organic compounds
tert-Butyl 4-(3,4-dichloroanilino)piperidine-1-carboxylate
aInstitute of Chemistry, University of The Punjab, Qaid-i-Azam Campus, Lahore 54590, Pakistan, and bDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: suer@email.arizona.edu
In the title compound, C16H22Cl2N2O2, the substituted piperidine ring adopts a chair conformation with both substituents in equatorial positions. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds connect molecules into ribbons along the a-axis direction.
Related literature
For the biological activity of piperazine derivatives, see: Hamed et al. (2012); Joergen et al. (1997); Peter et al. (2009). For the synthesis of the title compound, see: Vardanyan et al. (2009).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812051896/zl2529sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812051896/zl2529Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812051896/zl2529Isup3.cml
tert-Butyl 4-((3,4-dichlorophenyl)amino)piperidine-1-carboxylate (1) was synthesized by modification of a reported method (Vardanyan et al., 2009) by refluxing N-Boc-4-piperidone (5.0 g, 25.1 mmol) and 3,4-dichloroaniline (4.07 g, 25.1 mmol) in toluene (100 ml) with a catalytic amount of p-toluene sulphonic acid using a Dean and Stark apparatus for 4–5 h. The reaction was left to cool overnight. Toluene was evaporated under reduced pressure. The crude product was dissolved in diethyl ether, passed through a bed of neutral alumina, and the ether evaporated under reduced pressure. The residue was dissolved in CH3OH (50 ml) and NaBH4 (1.05 g, 27.6 mmol) was added slowly at room temperature. The reaction mixture was left to stir overnight. The reaction was quenched with aqueous NaHCO3 (5 ml). The solvent was removed under reduced pressure and the residue was dissolved in diethyl ether, dried over anhydrous MgSO4, filtered and evaporated under reduced pressure. The residue was recrystallized from CH3OH to obtain (1) as a white crystalline solid. Crystals appropriate for X-ray diffraction were grown from methanol by slow evaporation at room temperature. 8.22 g (95%) yield; m.p. 155–157 °C; MS (ESI): m/z: [M+H]+: 345; HRMS: Calcd for C16H23Cl2N2O2: 345.113; found: 345.1131.
All hydrogen atoms were visible in a difference Fourier map and were added at calculated positions. Bond distances are set to 0.95 Å for carbon-hydrogen bonds, and 0.88 Å for nitrogen-hydrogen bonds. Thermal parameters for hydrogen atoms were set to 1.2 times the isotropic equivalent thermal parameter of the atom to which the hydrogen atom is bonded.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C16H22Cl2N2O2 | Dx = 1.302 Mg m−3 |
Mr = 345.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9939 reflections |
a = 9.7825 (6) Å | θ = 2.8–40.0° |
b = 10.6075 (6) Å | µ = 0.38 mm−1 |
c = 16.8215 (10) Å | T = 100 K |
V = 1745.53 (18) Å3 | Rod, clear colourless |
Z = 4 | 0.40 × 0.40 × 0.30 mm |
F(000) = 728 |
Bruker Kappa APEXII DUO CCD diffractometer | 13197 independent reflections |
Radiation source: fine-focus sealed tube | 11079 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 43.7°, θmin = 2.3° |
ϕ and ω scans | h = −19→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −20→15 |
Tmin = 0.662, Tmax = 0.749 | l = −32→22 |
34136 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.1129P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
13197 reflections | Δρmax = 0.44 e Å−3 |
202 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Absolute structure: Flack (1983), ???? Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
C16H22Cl2N2O2 | V = 1745.53 (18) Å3 |
Mr = 345.25 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.7825 (6) Å | µ = 0.38 mm−1 |
b = 10.6075 (6) Å | T = 100 K |
c = 16.8215 (10) Å | 0.40 × 0.40 × 0.30 mm |
Bruker Kappa APEXII DUO CCD diffractometer | 13197 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 11079 reflections with I > 2σ(I) |
Tmin = 0.662, Tmax = 0.749 | Rint = 0.024 |
34136 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.079 | Δρmax = 0.44 e Å−3 |
S = 1.00 | Δρmin = −0.19 e Å−3 |
13197 reflections | Absolute structure: Flack (1983), ???? Friedel pairs |
202 parameters | Absolute structure parameter: −0.01 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.08164 (2) | 0.97197 (2) | 0.972015 (11) | 0.02294 (4) | |
Cl2 | 0.13863 (19) | 0.75577 (18) | 0.941766 (10) | 0.01982 (3) | |
O1 | 0.10534 (5) | 0.83348 (5) | 0.29230 (3) | 0.01589 (9) | |
O2 | −0.11737 (5) | 0.79311 (6) | 0.32343 (3) | 0.01988 (10) | |
C14 | 0.06777 (12) | 0.63102 (8) | 0.22473 (6) | 0.03006 (19) | |
H14A | 0.1276 | 0.595 | 0.2655 | 0.045* | |
H14B | 0.0822 | 0.5867 | 0.1743 | 0.045* | |
H14C | −0.0278 | 0.6217 | 0.2412 | 0.045* | |
C3 | 0.13364 (7) | 0.82954 (6) | 0.78917 (4) | 0.01425 (10) | |
H3 | 0.2006 | 0.7658 | 0.7815 | 0.017* | |
C13 | 0.10078 (8) | 0.77016 (7) | 0.21416 (4) | 0.01681 (11) | |
C12 | −0.00406 (7) | 0.83543 (6) | 0.34047 (4) | 0.01344 (10) | |
N2 | 0.02566 (6) | 0.89021 (6) | 0.41112 (4) | 0.01450 (9) | |
C10 | 0.15552 (7) | 0.95171 (7) | 0.43015 (4) | 0.01648 (11) | |
H10A | 0.1433 | 1.0444 | 0.4296 | 0.02* | |
H10B | 0.2247 | 0.9295 | 0.3895 | 0.02* | |
C11 | 0.20526 (7) | 0.90986 (8) | 0.51199 (4) | 0.01733 (12) | |
H11A | 0.2881 | 0.9585 | 0.5263 | 0.021* | |
H11B | 0.2306 | 0.8196 | 0.5099 | 0.021* | |
C7 | 0.09632 (7) | 0.92909 (7) | 0.57613 (4) | 0.01480 (10) | |
H7 | 0.0784 | 1.0215 | 0.5816 | 0.018* | |
N1 | 0.14933 (7) | 0.88223 (7) | 0.65131 (4) | 0.01898 (11) | |
H1 | 0.2255 | 0.8381 | 0.6502 | 0.023* | |
C4 | 0.08893 (7) | 0.90197 (6) | 0.72395 (4) | 0.01433 (10) | |
C5 | −0.01262 (8) | 0.99380 (7) | 0.73731 (4) | 0.01686 (12) | |
H5 | −0.0468 | 1.0417 | 0.6939 | 0.02* | |
C6 | −0.06310 (7) | 1.01490 (7) | 0.81332 (4) | 0.01730 (11) | |
H6 | −0.1303 | 1.0783 | 0.8215 | 0.021* | |
C1 | −0.01660 (7) | 0.94440 (7) | 0.87772 (4) | 0.01538 (11) | |
C2 | 0.08092 (7) | 0.85036 (6) | 0.86435 (4) | 0.01397 (10) | |
C9 | −0.08241 (7) | 0.91113 (7) | 0.46944 (4) | 0.01573 (10) | |
H9A | −0.1662 | 0.8659 | 0.4528 | 0.019* | |
H9B | −0.1039 | 1.0022 | 0.4724 | 0.019* | |
C8 | −0.03699 (7) | 0.86400 (7) | 0.55099 (4) | 0.01653 (11) | |
H8A | −0.0228 | 0.7716 | 0.549 | 0.02* | |
H8B | −0.1092 | 0.8818 | 0.5906 | 0.02* | |
C16 | 0.24662 (8) | 0.78782 (8) | 0.18424 (5) | 0.02256 (14) | |
H16A | 0.2688 | 0.8779 | 0.1832 | 0.034* | |
H16B | 0.2547 | 0.753 | 0.1305 | 0.034* | |
H16C | 0.3101 | 0.7439 | 0.2198 | 0.034* | |
C15 | 0.00084 (9) | 0.83714 (10) | 0.15914 (5) | 0.02569 (16) | |
H15A | −0.0908 | 0.8352 | 0.1826 | 0.039* | |
H15B | −0.0007 | 0.7944 | 0.1075 | 0.039* | |
H15C | 0.0297 | 0.9249 | 0.1519 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01965 (7) | 0.03505 (10) | 0.01412 (7) | 0.00661 (7) | 0.00311 (6) | 0.00055 (6) |
Cl2 | 0.02267 (7) | 0.02154 (7) | 0.01526 (6) | 0.00232 (6) | −0.00074 (6) | 0.00598 (6) |
O1 | 0.0154 (2) | 0.0189 (2) | 0.01340 (19) | −0.00364 (16) | 0.00210 (15) | −0.00379 (17) |
O2 | 0.0162 (2) | 0.0272 (3) | 0.0163 (2) | −0.00867 (19) | −0.00053 (17) | −0.00255 (19) |
C14 | 0.0419 (5) | 0.0163 (3) | 0.0320 (4) | −0.0073 (3) | 0.0078 (4) | −0.0062 (3) |
C3 | 0.0142 (2) | 0.0149 (2) | 0.0137 (2) | 0.0010 (2) | −0.0004 (2) | 0.0009 (2) |
C13 | 0.0203 (3) | 0.0166 (3) | 0.0135 (2) | −0.0034 (2) | 0.0022 (2) | −0.0035 (2) |
C12 | 0.0144 (2) | 0.0139 (2) | 0.0120 (2) | −0.0024 (2) | −0.00017 (19) | 0.00076 (19) |
N2 | 0.0122 (2) | 0.0189 (2) | 0.0124 (2) | −0.00349 (18) | 0.00084 (17) | −0.00202 (18) |
C10 | 0.0145 (2) | 0.0219 (3) | 0.0131 (2) | −0.0061 (2) | −0.0004 (2) | 0.0001 (2) |
C11 | 0.0132 (2) | 0.0253 (3) | 0.0135 (3) | 0.0000 (2) | −0.0002 (2) | −0.0005 (2) |
C7 | 0.0151 (2) | 0.0174 (3) | 0.0119 (2) | 0.0014 (2) | −0.00057 (19) | 0.0005 (2) |
N1 | 0.0201 (3) | 0.0252 (3) | 0.0116 (2) | 0.0098 (2) | 0.0005 (2) | 0.0014 (2) |
C4 | 0.0145 (2) | 0.0160 (2) | 0.0124 (2) | 0.0019 (2) | 0.0001 (2) | 0.00067 (19) |
C5 | 0.0173 (3) | 0.0190 (3) | 0.0142 (3) | 0.0052 (2) | 0.0003 (2) | 0.0022 (2) |
C6 | 0.0166 (3) | 0.0199 (3) | 0.0155 (3) | 0.0044 (2) | 0.0011 (2) | 0.0010 (2) |
C1 | 0.0140 (2) | 0.0188 (3) | 0.0133 (2) | 0.0005 (2) | 0.0013 (2) | 0.0004 (2) |
C2 | 0.0135 (2) | 0.0150 (2) | 0.0134 (2) | −0.0005 (2) | −0.0013 (2) | 0.00250 (19) |
C9 | 0.0132 (2) | 0.0197 (3) | 0.0143 (2) | −0.0003 (2) | 0.0008 (2) | −0.0017 (2) |
C8 | 0.0159 (3) | 0.0197 (3) | 0.0140 (3) | −0.0014 (2) | 0.0024 (2) | 0.0007 (2) |
C16 | 0.0219 (3) | 0.0250 (3) | 0.0208 (3) | −0.0014 (3) | 0.0062 (3) | −0.0042 (3) |
C15 | 0.0246 (3) | 0.0378 (4) | 0.0147 (3) | 0.0000 (3) | −0.0006 (3) | 0.0007 (3) |
Cl1—C1 | 1.7338 (7) | C7—N1 | 1.4544 (9) |
Cl2—C2 | 1.7382 (7) | C7—C8 | 1.5350 (10) |
O1—C12 | 1.3425 (8) | C7—H7 | 1.0 |
O1—C13 | 1.4767 (8) | N1—C4 | 1.3734 (9) |
O2—C12 | 1.2298 (8) | N1—H1 | 0.88 |
C14—C13 | 1.5213 (11) | C4—C5 | 1.4093 (10) |
C14—H14A | 0.98 | C5—C6 | 1.3888 (10) |
C14—H14B | 0.98 | C5—H5 | 0.95 |
C14—H14C | 0.98 | C6—C1 | 1.3928 (10) |
C3—C2 | 1.3835 (10) | C6—H6 | 0.95 |
C3—C4 | 1.4090 (9) | C1—C2 | 1.3984 (10) |
C3—H3 | 0.95 | C9—C8 | 1.5261 (10) |
C13—C15 | 1.5223 (12) | C9—H9A | 0.99 |
C13—C16 | 1.5244 (11) | C9—H9B | 0.99 |
C12—N2 | 1.3545 (9) | C8—H8A | 0.99 |
N2—C9 | 1.4592 (9) | C8—H8B | 0.99 |
N2—C10 | 1.4635 (9) | C16—H16A | 0.98 |
C10—C11 | 1.5260 (10) | C16—H16B | 0.98 |
C10—H10A | 0.99 | C16—H16C | 0.98 |
C10—H10B | 0.99 | C15—H15A | 0.98 |
C11—C7 | 1.5302 (10) | C15—H15B | 0.98 |
C11—H11A | 0.99 | C15—H15C | 0.98 |
C11—H11B | 0.99 | ||
C12—O1—C13 | 121.34 (5) | C4—N1—H1 | 117.7 |
C13—C14—H14A | 109.5 | C7—N1—H1 | 117.7 |
C13—C14—H14B | 109.5 | N1—C4—C3 | 118.43 (6) |
H14A—C14—H14B | 109.5 | N1—C4—C5 | 123.40 (6) |
C13—C14—H14C | 109.5 | C3—C4—C5 | 118.14 (6) |
H14A—C14—H14C | 109.5 | C6—C5—C4 | 120.58 (6) |
H14B—C14—H14C | 109.5 | C6—C5—H5 | 119.7 |
C2—C3—C4 | 120.59 (6) | C4—C5—H5 | 119.7 |
C2—C3—H3 | 119.7 | C5—C6—C1 | 120.90 (7) |
C4—C3—H3 | 119.7 | C5—C6—H6 | 119.6 |
O1—C13—C15 | 110.38 (6) | C1—C6—H6 | 119.6 |
O1—C13—C16 | 102.11 (6) | C6—C1—C2 | 118.73 (6) |
C15—C13—C16 | 110.06 (7) | C6—C1—Cl1 | 120.08 (5) |
O1—C13—C14 | 110.10 (6) | C2—C1—Cl1 | 121.19 (5) |
C15—C13—C14 | 112.80 (7) | C3—C2—C1 | 121.01 (6) |
C16—C13—C14 | 110.89 (7) | C3—C2—Cl2 | 118.14 (5) |
O2—C12—O1 | 124.91 (6) | C1—C2—Cl2 | 120.85 (5) |
O2—C12—N2 | 123.67 (6) | N2—C9—C8 | 110.10 (6) |
O1—C12—N2 | 111.42 (6) | N2—C9—H9A | 109.6 |
C12—N2—C9 | 119.98 (6) | C8—C9—H9A | 109.6 |
C12—N2—C10 | 124.71 (6) | N2—C9—H9B | 109.6 |
C9—N2—C10 | 114.45 (6) | C8—C9—H9B | 109.6 |
N2—C10—C11 | 110.14 (6) | H9A—C9—H9B | 108.2 |
N2—C10—H10A | 109.6 | C9—C8—C7 | 110.34 (6) |
C11—C10—H10A | 109.6 | C9—C8—H8A | 109.6 |
N2—C10—H10B | 109.6 | C7—C8—H8A | 109.6 |
C11—C10—H10B | 109.6 | C9—C8—H8B | 109.6 |
H10A—C10—H10B | 108.1 | C7—C8—H8B | 109.6 |
C10—C11—C7 | 112.04 (6) | H8A—C8—H8B | 108.1 |
C10—C11—H11A | 109.2 | C13—C16—H16A | 109.5 |
C7—C11—H11A | 109.2 | C13—C16—H16B | 109.5 |
C10—C11—H11B | 109.2 | H16A—C16—H16B | 109.5 |
C7—C11—H11B | 109.2 | C13—C16—H16C | 109.5 |
H11A—C11—H11B | 107.9 | H16A—C16—H16C | 109.5 |
N1—C7—C11 | 108.61 (6) | H16B—C16—H16C | 109.5 |
N1—C7—C8 | 112.88 (6) | C13—C15—H15A | 109.5 |
C11—C7—C8 | 109.72 (6) | C13—C15—H15B | 109.5 |
N1—C7—H7 | 108.5 | H15A—C15—H15B | 109.5 |
C11—C7—H7 | 108.5 | C13—C15—H15C | 109.5 |
C8—C7—H7 | 108.5 | H15A—C15—H15C | 109.5 |
C4—N1—C7 | 124.62 (6) | H15B—C15—H15C | 109.5 |
C12—O1—C13—C15 | 65.40 (8) | C2—C3—C4—N1 | 176.69 (7) |
C12—O1—C13—C16 | −177.61 (6) | C2—C3—C4—C5 | −1.34 (10) |
C12—O1—C13—C14 | −59.79 (9) | N1—C4—C5—C6 | −175.62 (7) |
C13—O1—C12—O2 | −4.42 (11) | C3—C4—C5—C6 | 2.31 (11) |
C13—O1—C12—N2 | 175.50 (6) | C4—C5—C6—C1 | −1.23 (12) |
O2—C12—N2—C9 | −5.18 (11) | C5—C6—C1—C2 | −0.86 (11) |
O1—C12—N2—C9 | 174.90 (6) | C5—C6—C1—Cl1 | −179.73 (6) |
O2—C12—N2—C10 | −174.00 (7) | C4—C3—C2—C1 | −0.72 (11) |
O1—C12—N2—C10 | 6.08 (10) | C4—C3—C2—Cl2 | 178.95 (5) |
C12—N2—C10—C11 | −134.30 (7) | C6—C1—C2—C3 | 1.83 (11) |
C9—N2—C10—C11 | 56.33 (8) | Cl1—C1—C2—C3 | −179.31 (6) |
N2—C10—C11—C7 | −53.30 (8) | C6—C1—C2—Cl2 | −177.83 (6) |
C10—C11—C7—N1 | 177.63 (6) | Cl1—C1—C2—Cl2 | 1.03 (9) |
C10—C11—C7—C8 | 53.82 (8) | C12—N2—C9—C8 | 131.49 (7) |
C11—C7—N1—C4 | 169.17 (7) | C10—N2—C9—C8 | −58.59 (8) |
C8—C7—N1—C4 | −68.92 (9) | N2—C9—C8—C7 | 56.87 (7) |
C7—N1—C4—C3 | 166.47 (7) | N1—C7—C8—C9 | −176.41 (6) |
C7—N1—C4—C5 | −15.61 (12) | C11—C7—C8—C9 | −55.13 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.12 | 2.9740 (8) | 163 |
C3—H3···O2i | 0.95 | 2.58 | 3.3486 (9) | 138 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H22Cl2N2O2 |
Mr | 345.25 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 100 |
a, b, c (Å) | 9.7825 (6), 10.6075 (6), 16.8215 (10) |
V (Å3) | 1745.53 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.38 |
Crystal size (mm) | 0.40 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.662, 0.749 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34136, 13197, 11079 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.973 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.079, 1.00 |
No. of reflections | 13197 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.19 |
Absolute structure | Flack (1983), ???? Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.88 | 2.12 | 2.9740 (8) | 163.4 |
C3—H3···O2i | 0.95 | 2.58 | 3.3486 (9) | 137.8 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
Acknowledgements
We gratefully acknowledge a grant from the Higher Education Commission of Pakistan under the IRSIP programme to support PhD students. The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837. The work was supported in part by grants from the US Public Health Service and National Institutes of Health (DA06284 and DA13449).
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hamed, A., Christoph, B., Olivier, C., Bibia, H. & Romain, S. (2012). US Patent Appl. 2012316178. Google Scholar
Joergen, S.-K., Peter, M. & Frank, W. (1997). World Patent WO9730997. Google Scholar
Peter, D., Eriksen, B. L., Munro, G. & Nielsen, E. (2009). World Patent WO 2009/077585. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vardanyan, R., Vijay, G., Nichol, G. S., Liu, L., Kumarasinghe, I., Davis, P., Vanderah, T., Porreca, F., Lai, J. & Hruby, V. J. (2009). Bioorg. Med. Chem. 14, 5044–5053. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperazine derivatives have been shown to inhibit re-uptake of the monoamines dopamine, noradrenaline and serotonin in synaptosomes (Joergen et al., 1997), and their use for the treatment of protozoal infections, particularly malaria, has also been reported (Hamed et al., 2012). Selective serotonin reuptake inhibitors (SSRI) provide efficacy in the treatment of numerous CNS disorders, including depression and panic disorders, and are usually observed to be effective, well tolerated and simply administered (Peter et al., 2009)). During our search to find new synthetic novel multivalent ligands for the treatment of pain and depression, the title compound was synthesized as an intermediate. Compounds prepared from this intermediate are now under study for possible opioid and SSRIs activities.
The piperidine ring is in a chair conformation with both substituents in equatorial positions. An intermolecular hydrogen bond is present between N1—H1 and O2 with a donor-hydrogen-acceptor angle of 163.40° and a donor-aceptor distance of 2.9740 (8) Å. Hydrogen bonds connect molecules into ribbons extending in the crystallographic a direction. The hydrogen bonding graph set is C1,1(8)a.