metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­(μ2-5-{4-[(1H-imidazol-1-yl)meth­yl]phen­yl}tetra­zolato)zinc]

aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: songzhe@cncnc.edu.cn

(Received 3 December 2012; accepted 13 December 2012; online 9 January 2013)

In the title compound, [Zn(C11H9N6)2]n, the ZnII atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmeth­yl)phen­yl]tetra­zolate ligands in a distorted tetra­hedral geometry. The ligands bridge the ZnII atoms, leading to the formation of a two-dimensional network parallel to (010). The structure is further stabilized by C—H⋯N, C—H⋯π and ππ [centroid–centroid distance = 3.7523 (11) Å] inter­actions within the network.

Related literature

For background to metal-organic architectures, see: Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897-1906.]); Mooibroek & Gamez (2007[Mooibroek, T. J. & Gamez, P. (2007). Inorg. Chim. Acta, 360, 381-404.]); Su et al. (2009[Su, Z., Xu, J., Huang, Y.-Q., Okamura, T.-A., Liu, G.-X., Bai, Z.-S., Chen, M.-S., Chen, S.-S. & Sun, W.-Y. (2009). J. Solid State Chem. 182, 1417-1423.]). For background to metal–azolate frameworks, see: Darling et al. (2012[Darling, K., Ouellette, W., Pellizzeri, S., Smith, T., Vargas, J., Tomaszfski, S., O'Connor, C. J. & Zubieta, J. (2012). Inorg. Chim. Acta, 392, 417-427.]). For related structures, see: Huang et al. (2009[Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]); Su et al. (2009[Su, Z., Xu, J., Huang, Y.-Q., Okamura, T.-A., Liu, G.-X., Bai, Z.-S., Chen, M.-S., Chen, S.-S. & Sun, W.-Y. (2009). J. Solid State Chem. 182, 1417-1423.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C11H9N6)2]

  • Mr = 515.85

  • Orthorhombic, P b c n

  • a = 16.1206 (12) Å

  • b = 9.3720 (7) Å

  • c = 14.6367 (11) Å

  • V = 2211.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 273 K

  • 0.28 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.736, Tmax = 0.752

  • 11210 measured reflections

  • 2105 independent reflections

  • 1874 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.081

  • S = 1.07

  • 2105 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N4i 0.93 2.45 3.344 (2) 163
C8—H8ACg2ii 0.97 2.88 3.692 (2) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal–Organic Frameworks (MOFs) continue to receive significant contemporary attention, reflecting their applications to fields as diverse as gas storage, separation, and catalysis (Mooibroek et al., 2007; Awaleh et al., 2005). Transition metal complexes using tetrazole derivatives as ligands are of great interest as many compounds based on these ligands have shown intriguing structures with interesting properties (Su et al., 2009; Darling et al., 2012). Recently, we obtained the title complex by the reaction of zincacetate with 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole using hydrothermal method and its crystal structure is reported here.

In the title compound, the ZnII atom lies on an inversion center and adopts a distorted tetrahedral coordination geometry, being coordinated by four N atoms from four azolate ligands (Fig. 1). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (010) (Fig. 2), while in a related structure the azolate C11H9N6 ligands form one-dimensional chains with the ZnII atoms (Huang et al., 2009). The crystal structure is further stabilized by C–H···N, C–H···π and and π-π interactions within the network (see Geometric parameters and Table 1: Cg1 and Cg2 corresponding to the centroids of the N1-N2-N3-N4-C7 and C1–C6 rings, respectively).

Related literature top

For background to metal-organic architectures, see: Awaleh et al. (2005); Mooibroek & Gamez (2007); Su et al. (2009). For background to metal–azolate frameworks, see: Darling et al. (2012). For related structures, see: Huang et al. (2009); Su et al. (2009).

Experimental top

A mixture of Zn(OAc)2.2H2O (0.2 mmol, 0.043 g), 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole (0.2 mmol, 0.045 g), NH3.H2O (2 mL), EtOH (5 ml) and water (5 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 100°C for 72 h and then gradually cooled to room temperature. Colourless crystals were obtained.

Refinement top

The H atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+3/2, -y-1/2, z+1/2; (iii) x-1/2, -y-1/2, -z+1.
[Figure 2] Fig. 2. View of the two-dimensional network of the title compound.
Poly[bis(µ2-5-{4-[(1H-imidazol-1-yl)methyl]phenyl}tetrazolato)zinc] top
Crystal data top
[Zn(C11H9N6)2]F(000) = 1056
Mr = 515.85Dx = 1.549 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2105 reflections
a = 16.1206 (12) Åθ = 2.5–25.7°
b = 9.3720 (7) ŵ = 1.15 mm1
c = 14.6367 (11) ÅT = 273 K
V = 2211.3 (3) Å3Block, colourless
Z = 40.28 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2105 independent reflections
Radiation source: fine-focus sealed tube1874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.7°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1319
Tmin = 0.736, Tmax = 0.752k = 1111
11210 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.045P)2 + 1.2542P]
where P = (Fo2 + 2Fc2)/3
2105 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C11H9N6)2]V = 2211.3 (3) Å3
Mr = 515.85Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.1206 (12) ŵ = 1.15 mm1
b = 9.3720 (7) ÅT = 273 K
c = 14.6367 (11) Å0.28 × 0.26 × 0.24 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1874 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.752Rint = 0.020
11210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
2105 reflectionsΔρmin = 0.27 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00874 (3)0.75000.02093 (12)
N10.56706 (10)0.22486 (17)0.62224 (10)0.0287 (4)
N20.50779 (9)0.12643 (17)0.63732 (11)0.0250 (3)
N30.45760 (9)0.11431 (16)0.56620 (10)0.0258 (3)
N40.48338 (10)0.20502 (19)0.50222 (9)0.0251 (4)
N50.78108 (9)0.70455 (15)0.30116 (10)0.0227 (3)
N60.89739 (10)0.60890 (17)0.25437 (9)0.0236 (3)
C10.59424 (12)0.3877 (2)0.49151 (11)0.0243 (4)
C20.65678 (12)0.4625 (2)0.53566 (13)0.0294 (4)
H20.67290.43590.59420.080*
C30.69536 (13)0.5767 (2)0.49300 (12)0.0300 (4)
H30.73720.62600.52320.080*
C40.67212 (11)0.61812 (19)0.40553 (12)0.0258 (4)
C50.61043 (12)0.5417 (2)0.36076 (13)0.0277 (4)
H50.59490.56770.30190.080*
C60.57190 (11)0.4272 (2)0.40282 (12)0.0271 (4)
H60.53100.37640.37190.080*
C70.54942 (11)0.27135 (19)0.53796 (12)0.0234 (4)
C80.71159 (12)0.74616 (19)0.36103 (13)0.0299 (4)
H8A0.73170.81050.40790.080*
H8B0.67020.79660.32530.080*
C90.84655 (11)0.62443 (18)0.32411 (12)0.0233 (4)
H90.85500.58500.38170.080*
C100.86280 (13)0.6845 (2)0.18321 (13)0.0370 (5)
H100.88530.69340.12500.080*
C110.79073 (13)0.7436 (2)0.21178 (14)0.0360 (5)
H110.75480.79970.17740.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01744 (19)0.02404 (18)0.02131 (19)0.0000.00210 (10)0.000
N10.0271 (8)0.0325 (8)0.0265 (8)0.0039 (7)0.0012 (6)0.0046 (7)
N20.0234 (8)0.0271 (8)0.0245 (8)0.0004 (6)0.0012 (6)0.0019 (7)
N30.0253 (8)0.0272 (8)0.0249 (8)0.0019 (6)0.0007 (6)0.0013 (6)
N40.0259 (8)0.0277 (9)0.0218 (8)0.0003 (7)0.0010 (6)0.0013 (6)
N50.0204 (7)0.0243 (7)0.0234 (8)0.0017 (6)0.0044 (6)0.0008 (6)
N60.0203 (8)0.0265 (8)0.0239 (8)0.0002 (6)0.0025 (6)0.0012 (6)
C10.0226 (9)0.0261 (9)0.0241 (9)0.0036 (7)0.0054 (7)0.0004 (7)
C20.0286 (10)0.0357 (10)0.0241 (10)0.0017 (8)0.0021 (8)0.0008 (8)
C30.0280 (10)0.0334 (11)0.0286 (10)0.0037 (8)0.0039 (8)0.0040 (8)
C40.0237 (9)0.0246 (9)0.0290 (9)0.0034 (7)0.0096 (7)0.0022 (7)
C50.0269 (10)0.0309 (9)0.0254 (9)0.0039 (8)0.0037 (8)0.0030 (8)
C60.0250 (9)0.0299 (10)0.0264 (9)0.0009 (8)0.0013 (8)0.0006 (8)
C70.0220 (9)0.0250 (9)0.0231 (9)0.0031 (7)0.0026 (7)0.0008 (7)
C80.0276 (10)0.0259 (9)0.0361 (10)0.0030 (7)0.0135 (8)0.0007 (8)
C90.0236 (9)0.0237 (9)0.0228 (9)0.0015 (7)0.0025 (7)0.0009 (7)
C100.0322 (11)0.0568 (13)0.0221 (9)0.0122 (10)0.0048 (8)0.0085 (9)
C110.0318 (11)0.0515 (13)0.0246 (10)0.0116 (9)0.0022 (8)0.0101 (9)
Geometric parameters (Å, º) top
Zn1—N21.9880 (16)C1—C71.474 (3)
Zn1—N2i1.9880 (16)C2—C31.386 (3)
Zn1—N6ii1.9889 (16)C2—H20.9300
Zn1—N6iii1.9889 (16)C3—C41.390 (3)
N1—C71.339 (2)C3—H30.9300
N1—N21.346 (2)C4—C51.390 (3)
N2—N31.323 (2)C4—C81.506 (2)
N3—N41.331 (2)C5—C61.384 (3)
N4—C71.339 (2)C5—H50.9300
N5—C91.338 (2)C6—H60.9300
N5—C111.367 (2)C8—H8A0.9700
N5—C81.475 (2)C8—H8B0.9700
N6—C91.317 (2)C9—H90.9300
N6—C101.377 (2)C10—C111.353 (3)
N6—Zn1iv1.9889 (16)C10—H100.9300
C1—C21.388 (3)C11—H110.9300
C1—C61.397 (2)Cg1—Cg2v3.7523 (11)
N2—Zn1—N2i112.61 (9)C3—C4—C5118.89 (17)
N2—Zn1—N6ii106.36 (6)C3—C4—C8120.48 (17)
N2i—Zn1—N6ii109.48 (6)C5—C4—C8120.61 (17)
N2—Zn1—N6iii109.48 (6)C6—C5—C4120.74 (17)
N2i—Zn1—N6iii106.36 (6)C6—C5—H5119.6
N6ii—Zn1—N6iii112.67 (9)C4—C5—H5119.6
C7—N1—N2102.90 (15)C5—C6—C1120.20 (18)
N3—N2—N1111.33 (14)C5—C6—H6119.9
N3—N2—Zn1124.49 (12)C1—C6—H6119.9
N1—N2—Zn1124.13 (12)N1—C7—N4112.20 (16)
N2—N3—N4107.92 (14)N1—C7—C1124.16 (17)
N3—N4—C7105.65 (14)N4—C7—C1123.56 (16)
C9—N5—C11107.49 (14)N5—C8—C4111.54 (14)
C9—N5—C8126.75 (15)N5—C8—H8A109.3
C11—N5—C8125.75 (15)C4—C8—H8A109.3
C9—N6—C10106.10 (15)N5—C8—H8B109.3
C9—N6—Zn1iv127.13 (12)C4—C8—H8B109.3
C10—N6—Zn1iv126.68 (12)H8A—C8—H8B108.0
C2—C1—C6119.07 (17)N6—C9—N5110.99 (15)
C2—C1—C7121.01 (16)N6—C9—H9124.5
C6—C1—C7119.88 (17)N5—C9—H9124.5
C3—C2—C1120.42 (18)C11—C10—N6108.92 (16)
C3—C2—H2119.8C11—C10—H10125.5
C1—C2—H2119.8N6—C10—H10125.5
C2—C3—C4120.66 (18)C10—C11—N5106.49 (16)
C2—C3—H3119.7C10—C11—H11126.8
C4—C3—H3119.7N5—C11—H11126.8
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y1/2, z+1; (iv) x+3/2, y1/2, z1/2; (v) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···N4vi0.932.453.344 (2)163
C8—H8A···Cg2vii0.972.883.692 (2)142
Symmetry codes: (vi) x+1/2, y1/2, z+1/2; (vii) x+1, y1, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C11H9N6)2]
Mr515.85
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)273
a, b, c (Å)16.1206 (12), 9.3720 (7), 14.6367 (11)
V3)2211.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.28 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.736, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
11210, 2105, 1874
Rint0.020
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.081, 1.07
No. of reflections2105
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···N4i0.932.453.344 (2)163
C8—H8A···Cg2ii0.972.883.692 (2)142
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y1, z1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Changchun Normal University.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897–1906.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDarling, K., Ouellette, W., Pellizzeri, S., Smith, T., Vargas, J., Tomaszfski, S., O'Connor, C. J. & Zubieta, J. (2012). Inorg. Chim. Acta, 392, 417–427.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationMooibroek, T. J. & Gamez, P. (2007). Inorg. Chim. Acta, 360, 381–404.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Z., Xu, J., Huang, Y.-Q., Okamura, T.-A., Liu, G.-X., Bai, Z.-S., Chen, M.-S., Chen, S.-S. & Sun, W.-Y. (2009). J. Solid State Chem. 182, 1417–1423.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds