)C48—C49—C50127.4 (4)
C15—N3—C11118.7 (4)N12—C50—C51120.4 (4)
C15—N3—Ru1127.5 (3)N12—C50—C49114.9 (4)
C11—N3—Ru1113.8 (3)C51—C50—C49124.7 (4)
C16—N4—C20118.4 (3)C52—C51—C50120.2 (4)
C16—N4—Ru1126.4 (3)C52—C51—H51119.9
C20—N4—Ru1114.7 (2)C50—C51—H51119.9
C22—N5—C21123.1 (3)C51—C52—C53119.5 (5)
C22—N5—Ru1118.0 (3)C51—C52—H52120.3
C21—N5—Ru1118.9 (3)C53—C52—H52120.3
C27—N6—C23118.3 (3)C52—C53—C54118.7 (5)
C27—N6—Ru1127.7 (3)C52—C53—H53120.7
C23—N6—Ru1113.5 (3)C54—C53—H53120.7
C28—N7—C32118.2 (3)N12—C54—C53122.5 (4)
C28—N7—Ru2127.0 (3)N12—C54—H54118.7
C32—N7—Ru2114.6 (2)C53—C54—H54118.7
C34—N8—C33123.2 (3)N13—C55—C56170.6 (17)
C34—N8—Ru2118.4 (3)N14—C57—C58178.1 (6)
C33—N8—Ru2118.4 (3)N13'—C55'—C56'172 (4)
C39—N9—C35118.0 (3)C55'—C56'—H56D109.5
C39—N9—Ru2127.3 (3)C55'—C56'—H56E109.5
C35—N9—Ru2114.4 (3)H56D—C56'—H56E109.5
C40—N10—C44119.0 (4)C55'—C56'—H56F109.5
C40—N10—Ru2126.8 (3)H56D—C56'—H56F109.5
C44—N10—Ru2114.2 (3)H56E—C56'—H56F109.5
C49—N11—C45122.2 (4)C57—C58—H58A109.5
C49—N11—Ru2119.1 (3)C57—C58—H58B109.5
C45—N11—Ru2118.7 (3)H58A—C58—H58B109.5
C54—N12—C50118.6 (4)C57—C58—H58C109.5
C54—N12—Ru2127.2 (3)H58A—C58—H58C109.5
C50—N12—Ru2114.1 (3)H58B—C58—H58C109.5
N1—C1—C2122.9 (4)N15—C59—C60177.3 (7)
N1—C1—H1118.6C59—C60—H60A109.5
C2—C1—H1118.6C59—C60—H60B109.5
C3—C2—C1119.0 (4)H60A—C60—H60B109.5
C3—C2—H2120.5C59—C60—H60C109.5
C1—C2—H2120.5H60A—C60—H60C109.5
C4—C3—C2119.1 (4)H60B—C60—H60C109.5
C4—C3—H3120.4N16—C61—C62178.7 (7)
C2—C3—H3120.4C61—C62—H62A109.5
C3—C4—C5120.1 (4)C61—C62—H62B109.5
C3—C4—H4119.9H62A—C62—H62B109.5
C5—C4—H4119.9C61—C62—H62C109.5
N1—C5—C4120.9 (4)H62A—C62—H62C109.5
N1—C5—C6115.0 (4)H62B—C62—H62C109.5

Experimental details

Crystal data
Chemical formula[Ru2(C15H11N3)2(C24H16N6)](PF6)4·4C2H3N
Mr1801.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.8871 (9), 31.824 (2), 18.5168 (14)
β (°) 95.880 (1)
V3)6968.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.18 × 0.10 × 0.08
Data collection
DiffractometerBruker D8 with APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.893, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
67490, 12753, 8864
Rint0.107
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.102, 1.10
No. of reflections12753
No. of parameters1101
No. of restraints78
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

Support by the US Department of Energy through the Laboratory Directed Research and Development (LDRD) program at LANL is gratefully acknowledged.

References

First citationArana, C. R. & Abruña, H. D. (1993). Inorg. Chem. 32, 194–203.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX and SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Rein, F. N., Scott, B. L. & Rocha, R. C. (2011). Chem. Eur. J. 17, 5595–5604.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDattelbaum, D. M., Hartshorn, C. M. & Meyer, T. J. (2002). J. Am. Chem. Soc. 124, 4938–4939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlores-Torres, S., Hutchison, G. R., Stoltzberg, L. J. & Abruña, H. D. (2006). J. Am. Chem. Soc. 128, 1513–1522.  Web of Science PubMed CAS Google Scholar
First citationGourdon, A. & Launay, J.-P. (1998). Inorg. Chem. 37, 5336–5341.  Web of Science CrossRef CAS Google Scholar
First citationJones, S. W., Vrana, L. M. & Brewer, K. J. (1998). J. Organomet. Chem. 554, 29–40.  Web of Science CrossRef CAS Google Scholar
First citationRocha, R. C., Rein, F. N., Jude, H., Shreve, A. P., Concepcion, J. J. & Meyer, T. J. (2008). Angew. Chem. Int. Ed. 47, 503–506.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThummel, R. P. & Chirayil, S. (1988). Inorg. Chim. Acta, 154, 77–81.  CrossRef CAS Web of Science Google Scholar
First citationVogler, L. M., Jones, S. W., Jensen, G. E., Brewer, R. G. & Brewer, K. J. (1996). Inorg. Chim. Acta, 250, 155–162.  CrossRef CAS Web of Science Google Scholar
First citationWadman, S. H., Havenith, R. W. A., Hartl, F., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2009). Inorg. Chem. 48, 5685–5696.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshikawa, N., Yamabe, S., Kanehisa, N., Inoue, T., Takashima, H. & Tsukahara, K. (2011). J. Phys. Org. Chem. 24, 1110–1118.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 2| February 2013| Pages m81-m82
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds