organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phenyl)-2-[tris­­(4-methyl­phenyl)-λ5-phosphanyl­­idene]butane-1,3-dione

aFaculty of Chemistry, Bu-Ali Sina University, Hamedan 65174, Iran, and bInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510, Mexico
*Correspondence e-mail: jsabounchei@yahoo.co.uk

(Received 7 November 2012; accepted 22 December 2012; online 4 January 2013)

In the title ylide, C31H28ClO2P [common name α-acetyl-α-p-chloro­benzoyl­methyl­enetri(p-tol­yl)phospho­rane], the dihedral angle between the 4-chloro­phenyl ring and that of the ylide moiety is 66.15 (10)°. The geometry around the P atom is slightly distorted tetra­hedral [angle range = 105.22 (8)–115.52 (9)°] and the carbonyl O atoms are syn-oriented with respect to the P atom. The ylide group is close to planar [maximum deviation from the least-squares plane = 0.006 (2) Å] and the P—C, C—C and C=O bond lengths are consistent with electron delocalization involving the O atoms.

Related literature

For a general background to organo­phospho­rus compounds and a review of stabilized phospho­nium ylides, see: Bachrach & Nitsche (1994[Bachrach, S. M. & Nitsche, C. I. (1994). The Chemistry of Organophosphorus Compounds, edited by F. R. Hartley, Vol. 3, ch. 4, pp. 273-299. Chichester: Wiley.]). For other related literature on ylides, see: Wilson & Tebby (1972[Wilson, I. F. & Tebby, J. C. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 31-34.]); Sabounchei et al. (2010[Sabounchei, S. J., Shahriary, P., Bolboli Nojini, Z., Khavasi, H. R., Arici, C. & Dal, H. (2010). Heteroat. Chem. 21, 475-485.]). For analogous structures, see: Bart (1969[Bart, J. C. J. (1969). J. Chem. Soc. B, pp. 350-365.]); Kalyanasundari et al. (1994[Kalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V., Robinson, W. T. & Wen, H. (1994). Acta Cryst. C50, 1738-1741.]); Sabounchei et al. (2007[Sabounchei, S. J., Dadras, A., Jafarzadeh, M. & Khavasi, H. R. (2007). Acta Cryst. E63, o3160.]); Castañeda et al. (2001[Castañeda, F., Terraza, C. A., Garland, M. T., Bunton, C. A. & Baggio, R. F. (2001). Acta Cryst. C57, 180-184.], 2003[Castañeda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. & Garland, M. T. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 1973-1985.]). For bond distance and angle data, see: Dunitz (1979[Dunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, pp. 335-340. Ithaca: Cornell University Press.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H28ClO2P

  • Mr = 498.95

  • Monoclinic, C 2/c

  • a = 20.327 (2) Å

  • b = 14.7560 (15) Å

  • c = 18.9759 (19) Å

  • β = 113.140 (2)°

  • V = 5233.8 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.35 × 0.27 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 21296 measured reflections

  • 4780 independent reflections

  • 3380 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.00

  • 4780 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

X-ray structures of stabilized phosphonium ylides possessing a substituent that conjugates with the PC double bond have been reviewed (Bachrach & Nitsche, 1994). Ylidic resonance is important in phosphonium ylides stabilized by electron-withdrawing substituents due to electronic delocalization between the P—C bond, the ylidic bond, and an acyl group (Castañeda et al., 2001, 2003). In the title compound, C31H28ClO2P (Fig. 1), the dihedral angle between the 4-chlorophenyl ring and the plane of the planar ylide moiety (defined by atoms P, C2, C3, O2, C4) is 66.15 (10)°. The geometry around the P atom is slightly distorted tetrahedral [angle range, 105.22 (8)–115.52 (9)Å]. The P–C2 bond [1.7540 (18) Å] is comparable with analogous distances (Kalyanasundari et al., 1994; Sabounchei et al., 2007) and is longer than the typical PC double bond in methylenetriphenylphosphorane, Ph3PCH2 (Bart, 1969), where there is no opportunity for conjugation with another group. For a similar reason, the CO bonds are longer than the CO bonds in ketones (Allen et al., 1987). In the title compound the difference between the C–O bond lengths in the C1–O1–Ph group compared to the C3–O2–CH3 group (0.016 Å) may be due to the presence of the extended resonance between the COCH3 group and the carbanion. The ylide C-atom is clearly sp2-hybridized, the sum of the bond angles [359 (4)°] being essentially 360°. The distortions from planarity of the extended ylide group (as induced by non-bonding interactions) are not extreme; the P—C2—C3O2 torsion angle [2.3 (2)°] suggests a degree of coplanarity and concomitance, but the P—C2—C1—O1 angle [-37.1 (3)°] indicates some rotation of the second carbonyl group out of the plane. In ylides stabilized by a single keto or ester group, there is a strong interaction between cationoid phosphorus and the syn acyl O atom (Wilson & Tebby, 1972). The P···O2 [2.853 (1) Å] and P···O1 [3.088 (2) Å] distances are significantly shorter than the sum of the van der Waals radii of P and O (Dunitz, 1979), indicating a strong intramolecular interaction between the P+ and O- charge centers, which leads to the cis orientation.

Related literature top

For a general background to organophosphorus compounds and a review of stabilized phosphonium ylides, see: Bachrach & Nitsche (1994). For other related literature on ylides, see: Wilson & Tebby (1972); Sabounchei et al. (2010). For analogous structures, see: Bart (1969); Kalyanasundari et al. (1994); Sabounchei et al. (2007); Castañeda et al. (2001, 2003). For bond distance and angle data, see: Dunitz (1979); Allen et al. (1987).

Experimental top

A mixture of parachlorobenzoyltri(paratolyl)phosphorane (0.03 mol) and acetic anhydride (0.3 mol) in dry chloroform (10–20 ml) was stirred at 60°C. The reaction was monitored by TLC. The resulting dark solution was evaporated at 80 °C (12 ml) to give a glue which was triturated with ether and the precipitated product was filtered and recrystallized using a solvent diffusion technique (yield; 65%: m.p. 459–458).

Refinement top

The hydrogen atom positions were calculated and refined using a riding model technique, with C—Haromatic = 0.93 Å or C—Hmethyl = 0.96 Å, with Uiso(H) = 1.2Ueq(C)(aromatic) or 1.5Ueq(C)(methyl).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
1-(4-Chlorophenyl)-2-[tris(4-methylphenyl)-λ5-phosphanylidene]butane- 1,3-dione top
Crystal data top
C31H28ClO2PF(000) = 2096
Mr = 498.95Dx = 1.266 Mg m3
Monoclinic, C2/cMelting point = 458–459 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.327 (2) ÅCell parameters from 7723 reflections
b = 14.7560 (15) Åθ = 2.3–25.3°
c = 18.9759 (19) ŵ = 0.23 mm1
β = 113.140 (2)°T = 298 K
V = 5233.8 (9) Å3Prism, yellow
Z = 80.35 × 0.27 × 0.25 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3380 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
Detector resolution: 0.83 pixels mm-1h = 2424
ω scansk = 1717
21296 measured reflectionsl = 2222
4780 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
4780 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C31H28ClO2PV = 5233.8 (9) Å3
Mr = 498.95Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.327 (2) ŵ = 0.23 mm1
b = 14.7560 (15) ÅT = 298 K
c = 18.9759 (19) Å0.35 × 0.27 × 0.25 mm
β = 113.140 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3380 reflections with I > 2σ(I)
21296 measured reflectionsRint = 0.045
4780 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
4780 reflectionsΔρmin = 0.21 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.00240 (4)0.88102 (4)0.03610 (4)0.0896 (3)
P0.17486 (3)0.37797 (3)0.21740 (3)0.03935 (15)
O10.16378 (8)0.56120 (10)0.29060 (8)0.0645 (4)
O20.02681 (7)0.33829 (10)0.13545 (8)0.0579 (4)
C10.12109 (10)0.54772 (13)0.22438 (11)0.0454 (5)
C20.10499 (9)0.45716 (12)0.19188 (10)0.0419 (5)
C30.03535 (10)0.42100 (14)0.14970 (11)0.0467 (5)
C40.03122 (10)0.47932 (15)0.12414 (13)0.0653 (6)
H4A0.03640.51090.07800.098*
H4B0.02710.52240.16360.098*
H4C0.07230.44160.11460.098*
C50.08882 (10)0.62939 (13)0.17585 (11)0.0433 (5)
C60.07281 (10)0.63087 (14)0.09771 (12)0.0507 (5)
H60.07960.57880.07380.061*
C70.04699 (11)0.70818 (16)0.05475 (12)0.0593 (6)
H70.03640.70840.00240.071*
C80.03717 (11)0.78467 (14)0.09061 (13)0.0576 (6)
C90.05338 (12)0.78600 (15)0.16758 (13)0.0644 (6)
H90.04680.83850.19110.077*
C100.07965 (11)0.70826 (14)0.21011 (12)0.0571 (6)
H100.09130.70910.26270.069*
C110.17988 (10)0.30004 (12)0.29265 (10)0.0410 (5)
C120.12272 (11)0.29172 (13)0.31441 (11)0.0492 (5)
H120.08130.32510.28900.059*
C130.12636 (12)0.23438 (14)0.37351 (12)0.0556 (6)
H130.08740.23010.38740.067*
C140.18664 (13)0.18355 (14)0.41202 (12)0.0545 (6)
C150.24374 (12)0.19226 (14)0.39040 (12)0.0570 (6)
H150.28490.15840.41570.068*
C160.24135 (11)0.24988 (13)0.33223 (12)0.0512 (5)
H160.28090.25520.31940.061*
C170.19077 (14)0.11954 (16)0.47598 (13)0.0811 (8)
H17A0.15380.13430.49360.122*
H17B0.23660.12540.51760.122*
H17C0.18450.05830.45730.122*
C180.25965 (9)0.43610 (12)0.25043 (10)0.0389 (4)
C190.28960 (10)0.46131 (13)0.19951 (11)0.0475 (5)
H190.26700.44550.14810.057*
C200.35285 (11)0.50983 (14)0.22410 (12)0.0551 (6)
H200.37230.52550.18890.066*
C210.38777 (10)0.53554 (13)0.29975 (12)0.0497 (5)
C220.35801 (10)0.50872 (13)0.35062 (11)0.0479 (5)
H220.38090.52400.40210.058*
C230.29551 (10)0.46009 (13)0.32700 (11)0.0458 (5)
H230.27690.44290.36260.055*
C240.45494 (12)0.59149 (17)0.32627 (14)0.0790 (8)
H24A0.45140.63960.35860.118*
H24B0.46110.61670.28260.118*
H24C0.49530.55390.35450.118*
C250.16994 (10)0.31556 (12)0.13338 (10)0.0414 (5)
C260.20041 (11)0.23050 (13)0.13922 (12)0.0510 (5)
H260.22230.20320.18700.061*
C270.19849 (12)0.18588 (14)0.07444 (13)0.0571 (6)
H270.21970.12910.07960.069*
C280.16629 (11)0.22285 (15)0.00284 (12)0.0524 (5)
C290.13751 (11)0.30865 (15)0.00266 (11)0.0587 (6)
H290.11670.33620.05050.070*
C300.13905 (11)0.35433 (14)0.06151 (11)0.0529 (5)
H300.11900.41190.05630.063*
C310.16111 (13)0.17156 (16)0.06824 (13)0.0760 (7)
H31A0.19080.11860.05360.114*
H31B0.17680.20980.09950.114*
H31C0.11240.15380.09670.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0792 (4)0.0604 (4)0.0944 (5)0.0098 (3)0.0035 (4)0.0274 (3)
P0.0384 (3)0.0401 (3)0.0382 (3)0.0009 (2)0.0137 (2)0.0008 (2)
O10.0648 (10)0.0623 (10)0.0484 (9)0.0131 (8)0.0030 (8)0.0117 (7)
O20.0500 (9)0.0525 (9)0.0657 (10)0.0059 (7)0.0169 (7)0.0046 (8)
C10.0406 (11)0.0503 (12)0.0442 (12)0.0052 (10)0.0157 (10)0.0035 (10)
C20.0394 (11)0.0410 (11)0.0427 (11)0.0043 (9)0.0133 (9)0.0001 (9)
C30.0446 (12)0.0486 (13)0.0450 (12)0.0018 (10)0.0156 (10)0.0029 (10)
C40.0407 (12)0.0631 (14)0.0856 (17)0.0021 (11)0.0179 (12)0.0124 (13)
C50.0392 (11)0.0422 (11)0.0464 (12)0.0025 (9)0.0144 (9)0.0029 (9)
C60.0528 (13)0.0481 (13)0.0508 (13)0.0071 (10)0.0199 (11)0.0037 (10)
C70.0577 (14)0.0663 (16)0.0462 (13)0.0176 (12)0.0123 (11)0.0040 (12)
C80.0496 (13)0.0459 (13)0.0617 (15)0.0097 (10)0.0051 (11)0.0094 (11)
C90.0725 (16)0.0437 (13)0.0666 (16)0.0046 (12)0.0162 (13)0.0033 (12)
C100.0655 (15)0.0526 (13)0.0489 (13)0.0047 (11)0.0177 (11)0.0042 (11)
C110.0421 (11)0.0395 (11)0.0414 (11)0.0013 (9)0.0163 (9)0.0020 (9)
C120.0454 (12)0.0541 (13)0.0497 (12)0.0013 (10)0.0204 (10)0.0020 (10)
C130.0598 (14)0.0600 (14)0.0555 (14)0.0097 (12)0.0317 (12)0.0015 (11)
C140.0718 (15)0.0478 (13)0.0447 (12)0.0104 (11)0.0237 (12)0.0004 (10)
C150.0588 (14)0.0524 (13)0.0566 (14)0.0074 (11)0.0191 (12)0.0109 (11)
C160.0465 (12)0.0535 (13)0.0555 (13)0.0044 (10)0.0221 (11)0.0072 (10)
C170.115 (2)0.0694 (16)0.0632 (16)0.0135 (15)0.0399 (16)0.0115 (13)
C180.0393 (11)0.0383 (11)0.0376 (11)0.0040 (8)0.0136 (9)0.0014 (8)
C190.0509 (12)0.0535 (12)0.0371 (11)0.0043 (10)0.0161 (10)0.0000 (9)
C200.0568 (13)0.0627 (14)0.0513 (13)0.0084 (11)0.0271 (11)0.0050 (11)
C210.0444 (12)0.0471 (12)0.0547 (13)0.0018 (10)0.0163 (11)0.0025 (10)
C220.0424 (12)0.0524 (13)0.0428 (12)0.0006 (10)0.0101 (10)0.0044 (10)
C230.0446 (12)0.0538 (12)0.0396 (11)0.0001 (10)0.0173 (9)0.0039 (9)
C240.0662 (16)0.0871 (18)0.0793 (18)0.0277 (14)0.0238 (14)0.0006 (14)
C250.0390 (11)0.0425 (11)0.0419 (11)0.0026 (9)0.0151 (9)0.0032 (9)
C260.0624 (14)0.0430 (12)0.0512 (13)0.0019 (10)0.0263 (11)0.0014 (10)
C270.0722 (15)0.0414 (12)0.0666 (15)0.0004 (11)0.0367 (13)0.0055 (11)
C280.0480 (12)0.0570 (14)0.0564 (14)0.0082 (11)0.0250 (11)0.0144 (11)
C290.0563 (14)0.0719 (16)0.0402 (12)0.0089 (12)0.0106 (10)0.0035 (11)
C300.0534 (13)0.0547 (13)0.0457 (13)0.0134 (10)0.0142 (10)0.0024 (10)
C310.0838 (18)0.0818 (17)0.0694 (16)0.0112 (15)0.0376 (14)0.0299 (14)
Geometric parameters (Å, º) top
Cl—C81.737 (2)C15—H150.9300
P—C21.7540 (18)C16—H160.9300
P—C181.8028 (18)C17—H17A0.9600
P—C111.8048 (19)C17—H17B0.9600
P—C251.8097 (19)C17—H17C0.9600
O1—C11.231 (2)C18—C191.380 (2)
O2—C31.247 (2)C18—C231.391 (2)
C1—C21.454 (3)C19—C201.383 (3)
C1—C51.502 (3)C19—H190.9300
C2—C31.428 (3)C20—C211.381 (3)
C3—C41.514 (3)C20—H200.9300
C4—H4A0.9600C21—C221.383 (3)
C4—H4B0.9600C21—C241.503 (3)
C4—H4C0.9600C22—C231.372 (2)
C5—C101.381 (3)C22—H220.9300
C5—C61.388 (3)C23—H230.9300
C6—C71.380 (3)C24—H24A0.9600
C6—H60.9300C24—H24B0.9600
C7—C81.373 (3)C24—H24C0.9600
C7—H70.9300C25—C301.381 (3)
C8—C91.365 (3)C25—C261.385 (3)
C9—C101.383 (3)C26—C271.382 (3)
C9—H90.9300C26—H260.9300
C10—H100.9300C27—C281.368 (3)
C11—C121.383 (2)C27—H270.9300
C11—C161.391 (3)C28—C291.381 (3)
C12—C131.383 (3)C28—C311.514 (3)
C12—H120.9300C29—C301.381 (3)
C13—C141.376 (3)C29—H290.9300
C13—H130.9300C30—H300.9300
C14—C151.380 (3)C31—H31A0.9600
C14—C171.514 (3)C31—H31B0.9600
C15—C161.379 (3)C31—H31C0.9600
C2—P—C18109.80 (9)C11—C16—H16119.9
C2—P—C11115.52 (9)C14—C17—H17A109.5
C18—P—C11106.20 (8)C14—C17—H17B109.5
C2—P—C25109.72 (9)H17A—C17—H17B109.5
C18—P—C25105.22 (8)C14—C17—H17C109.5
C11—P—C25109.83 (9)H17A—C17—H17C109.5
O1—C1—C2122.17 (18)H17B—C17—H17C109.5
O1—C1—C5117.33 (17)C19—C18—C23117.93 (17)
C2—C1—C5120.40 (17)C19—C18—P120.62 (14)
C3—C2—C1126.13 (17)C23—C18—P121.40 (14)
C3—C2—P114.99 (14)C18—C19—C20120.71 (18)
C1—C2—P118.18 (14)C18—C19—H19119.6
O2—C3—C2120.67 (18)C20—C19—H19119.6
O2—C3—C4117.14 (18)C21—C20—C19121.54 (18)
C2—C3—C4122.11 (18)C21—C20—H20119.2
C3—C4—H4A109.5C19—C20—H20119.2
C3—C4—H4B109.5C20—C21—C22117.36 (18)
H4A—C4—H4B109.5C20—C21—C24121.81 (19)
C3—C4—H4C109.5C22—C21—C24120.83 (19)
H4A—C4—H4C109.5C23—C22—C21121.64 (18)
H4B—C4—H4C109.5C23—C22—H22119.2
C10—C5—C6118.13 (18)C21—C22—H22119.2
C10—C5—C1119.65 (18)C22—C23—C18120.80 (18)
C6—C5—C1122.03 (17)C22—C23—H23119.6
C7—C6—C5121.3 (2)C18—C23—H23119.6
C7—C6—H6119.4C21—C24—H24A109.5
C5—C6—H6119.4C21—C24—H24B109.5
C8—C7—C6118.8 (2)H24A—C24—H24B109.5
C8—C7—H7120.6C21—C24—H24C109.5
C6—C7—H7120.6H24A—C24—H24C109.5
C9—C8—C7121.4 (2)H24B—C24—H24C109.5
C9—C8—Cl119.74 (19)C30—C25—C26118.02 (18)
C7—C8—Cl118.84 (18)C30—C25—P120.35 (15)
C8—C9—C10119.2 (2)C26—C25—P121.51 (15)
C8—C9—H9120.4C27—C26—C25120.36 (19)
C10—C9—H9120.4C27—C26—H26119.8
C5—C10—C9121.1 (2)C25—C26—H26119.8
C5—C10—H10119.4C28—C27—C26121.9 (2)
C9—C10—H10119.4C28—C27—H27119.0
C12—C11—C16118.25 (18)C26—C27—H27119.0
C12—C11—P119.99 (15)C27—C28—C29117.62 (19)
C16—C11—P121.71 (15)C27—C28—C31121.6 (2)
C11—C12—C13120.85 (19)C29—C28—C31120.8 (2)
C11—C12—H12119.6C30—C29—C28121.2 (2)
C13—C12—H12119.6C30—C29—H29119.4
C14—C13—C12121.1 (2)C28—C29—H29119.4
C14—C13—H13119.5C29—C30—C25120.82 (19)
C12—C13—H13119.5C29—C30—H30119.6
C13—C14—C15117.94 (19)C25—C30—H30119.6
C13—C14—C17121.5 (2)C28—C31—H31A109.5
C15—C14—C17120.5 (2)C28—C31—H31B109.5
C16—C15—C14121.7 (2)H31A—C31—H31B109.5
C16—C15—H15119.1C28—C31—H31C109.5
C14—C15—H15119.1H31A—C31—H31C109.5
C15—C16—C11120.1 (2)H31B—C31—H31C109.5
C15—C16—H16119.9
O1—C1—C2—C3132.8 (2)C12—C13—C14—C17179.07 (19)
C5—C1—C2—C350.8 (3)C13—C14—C15—C160.1 (3)
O1—C1—C2—P37.1 (3)C17—C14—C15—C16179.9 (2)
C5—C1—C2—P139.25 (15)C14—C15—C16—C111.1 (3)
C18—P—C2—C3167.12 (14)C12—C11—C16—C151.4 (3)
C11—P—C2—C372.84 (16)P—C11—C16—C15178.76 (15)
C25—P—C2—C351.94 (17)C2—P—C18—C1989.06 (16)
C18—P—C2—C121.85 (17)C11—P—C18—C19145.38 (15)
C11—P—C2—C198.18 (16)C25—P—C18—C1928.95 (17)
C25—P—C2—C1137.04 (15)C2—P—C18—C2388.39 (16)
C1—C2—C3—O2167.91 (18)C11—P—C18—C2337.16 (17)
P—C2—C3—O22.3 (2)C25—P—C18—C23153.59 (15)
C1—C2—C3—C48.8 (3)C23—C18—C19—C200.8 (3)
P—C2—C3—C4178.97 (15)P—C18—C19—C20176.78 (15)
O1—C1—C5—C1029.4 (3)C18—C19—C20—C210.7 (3)
C2—C1—C5—C10154.09 (18)C19—C20—C21—C221.7 (3)
O1—C1—C5—C6145.43 (19)C19—C20—C21—C24177.5 (2)
C2—C1—C5—C631.1 (3)C20—C21—C22—C231.3 (3)
C10—C5—C6—C71.3 (3)C24—C21—C22—C23177.91 (19)
C1—C5—C6—C7176.25 (18)C21—C22—C23—C180.1 (3)
C5—C6—C7—C80.0 (3)C19—C18—C23—C221.2 (3)
C6—C7—C8—C91.0 (3)P—C18—C23—C22176.35 (14)
C6—C7—C8—Cl178.27 (15)C2—P—C25—C3027.03 (18)
C7—C8—C9—C100.6 (3)C18—P—C25—C3091.03 (17)
Cl—C8—C9—C10178.66 (17)C11—P—C25—C30155.04 (15)
C6—C5—C10—C91.7 (3)C2—P—C25—C26156.82 (16)
C1—C5—C10—C9176.79 (19)C18—P—C25—C2685.11 (17)
C8—C9—C10—C50.8 (3)C11—P—C25—C2628.82 (18)
C2—P—C11—C1214.15 (18)C30—C25—C26—C271.1 (3)
C18—P—C11—C12136.13 (15)P—C25—C26—C27177.29 (16)
C25—P—C11—C12110.57 (16)C25—C26—C27—C280.7 (3)
C2—P—C11—C16163.22 (15)C26—C27—C28—C292.2 (3)
C18—P—C11—C1641.24 (18)C26—C27—C28—C31176.8 (2)
C25—P—C11—C1672.06 (18)C27—C28—C29—C302.1 (3)
C16—C11—C12—C130.6 (3)C31—C28—C29—C30177.0 (2)
P—C11—C12—C13178.05 (15)C28—C29—C30—C250.4 (3)
C11—C12—C13—C140.4 (3)C26—C25—C30—C291.2 (3)
C12—C13—C14—C150.7 (3)P—C25—C30—C29177.46 (16)

Experimental details

Crystal data
Chemical formulaC31H28ClO2P
Mr498.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.327 (2), 14.7560 (15), 18.9759 (19)
β (°) 113.140 (2)
V3)5233.8 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.35 × 0.27 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21296, 4780, 3380
Rint0.045
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.00
No. of reflections4780
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to the University of Bu-Ali Sina for financial support. We are also indebted to the Instituto de Química, Universidad Nacional Autónoma de México, for the use of their X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBachrach, S. M. & Nitsche, C. I. (1994). The Chemistry of Organophosphorus Compounds, edited by F. R. Hartley, Vol. 3, ch. 4, pp. 273–299. Chichester: Wiley.  Google Scholar
First citationBart, J. C. J. (1969). J. Chem. Soc. B, pp. 350–365.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastañeda, F., Terraza, C. A., Bunton, C. A., Gillitt, N. D. & Garland, M. T. (2003). Phosphorus Sulfur Silicon Relat. Elem. 178, 1973–1985.  Web of Science CrossRef CAS Google Scholar
First citationCastañeda, F., Terraza, C. A., Garland, M. T., Bunton, C. A. & Baggio, R. F. (2001). Acta Cryst. C57, 180–184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDunitz, J. D. (1979). X-ray Analysis and the Structure of Organic Molecules, pp. 335–340. Ithaca: Cornell University Press.  Google Scholar
First citationKalyanasundari, M., Panchanatheswaran, K., Parthasarathi, V., Robinson, W. T. & Wen, H. (1994). Acta Cryst. C50, 1738–1741.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSabounchei, S. J., Dadras, A., Jafarzadeh, M. & Khavasi, H. R. (2007). Acta Cryst. E63, o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabounchei, S. J., Shahriary, P., Bolboli Nojini, Z., Khavasi, H. R., Arici, C. & Dal, H. (2010). Heteroat. Chem. 21, 475–485.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, I. F. & Tebby, J. C. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 31–34.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds