metal-organic compounds
Poly[bis(μ2-5-{4-[(1H-imidazol-1-yl)methyl]phenyl}tetrazolato)zinc]
aDepartment of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China
*Correspondence e-mail: songzhe@cncnc.edu.cn
In the title compound, [Zn(C11H9N6)2]n, the ZnII atom lies on an inversion center and is coordinated by four N atoms from four 5-[4-(1H-imidazol-1-ylmethyl)phenyl]tetrazolate ligands in a distorted tetrahedral geometry. The ligands bridge the ZnII atoms, leading to the formation of a two-dimensional network parallel to (010). The structure is further stabilized by C—H⋯N, C—H⋯π and π–π [centroid–centroid distance = 3.7523 (11) Å] interactions within the network.
Related literature
For background to metal-organic architectures, see: Awaleh et al. (2005); Mooibroek & Gamez (2007); Su et al. (2009). For background to metal–azolate frameworks, see: Darling et al. (2012). For related structures, see: Huang et al. (2009); Su et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812050672/zq2192sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812050672/zq2192Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812050672/zq2192Isup3.cdx
A mixture of Zn(OAc)2.2H2O (0.2 mmol, 0.043 g), 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole (0.2 mmol, 0.045 g), NH3.H2O (2 mL), EtOH (5 ml) and water (5 ml) was sealed in a 15 ml Teflon-lined reactor, which was heated at 100°C for 72 h and then gradually cooled to room temperature. Colourless crystals were obtained.
The H atoms were generated geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C11H9N6)2] | F(000) = 1056 |
Mr = 515.85 | Dx = 1.549 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 2105 reflections |
a = 16.1206 (12) Å | θ = 2.5–25.7° |
b = 9.3720 (7) Å | µ = 1.15 mm−1 |
c = 14.6367 (11) Å | T = 273 K |
V = 2211.3 (3) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.26 × 0.24 mm |
Bruker APEXII CCD area-detector diffractometer | 2105 independent reflections |
Radiation source: fine-focus sealed tube | 1874 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
phi and ω scans | θmax = 25.7°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→19 |
Tmin = 0.736, Tmax = 0.752 | k = −11→11 |
11210 measured reflections | l = −17→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.045P)2 + 1.2542P] where P = (Fo2 + 2Fc2)/3 |
2105 reflections | (Δ/σ)max < 0.001 |
159 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
[Zn(C11H9N6)2] | V = 2211.3 (3) Å3 |
Mr = 515.85 | Z = 4 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 16.1206 (12) Å | µ = 1.15 mm−1 |
b = 9.3720 (7) Å | T = 273 K |
c = 14.6367 (11) Å | 0.28 × 0.26 × 0.24 mm |
Bruker APEXII CCD area-detector diffractometer | 2105 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1874 reflections with I > 2σ(I) |
Tmin = 0.736, Tmax = 0.752 | Rint = 0.020 |
11210 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.29 e Å−3 |
2105 reflections | Δρmin = −0.27 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | −0.00874 (3) | 0.7500 | 0.02093 (12) | |
N1 | 0.56706 (10) | −0.22486 (17) | 0.62224 (10) | 0.0287 (4) | |
N2 | 0.50779 (9) | −0.12643 (17) | 0.63732 (11) | 0.0250 (3) | |
N3 | 0.45760 (9) | −0.11431 (16) | 0.56620 (10) | 0.0258 (3) | |
N4 | 0.48338 (10) | −0.20502 (19) | 0.50222 (9) | 0.0251 (4) | |
N5 | 0.78108 (9) | −0.70455 (15) | 0.30116 (10) | 0.0227 (3) | |
N6 | 0.89739 (10) | −0.60890 (17) | 0.25437 (9) | 0.0236 (3) | |
C1 | 0.59424 (12) | −0.3877 (2) | 0.49151 (11) | 0.0243 (4) | |
C2 | 0.65678 (12) | −0.4625 (2) | 0.53566 (13) | 0.0294 (4) | |
H2 | 0.6729 | −0.4359 | 0.5942 | 0.080* | |
C3 | 0.69536 (13) | −0.5767 (2) | 0.49300 (12) | 0.0300 (4) | |
H3 | 0.7372 | −0.6260 | 0.5232 | 0.080* | |
C4 | 0.67212 (11) | −0.61812 (19) | 0.40553 (12) | 0.0258 (4) | |
C5 | 0.61043 (12) | −0.5417 (2) | 0.36076 (13) | 0.0277 (4) | |
H5 | 0.5949 | −0.5677 | 0.3019 | 0.080* | |
C6 | 0.57190 (11) | −0.4272 (2) | 0.40282 (12) | 0.0271 (4) | |
H6 | 0.5310 | −0.3764 | 0.3719 | 0.080* | |
C7 | 0.54942 (11) | −0.27135 (19) | 0.53796 (12) | 0.0234 (4) | |
C8 | 0.71159 (12) | −0.74616 (19) | 0.36103 (13) | 0.0299 (4) | |
H8A | 0.7317 | −0.8105 | 0.4079 | 0.080* | |
H8B | 0.6702 | −0.7966 | 0.3253 | 0.080* | |
C9 | 0.84655 (11) | −0.62443 (18) | 0.32411 (12) | 0.0233 (4) | |
H9 | 0.8550 | −0.5850 | 0.3817 | 0.080* | |
C10 | 0.86280 (13) | −0.6845 (2) | 0.18321 (13) | 0.0370 (5) | |
H10 | 0.8853 | −0.6934 | 0.1250 | 0.080* | |
C11 | 0.79073 (13) | −0.7436 (2) | 0.21178 (14) | 0.0360 (5) | |
H11 | 0.7548 | −0.7997 | 0.1774 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01744 (19) | 0.02404 (18) | 0.02131 (19) | 0.000 | −0.00210 (10) | 0.000 |
N1 | 0.0271 (8) | 0.0325 (8) | 0.0265 (8) | 0.0039 (7) | −0.0012 (6) | −0.0046 (7) |
N2 | 0.0234 (8) | 0.0271 (8) | 0.0245 (8) | 0.0004 (6) | −0.0012 (6) | −0.0019 (7) |
N3 | 0.0253 (8) | 0.0272 (8) | 0.0249 (8) | −0.0019 (6) | 0.0007 (6) | −0.0013 (6) |
N4 | 0.0259 (8) | 0.0277 (9) | 0.0218 (8) | −0.0003 (7) | 0.0010 (6) | −0.0013 (6) |
N5 | 0.0204 (7) | 0.0243 (7) | 0.0234 (8) | −0.0017 (6) | 0.0044 (6) | −0.0008 (6) |
N6 | 0.0203 (8) | 0.0265 (8) | 0.0239 (8) | −0.0002 (6) | 0.0025 (6) | −0.0012 (6) |
C1 | 0.0226 (9) | 0.0261 (9) | 0.0241 (9) | −0.0036 (7) | 0.0054 (7) | 0.0004 (7) |
C2 | 0.0286 (10) | 0.0357 (10) | 0.0241 (10) | 0.0017 (8) | 0.0021 (8) | −0.0008 (8) |
C3 | 0.0280 (10) | 0.0334 (11) | 0.0286 (10) | 0.0037 (8) | 0.0039 (8) | 0.0040 (8) |
C4 | 0.0237 (9) | 0.0246 (9) | 0.0290 (9) | −0.0034 (7) | 0.0096 (7) | 0.0022 (7) |
C5 | 0.0269 (10) | 0.0309 (9) | 0.0254 (9) | −0.0039 (8) | 0.0037 (8) | −0.0030 (8) |
C6 | 0.0250 (9) | 0.0299 (10) | 0.0264 (9) | −0.0009 (8) | 0.0013 (8) | 0.0006 (8) |
C7 | 0.0220 (9) | 0.0250 (9) | 0.0231 (9) | −0.0031 (7) | 0.0026 (7) | 0.0008 (7) |
C8 | 0.0276 (10) | 0.0259 (9) | 0.0361 (10) | −0.0030 (7) | 0.0135 (8) | 0.0007 (8) |
C9 | 0.0236 (9) | 0.0237 (9) | 0.0228 (9) | −0.0015 (7) | 0.0025 (7) | −0.0009 (7) |
C10 | 0.0322 (11) | 0.0568 (13) | 0.0221 (9) | −0.0122 (10) | 0.0048 (8) | −0.0085 (9) |
C11 | 0.0318 (11) | 0.0515 (13) | 0.0246 (10) | −0.0116 (9) | 0.0022 (8) | −0.0101 (9) |
Zn1—N2 | 1.9880 (16) | C1—C7 | 1.474 (3) |
Zn1—N2i | 1.9880 (16) | C2—C3 | 1.386 (3) |
Zn1—N6ii | 1.9889 (16) | C2—H2 | 0.9300 |
Zn1—N6iii | 1.9889 (16) | C3—C4 | 1.390 (3) |
N1—C7 | 1.339 (2) | C3—H3 | 0.9300 |
N1—N2 | 1.346 (2) | C4—C5 | 1.390 (3) |
N2—N3 | 1.323 (2) | C4—C8 | 1.506 (2) |
N3—N4 | 1.331 (2) | C5—C6 | 1.384 (3) |
N4—C7 | 1.339 (2) | C5—H5 | 0.9300 |
N5—C9 | 1.338 (2) | C6—H6 | 0.9300 |
N5—C11 | 1.367 (2) | C8—H8A | 0.9700 |
N5—C8 | 1.475 (2) | C8—H8B | 0.9700 |
N6—C9 | 1.317 (2) | C9—H9 | 0.9300 |
N6—C10 | 1.377 (2) | C10—C11 | 1.353 (3) |
N6—Zn1iv | 1.9889 (16) | C10—H10 | 0.9300 |
C1—C2 | 1.388 (3) | C11—H11 | 0.9300 |
C1—C6 | 1.397 (2) | Cg1—Cg2v | 3.7523 (11) |
N2—Zn1—N2i | 112.61 (9) | C3—C4—C5 | 118.89 (17) |
N2—Zn1—N6ii | 106.36 (6) | C3—C4—C8 | 120.48 (17) |
N2i—Zn1—N6ii | 109.48 (6) | C5—C4—C8 | 120.61 (17) |
N2—Zn1—N6iii | 109.48 (6) | C6—C5—C4 | 120.74 (17) |
N2i—Zn1—N6iii | 106.36 (6) | C6—C5—H5 | 119.6 |
N6ii—Zn1—N6iii | 112.67 (9) | C4—C5—H5 | 119.6 |
C7—N1—N2 | 102.90 (15) | C5—C6—C1 | 120.20 (18) |
N3—N2—N1 | 111.33 (14) | C5—C6—H6 | 119.9 |
N3—N2—Zn1 | 124.49 (12) | C1—C6—H6 | 119.9 |
N1—N2—Zn1 | 124.13 (12) | N1—C7—N4 | 112.20 (16) |
N2—N3—N4 | 107.92 (14) | N1—C7—C1 | 124.16 (17) |
N3—N4—C7 | 105.65 (14) | N4—C7—C1 | 123.56 (16) |
C9—N5—C11 | 107.49 (14) | N5—C8—C4 | 111.54 (14) |
C9—N5—C8 | 126.75 (15) | N5—C8—H8A | 109.3 |
C11—N5—C8 | 125.75 (15) | C4—C8—H8A | 109.3 |
C9—N6—C10 | 106.10 (15) | N5—C8—H8B | 109.3 |
C9—N6—Zn1iv | 127.13 (12) | C4—C8—H8B | 109.3 |
C10—N6—Zn1iv | 126.68 (12) | H8A—C8—H8B | 108.0 |
C2—C1—C6 | 119.07 (17) | N6—C9—N5 | 110.99 (15) |
C2—C1—C7 | 121.01 (16) | N6—C9—H9 | 124.5 |
C6—C1—C7 | 119.88 (17) | N5—C9—H9 | 124.5 |
C3—C2—C1 | 120.42 (18) | C11—C10—N6 | 108.92 (16) |
C3—C2—H2 | 119.8 | C11—C10—H10 | 125.5 |
C1—C2—H2 | 119.8 | N6—C10—H10 | 125.5 |
C2—C3—C4 | 120.66 (18) | C10—C11—N5 | 106.49 (16) |
C2—C3—H3 | 119.7 | C10—C11—H11 | 126.8 |
C4—C3—H3 | 119.7 | N5—C11—H11 | 126.8 |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+3/2, −y−1/2, z+1/2; (iii) x−1/2, −y−1/2, −z+1; (iv) −x+3/2, −y−1/2, z−1/2; (v) −x+1, −y−1, −z+1. |
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···N4vi | 0.93 | 2.45 | 3.344 (2) | 163 |
C8—H8A···Cg2vii | 0.97 | 2.88 | 3.692 (2) | 142 |
Symmetry codes: (vi) x+1/2, y−1/2, −z+1/2; (vii) x+1, −y−1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C11H9N6)2] |
Mr | 515.85 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 273 |
a, b, c (Å) | 16.1206 (12), 9.3720 (7), 14.6367 (11) |
V (Å3) | 2211.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.28 × 0.26 × 0.24 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.736, 0.752 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11210, 2105, 1874 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.081, 1.07 |
No. of reflections | 2105 |
No. of parameters | 159 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.27 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).
Cg2 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···N4i | 0.93 | 2.45 | 3.344 (2) | 163 |
C8—H8A···Cg2ii | 0.97 | 2.88 | 3.692 (2) | 142 |
Symmetry codes: (i) x+1/2, y−1/2, −z+1/2; (ii) x+1, −y−1, z−1/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Changchun Normal University.
References
Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897–1906. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Darling, K., Ouellette, W., Pellizzeri, S., Smith, T., Vargas, J., Tomaszfski, S., O'Connor, C. J. & Zubieta, J. (2012). Inorg. Chim. Acta, 392, 417–427. Web of Science CSD CrossRef CAS Google Scholar
Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165. CAS Google Scholar
Mooibroek, T. J. & Gamez, P. (2007). Inorg. Chim. Acta, 360, 381–404. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, Z., Xu, J., Huang, Y.-Q., Okamura, T.-A., Liu, G.-X., Bai, Z.-S., Chen, M.-S., Chen, S.-S. & Sun, W.-Y. (2009). J. Solid State Chem. 182, 1417–1423. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal–Organic Frameworks (MOFs) continue to receive significant contemporary attention, reflecting their applications to fields as diverse as gas storage, separation, and catalysis (Mooibroek et al., 2007; Awaleh et al., 2005). Transition metal complexes using tetrazole derivatives as ligands are of great interest as many compounds based on these ligands have shown intriguing structures with interesting properties (Su et al., 2009; Darling et al., 2012). Recently, we obtained the title complex by the reaction of zincacetate with 5-(4-imidazol-1-yl-benzyl)-2H-tetrazole using hydrothermal method and its crystal structure is reported here.
In the title compound, the ZnII atom lies on an inversion center and adopts a distorted tetrahedral coordination geometry, being coordinated by four N atoms from four azolate ligands (Fig. 1). The bridging azolate ligands allow the formation of a two-dimensional network parallel to (010) (Fig. 2), while in a related structure the azolate C11H9N6 ligands form one-dimensional chains with the ZnII atoms (Huang et al., 2009). The crystal structure is further stabilized by C–H···N, C–H···π and and π-π interactions within the network (see Geometric parameters and Table 1: Cg1 and Cg2 corresponding to the centroids of the N1-N2-N3-N4-C7 and C1–C6 rings, respectively).