organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4,6,9-Tetra-tert-butyl-2,7-dioxa­tri­cyclo­[6.3.0.03,6]deca-3,8-diene

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 20 December 2012; accepted 2 January 2013; online 9 January 2013)

The title compound, C24H40O2, lies on an inversion center with a half-mol­ecule in the asymmetric unit. The central dioxane ring adopts a chair conformation. The four-membered ring is slightly puckered with a butterfly angle of 13.50 (14)°.

Related literature

For the synthesis of the title compound, see: Rauk et al. (1995[Rauk, A., Sorensen, T. S. & Sun, F. (1995). J. Am. Chem. Soc. 117, 4506-4514.]). For related structures, see: Masters et al. (1994[Masters, A. P., Parvez, M., Sorensen, T. S. & Sun, F. (1994). J. Am. Chem. Soc. 116, 2804-2811.]); Bernassau et al. (1987[Bernassau, J.-M., Bouillot, A., Fétizon, M., Hanna, I., Maia, E. R. & Prangé, T. (1987). J. Org. Chem. 52, 1993-2001.]).

[Scheme 1]

Experimental

Crystal data
  • C24H40O2

  • Mr = 360.56

  • Triclinic, [P \overline 1]

  • a = 5.843 (2) Å

  • b = 9.383 (3) Å

  • c = 10.126 (4) Å

  • α = 97.209 (12)°

  • β = 96.014 (13)°

  • γ = 100.703 (19)°

  • V = 536.5 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 170 K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Nonius APEXII CCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.987, Tmax = 0.997

  • 4499 measured reflections

  • 2412 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.04

  • 2412 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Our research on the preparation and structure investigations of simple bicyclo[1.1.0]butanones (Rauk et al. 1995) led to the synthesis of the title compound. The stereochemistry of the title compound was not known at that time. In the title compound (Fig. 1), the central dioxane ring adopts a chair conformation with puckering parameters: Q = 0.3934 (11) Å, θ = 0.74 (1)° and ϕ = 0.0°. The four membered ring (C1/C2/C3/C4i; i = -x + 1, -y + 1, -z + 1) is slightly puckered with the dihedral angle between mean planes C1/C2/C3 and C1/C3/C4i being 13.50 (14)°. The molecular dimesions in the title compound agree very well with the corresponding molecular dimensions reported in closely related compounds (Masters et al., 1994; Bernassau et al., 1987). The crystal structure is devoid of any significant directional intermolecular interactions (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Rauk et al. (1995). For related structures, see: Masters et al. (1994); Bernassau et al. (1987).

Experimental top

The synthesis of the title compound has been reported earlier (Rauk et al., 1995). Crystals suitable for crystallolgraphic studies were grown from pentane/CH2Cl2 (1:1).

Refinement top

Though the H-atoms were observable in the difference electron density maps they were included at geometrically idealized positions with C—H distances = 0.99 and 0.98 Å for methylene and methyl type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2 times Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (Farrugia, 2012) of the title molecule with the displacement ellipsoids plotted at 50% probability level; H atoms are presented as small spheres of arbitrary radius. Symmetry code: i -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. A view of the unit cell packing of the crystal structure of the title compound. H atoms were omitted for clarity.
1,4,6,9-Tetra-tert-butyl-2,7-dioxatricyclo[6.3.0.03,6]deca-3,8-diene top
Crystal data top
C24H40O2Z = 1
Mr = 360.56F(000) = 200
Triclinic, P1Dx = 1.116 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.843 (2) ÅCell parameters from 2272 reflections
b = 9.383 (3) Åθ = 1.0–27.5°
c = 10.126 (4) ŵ = 0.07 mm1
α = 97.209 (12)°T = 170 K
β = 96.014 (13)°Plate, colorless
γ = 100.703 (19)°0.20 × 0.15 × 0.05 mm
V = 536.5 (3) Å3
Data collection top
Nonius APEXII CCD
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω and ϕ scansθmax = 27.4°, θmin = 4.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 77
Tmin = 0.987, Tmax = 0.997k = 1212
4499 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.1563P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H40O2γ = 100.703 (19)°
Mr = 360.56V = 536.5 (3) Å3
Triclinic, P1Z = 1
a = 5.843 (2) ÅMo Kα radiation
b = 9.383 (3) ŵ = 0.07 mm1
c = 10.126 (4) ÅT = 170 K
α = 97.209 (12)°0.20 × 0.15 × 0.05 mm
β = 96.014 (13)°
Data collection top
Nonius APEXII CCD
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
1957 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.997Rint = 0.018
4499 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2412 reflectionsΔρmin = 0.19 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25855 (13)0.40276 (8)0.50016 (8)0.0194 (2)
C10.36790 (19)0.43605 (12)0.39096 (11)0.0183 (2)
C20.38127 (19)0.36693 (12)0.26899 (11)0.0195 (2)
C30.6042 (2)0.47693 (13)0.25541 (12)0.0225 (3)
H3A0.59310.52530.17420.027*
H3B0.75060.43840.26660.027*
C40.44599 (19)0.43136 (12)0.61504 (11)0.0184 (2)
C50.2453 (2)0.23533 (13)0.17350 (12)0.0226 (3)
C60.0667 (2)0.14183 (14)0.24394 (13)0.0304 (3)
H6A0.02950.06170.17850.037*
H6B0.03460.20290.28390.037*
H6C0.14990.10100.31460.037*
C70.4145 (2)0.14319 (15)0.11795 (14)0.0343 (3)
H7A0.32510.05860.05490.041*
H7B0.50030.10890.19210.041*
H7C0.52630.20320.07140.041*
C80.1150 (2)0.28994 (15)0.05637 (13)0.0335 (3)
H8A0.03170.20580.00930.040*
H8B0.22830.35320.01330.040*
H8C0.00170.34570.09030.040*
C90.5229 (2)0.28551 (12)0.63873 (12)0.0219 (3)
C100.7097 (2)0.30967 (15)0.76230 (14)0.0325 (3)
H10A0.75180.21590.77640.039*
H10B0.64680.35010.84160.039*
H10C0.84970.37850.74770.039*
C110.3063 (2)0.17552 (14)0.66121 (14)0.0306 (3)
H11A0.35150.08260.67550.037*
H11B0.18720.15880.58220.037*
H11C0.24180.21490.74030.037*
C120.6320 (2)0.22114 (13)0.51932 (13)0.0273 (3)
H12A0.68760.13320.54030.033*
H12B0.76460.29400.50180.033*
H12C0.51360.19520.43960.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0169 (4)0.0215 (4)0.0192 (4)0.0009 (3)0.0034 (3)0.0036 (3)
C10.0168 (5)0.0176 (5)0.0209 (6)0.0029 (4)0.0030 (4)0.0050 (4)
C20.0194 (5)0.0186 (5)0.0202 (6)0.0028 (4)0.0029 (4)0.0033 (4)
C30.0249 (6)0.0216 (6)0.0204 (6)0.0019 (5)0.0060 (5)0.0022 (5)
C40.0179 (5)0.0192 (5)0.0173 (6)0.0016 (4)0.0023 (4)0.0026 (4)
C50.0223 (6)0.0224 (6)0.0212 (6)0.0024 (5)0.0022 (5)0.0007 (5)
C60.0286 (6)0.0280 (7)0.0292 (7)0.0041 (5)0.0021 (5)0.0005 (5)
C70.0310 (7)0.0306 (7)0.0373 (8)0.0061 (6)0.0040 (6)0.0098 (6)
C80.0367 (7)0.0359 (7)0.0244 (7)0.0045 (6)0.0033 (5)0.0010 (5)
C90.0241 (6)0.0188 (6)0.0230 (6)0.0028 (4)0.0034 (5)0.0059 (5)
C100.0387 (7)0.0283 (7)0.0307 (7)0.0095 (6)0.0036 (6)0.0081 (5)
C110.0340 (7)0.0208 (6)0.0382 (7)0.0020 (5)0.0091 (6)0.0098 (5)
C120.0305 (6)0.0226 (6)0.0312 (7)0.0106 (5)0.0054 (5)0.0046 (5)
Geometric parameters (Å, º) top
O1—C11.3744 (14)C7—H7A0.9800
O1—C41.4733 (14)C7—H7B0.9800
C1—C21.3380 (16)C7—H7C0.9800
C1—C4i1.5048 (15)C8—H8A0.9800
C2—C51.5053 (16)C8—H8B0.9800
C2—C31.5344 (16)C8—H8C0.9800
C3—C4i1.5615 (16)C9—C111.5338 (17)
C3—H3A0.9900C9—C121.5347 (17)
C3—H3B0.9900C9—C101.5361 (18)
C4—C1i1.5048 (15)C10—H10A0.9800
C4—C91.5557 (16)C10—H10B0.9800
C4—C3i1.5615 (16)C10—H10C0.9800
C5—C61.5299 (17)C11—H11A0.9800
C5—C71.5340 (17)C11—H11B0.9800
C5—C81.5354 (18)C11—H11C0.9800
C6—H6A0.9800C12—H12A0.9800
C6—H6B0.9800C12—H12B0.9800
C6—H6C0.9800C12—H12C0.9800
C1—O1—C4105.98 (8)C5—C7—H7C109.5
C2—C1—O1136.58 (10)H7A—C7—H7C109.5
C2—C1—C4i95.84 (9)H7B—C7—H7C109.5
O1—C1—C4i127.01 (10)C5—C8—H8A109.5
C1—C2—C5137.73 (11)C5—C8—H8B109.5
C1—C2—C391.75 (9)H8A—C8—H8B109.5
C5—C2—C3130.52 (10)C5—C8—H8C109.5
C2—C3—C4i86.07 (8)H8A—C8—H8C109.5
C2—C3—H3A114.3H8B—C8—H8C109.5
C4i—C3—H3A114.3C11—C9—C12109.70 (10)
C2—C3—H3B114.3C11—C9—C10109.15 (10)
C4i—C3—H3B114.3C12—C9—C10106.61 (10)
H3A—C3—H3B111.5C11—C9—C4108.43 (10)
O1—C4—C1i112.31 (9)C12—C9—C4111.81 (10)
O1—C4—C9109.61 (9)C10—C9—C4111.11 (10)
C1i—C4—C9118.82 (9)C9—C10—H10A109.5
O1—C4—C3i115.51 (9)C9—C10—H10B109.5
C1i—C4—C3i84.71 (8)H10A—C10—H10B109.5
C9—C4—C3i114.21 (9)C9—C10—H10C109.5
C2—C5—C6110.63 (10)H10A—C10—H10C109.5
C2—C5—C7109.91 (10)H10B—C10—H10C109.5
C6—C5—C7109.95 (11)C9—C11—H11A109.5
C2—C5—C8108.22 (10)C9—C11—H11B109.5
C6—C5—C8109.26 (11)H11A—C11—H11B109.5
C7—C5—C8108.82 (11)C9—C11—H11C109.5
C5—C6—H6A109.5H11A—C11—H11C109.5
C5—C6—H6B109.5H11B—C11—H11C109.5
H6A—C6—H6B109.5C9—C12—H12A109.5
C5—C6—H6C109.5C9—C12—H12B109.5
H6A—C6—H6C109.5H12A—C12—H12B109.5
H6B—C6—H6C109.5C9—C12—H12C109.5
C5—C7—H7A109.5H12A—C12—H12C109.5
C5—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7B109.5
C4—O1—C1—C2124.33 (14)C1—C2—C5—C7133.88 (15)
C4—O1—C1—C4i44.73 (14)C3—C2—C5—C746.30 (16)
O1—C1—C2—C519.1 (2)C1—C2—C5—C8107.40 (16)
C4i—C1—C2—C5169.70 (13)C3—C2—C5—C872.42 (15)
O1—C1—C2—C3161.07 (13)O1—C4—C9—C1157.21 (12)
C4i—C1—C2—C310.17 (9)C1i—C4—C9—C11171.79 (10)
C1—C2—C3—C4i9.77 (9)C3i—C4—C9—C1174.21 (12)
C5—C2—C3—C4i170.11 (12)O1—C4—C9—C1263.86 (12)
C1—O1—C4—C1i37.41 (12)C1i—C4—C9—C1267.14 (13)
C1—O1—C4—C996.97 (10)C3i—C4—C9—C12164.73 (9)
C1—O1—C4—C3i132.31 (10)O1—C4—C9—C10177.16 (9)
C1—C2—C5—C612.26 (19)C1i—C4—C9—C1051.84 (14)
C3—C2—C5—C6167.92 (11)C3i—C4—C9—C1045.74 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H40O2
Mr360.56
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)5.843 (2), 9.383 (3), 10.126 (4)
α, β, γ (°)97.209 (12), 96.014 (13), 100.703 (19)
V3)536.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerNonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.987, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4499, 2412, 1957
Rint0.018
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.04
No. of reflections2412
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

 

References

First citationBernassau, J.-M., Bouillot, A., Fétizon, M., Hanna, I., Maia, E. R. & Prangé, T. (1987). J. Org. Chem. 52, 1993–2001.  CSD CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMasters, A. P., Parvez, M., Sorensen, T. S. & Sun, F. (1994). J. Am. Chem. Soc. 116, 2804–2811.  CSD CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRauk, A., Sorensen, T. S. & Sun, F. (1995). J. Am. Chem. Soc. 117, 4506–4514.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds