organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o406-o407

2,2′-[(1S,2S)-1,2-Bis(2-hy­dr­oxy­phen­yl)ethane-1,2-di­yl]bis­(isoindoline-1,3-dione) ethanol monosolvate hemihydrate

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6, and bDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 13 December 2012; accepted 8 February 2013; online 20 February 2013)

In the title compound, C30H20N2O6·C2H6O·0.5H2O, the solvent water mol­ecule lies on a twofold rotation axis. The dihedral angle between the essentially planar isoindole ring systems [maximum deviations = 0.028 (1) and 0.022 (1) Å] is 47.12 (5)°. The dihedral angle between the benzene rings is 81.32 (7)°. In the crystal, the components are linked into a three-dimensional network via O—H⋯O hydrogen bonds.

Related literature

For the use of chiral bis­phenolic ligands in stereoselective catalysis, see: Noyori et al. (1984[Noyori, R., Tomino, I., Tanimoto, Y. & Nishizawa, M. (1984). J. Am. Chem. Soc. 106, 6709-6716.]); Takaya et al. (1989[Takaya, H., Akutagawa, S. & Noyori, R. (1989). Org. Synth. 67, 20-32.]); Liu & Ding (2005[Liu, Y. & Ding, K. (2005). J. Am. Chem. Soc. 127, 10488-10489.]); Xu et al. (2011[Xu, B., Zhu, S.-F., Xie, X.-L., Shen, J.-J. & Zhou, Q.-L. (2011). Angew. Chem. Int. Ed. Engl. 50, 11483-11486.]); Yamaguchi et al. (2009[Yamaguchi, A., Matsunaga, S. & Shibasaki, M. (2009). J. Am. Chem. Soc. 131, 10842-10843.]); Van den Berg et al. (2002[Van den Berg, M., Haak, R. M., Minnaard, A. J., De Vries, A. H. M., De Vries, J. G. & Feringa, B. L. (2002). Adv. Synth. Catal. 344, 1003-1007.]); So et al. (2012[So, S. M., Mui, L., Kim, H. & Chin, J. (2012). Acc. Chem. Res. 45, 1345-1355.]); Kim, Nguyen et al. (2008[Kim, H., Nguyen, Y., Yen, C. P.-H., Chagal, L., Lough, A. J., Kim, B. M. & Chin, J. (2008). J. Am. Chem. Soc. 130, 12184-12191.]); Kim, So et al. (2008[Kim, H., So, S. M., Chin, J. & Kim, B. M. (2008). Aldrichim. Acta, 41, 77-88.]); For related structures, see: Li et al. (2011[Li, C., Fu, X.-K., Wu, C.-L. & Huang, J. (2011). Acta Cryst. E67, o1483.]); Liu et al. (2011[Liu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.]). For analysis of the absolute configration, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C30H20N2O6·C2H6O·0.5H2O

  • Mr = 559.56

  • Tetragonal, P 41 21 2

  • a = 10.6848 (3) Å

  • c = 47.9935 (17) Å

  • V = 5479.2 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 147 K

  • 0.29 × 0.18 × 0.18 mm

Data collection
  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.696, Tmax = 0.753

  • 35250 measured reflections

  • 4786 independent reflections

  • 4756 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.12

  • 4786 reflections

  • 391 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1895 Friedel pairs

  • Flack parameter: 0.03 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1W 0.86 (2) 1.89 (2) 2.7263 (13) 165 (2)
O2—H2O⋯O5i 0.88 (2) 1.95 (2) 2.8238 (15) 177 (2)
O1S—H1SO⋯O4 1.06 (4) 1.76 (4) 2.7905 (17) 161 (3)
O1W—H1W⋯O1Sii 1.06 (3) 1.65 (3) 2.6927 (16) 169 (3)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 4}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Binol (1, see Fig. 1) is a privileged structure for developing a wide variety of stereoselective catalysts (Noyori et al., 1984; Takaya et al., 1989). More recently, other chiral bisphenolic compounds (2, 3) have also gained popularity (Liu & Ding, 2005; Xu et al., 2011). The phenolic O atoms in these compounds are useful for chelating to metals (Yamaguchi et al., 2009) or for forming monophos ligands (Van den Berg et al., 2002). We have shown that bis-(2-hydroxyphenyl)-1,2-diaminoethane (hpen) is a highly useful chiral diamine for making many other chiral diamines by diaza-Cope rearrangement (So et al., 2012; Kim, Nguyen et al., 2008; Kim, So et al., 2008). Here we report a structure of a chiral bisphenolic compound (4) derived from hpen by simple protection of the amino groups as phthalimides (Li et al., 2011; Liu et al., 2011). As anticipated from molecular mechanics computation, the structure reveals that the two phenol groups in 4 are in a gauche arrangement.

The molecular structure of the title compound (4) is shown in Fig. 2. The solvent water molecule lies on a twofold rotation axis. The dihedral angle between the essentially planar isoindole ring systems [N1/C15—C22 and N2/C23—C30, with maximum deviations of 0.028 (1) for C15 and 0.022 (1) Å for C24) is 47.12 (5)°. The dihedral angle between the two benzene rings [C3—C8 and C9—C14 is 81.32 (7)°]. In the crystal, the components of the structure are linked into a three-dimensional network via O—H···O hydrogen bonds (Fig. 3).

Related literature top

For the use of chiral bisphenolic ligands in stereoselective catalysis, see: Noyori et al. (1984); Takaya et al. (1989); Liu & Ding (2005); Xu et al. (2011); Yamaguchi et al. (2009); Van den Berg et al. (2002); So et al. (2012); Kim, Nguyen et al. (2008); Kim, So et al. (2008); For related structures, see: Li et al. (2011); Liu et al. (2011). For analysis of the absolute configration, see: Hooft et al. (2008).

Experimental top

To a suspension of phthalic anhydride (1.48 g, 10 mmol) in 10 ml of acetic acid was added 1,2-bis(2-hydroxyphenyl)-1,2-diaminoethane (1.22 g, 5 mmol). The reaction mixture was heated at 383 K for 16 h and cooled down to room temperature to give the product as off white precipitate. After filtration, recrystallization of the title compound in ethanol gave X-ray quality crystals in 58% yield (1.47 g).

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.95–0.99 Å and included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl). H atoms bonded to O atoms were refined independently with isotropic displacement parameters. Analysis of the absolute configration was also performed using likelihood methods (Hooft et al., 2008) as implemented in PLATON (Spek, 2009). The resulting value for the Hooft parameter is y = 0.04 (3).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Chiral bisphenolic ligands used for stereoselective catalysis.
[Figure 2] Fig. 2. The molecular structure of the title compound with 30% probability ellipsoids. The ethanol solvent molecule and hemihydrate are not shown.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines.
2,2'-[(1S,2S)-1,2-Bis(2-hydroxyphenyl)ethane-1,2-diyl]bis(isoindoline-1,3-dione) ethanol monosolvate hemihydrate top
Crystal data top
C30H20N2O6·C2H6O·0.5H2ODx = 1.357 Mg m3
Mr = 559.56Cu Kα radiation, λ = 1.54178 Å
Tetragonal, P41212Cell parameters from 9692 reflections
Hall symbol: P 4abw 2nwθ = 3.7–66.5°
a = 10.6848 (3) ŵ = 0.81 mm1
c = 47.9935 (17) ÅT = 147 K
V = 5479.2 (3) Å3Needle, pale yellow
Z = 80.29 × 0.18 × 0.18 mm
F(000) = 2344
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4786 independent reflections
Radiation source: Bruker ImuS4756 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.035
ϕ and ω scansθmax = 66.6°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1112
Tmin = 0.696, Tmax = 0.753k = 1212
35250 measured reflectionsl = 5356
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.2163P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4786 reflectionsΔρmax = 0.26 e Å3
391 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1895 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (13)
Crystal data top
C30H20N2O6·C2H6O·0.5H2OZ = 8
Mr = 559.56Cu Kα radiation
Tetragonal, P41212µ = 0.81 mm1
a = 10.6848 (3) ÅT = 147 K
c = 47.9935 (17) Å0.29 × 0.18 × 0.18 mm
V = 5479.2 (3) Å3
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
4786 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4756 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.753Rint = 0.035
35250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.26 e Å3
S = 1.12Δρmin = 0.18 e Å3
4786 reflectionsAbsolute structure: Flack (1983), 1895 Friedel pairs
391 parametersAbsolute structure parameter: 0.03 (13)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12757 (12)0.57392 (11)0.02270 (2)0.0380 (3)
O20.27045 (11)0.13393 (10)0.10646 (2)0.0335 (3)
O30.16202 (10)0.49860 (10)0.05562 (2)0.0337 (3)
O40.03625 (10)0.10133 (9)0.03340 (2)0.0285 (2)
O50.05120 (10)0.50131 (9)0.11171 (2)0.0276 (2)
O60.05013 (10)0.09166 (9)0.09551 (2)0.0295 (2)
N10.06521 (10)0.31129 (11)0.04480 (2)0.0198 (2)
N20.02832 (11)0.29340 (11)0.09907 (2)0.0206 (2)
C10.06345 (12)0.35618 (13)0.05051 (3)0.0202 (3)
H1A0.05590.44600.05610.024*
C20.11822 (12)0.28568 (13)0.07582 (3)0.0201 (3)
H2A0.12590.19550.07050.024*
C30.14501 (13)0.35352 (14)0.02451 (3)0.0232 (3)
C40.19143 (13)0.24298 (15)0.01311 (3)0.0264 (3)
H4A0.17470.16570.02220.032*
C50.26174 (15)0.24368 (17)0.01123 (3)0.0336 (4)
H5A0.29080.16730.01900.040*
C60.28897 (16)0.35578 (18)0.02399 (3)0.0371 (4)
H6A0.33770.35670.04050.045*
C70.24576 (17)0.46746 (17)0.01282 (3)0.0365 (4)
H7A0.26560.54460.02160.044*
C80.17327 (15)0.46656 (15)0.01131 (3)0.0288 (3)
C90.24683 (13)0.33031 (13)0.08481 (3)0.0212 (3)
C100.29333 (14)0.44909 (14)0.07941 (3)0.0249 (3)
H10A0.24410.50640.06900.030*
C110.41034 (14)0.48579 (14)0.08892 (3)0.0284 (3)
H11A0.44060.56760.08510.034*
C120.48290 (14)0.40203 (15)0.10405 (3)0.0290 (3)
H12A0.56330.42640.11050.035*
C130.43858 (14)0.28366 (15)0.10968 (3)0.0285 (3)
H13A0.48870.22630.11990.034*
C140.32052 (14)0.24807 (14)0.10041 (3)0.0248 (3)
C150.16844 (13)0.39132 (13)0.04779 (3)0.0230 (3)
C160.28018 (13)0.31660 (14)0.04040 (3)0.0237 (3)
C170.40449 (15)0.35044 (16)0.03946 (3)0.0331 (4)
H17A0.43040.43380.04320.040*
C180.49035 (15)0.25736 (19)0.03282 (4)0.0397 (4)
H18A0.57700.27720.03220.048*
C190.45225 (15)0.13664 (18)0.02712 (3)0.0367 (4)
H19A0.51330.07520.02270.044*
C200.32610 (15)0.10254 (15)0.02776 (3)0.0281 (3)
H20A0.29970.01960.02370.034*
C210.24159 (13)0.19577 (14)0.03461 (3)0.0218 (3)
C220.10333 (13)0.19047 (13)0.03709 (3)0.0208 (3)
C230.00112 (13)0.40013 (13)0.11452 (3)0.0210 (3)
C240.10131 (13)0.36512 (13)0.13406 (3)0.0229 (3)
C250.16348 (15)0.43582 (14)0.15371 (3)0.0273 (3)
H25A0.14040.52010.15730.033*
C260.26124 (16)0.37874 (15)0.16801 (3)0.0305 (3)
H26A0.30670.42540.18150.037*
C270.29385 (14)0.25485 (15)0.16298 (3)0.0289 (3)
H27A0.36130.21840.17300.035*
C280.22891 (14)0.18341 (15)0.14344 (3)0.0269 (3)
H28A0.24970.09820.14020.032*
C290.13328 (13)0.24133 (13)0.12906 (3)0.0229 (3)
C300.05112 (13)0.19354 (13)0.10641 (3)0.0225 (3)
O1S0.15257 (14)0.07024 (14)0.04583 (3)0.0540 (4)
C1S0.1589 (2)0.1315 (2)0.07221 (4)0.0479 (5)
H1SA0.13680.07210.08720.057*
H1SB0.09870.20200.07270.057*
C2S0.2877 (2)0.1788 (2)0.07646 (4)0.0545 (5)
H2SA0.29320.22050.09460.082*
H2SB0.30850.23860.06170.082*
H2SC0.34670.10870.07590.082*
O1W0.20559 (11)0.79441 (11)0.00000.0348 (4)
H1O0.153 (2)0.636 (2)0.0128 (5)0.052 (6)*
H2O0.324 (2)0.093 (2)0.1168 (4)0.046 (6)*
H1SO0.068 (3)0.019 (3)0.0430 (7)0.111 (11)*
H1W0.178 (3)0.853 (3)0.0165 (6)0.095 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0515 (7)0.0252 (6)0.0372 (6)0.0009 (5)0.0126 (5)0.0079 (5)
O20.0345 (6)0.0240 (5)0.0420 (6)0.0025 (5)0.0136 (5)0.0098 (5)
O30.0308 (6)0.0229 (5)0.0475 (6)0.0061 (5)0.0054 (5)0.0099 (5)
O40.0265 (5)0.0237 (5)0.0352 (6)0.0050 (4)0.0041 (4)0.0052 (4)
O50.0318 (5)0.0214 (5)0.0297 (5)0.0065 (4)0.0021 (4)0.0017 (4)
O60.0371 (6)0.0197 (5)0.0316 (5)0.0062 (4)0.0032 (5)0.0038 (4)
N10.0175 (6)0.0203 (6)0.0215 (5)0.0006 (4)0.0016 (4)0.0012 (5)
N20.0233 (6)0.0192 (6)0.0195 (5)0.0015 (5)0.0010 (5)0.0009 (4)
C10.0182 (6)0.0199 (7)0.0224 (6)0.0005 (5)0.0030 (5)0.0008 (5)
C20.0208 (7)0.0195 (7)0.0201 (6)0.0001 (5)0.0020 (5)0.0009 (5)
C30.0189 (6)0.0292 (7)0.0214 (7)0.0014 (6)0.0037 (5)0.0007 (6)
C40.0204 (7)0.0315 (8)0.0271 (7)0.0018 (6)0.0035 (6)0.0016 (6)
C50.0251 (8)0.0449 (9)0.0307 (8)0.0020 (7)0.0015 (6)0.0087 (7)
C60.0294 (8)0.0562 (11)0.0257 (8)0.0048 (8)0.0051 (6)0.0040 (7)
C70.0395 (9)0.0432 (9)0.0268 (7)0.0073 (7)0.0034 (7)0.0067 (7)
C80.0283 (8)0.0326 (8)0.0254 (7)0.0010 (6)0.0021 (6)0.0014 (6)
C90.0200 (7)0.0232 (7)0.0204 (6)0.0008 (5)0.0018 (5)0.0021 (5)
C100.0247 (7)0.0235 (7)0.0265 (7)0.0008 (6)0.0028 (6)0.0004 (6)
C110.0255 (7)0.0261 (7)0.0336 (8)0.0060 (6)0.0006 (6)0.0020 (6)
C120.0214 (7)0.0344 (8)0.0312 (8)0.0009 (6)0.0055 (6)0.0051 (6)
C130.0257 (7)0.0306 (8)0.0291 (7)0.0030 (6)0.0080 (6)0.0010 (6)
C140.0269 (7)0.0238 (7)0.0238 (7)0.0003 (6)0.0038 (6)0.0006 (6)
C150.0238 (7)0.0237 (7)0.0215 (7)0.0039 (6)0.0024 (5)0.0005 (6)
C160.0211 (7)0.0297 (7)0.0204 (6)0.0025 (6)0.0014 (5)0.0000 (6)
C170.0235 (8)0.0395 (9)0.0364 (8)0.0064 (6)0.0008 (6)0.0073 (7)
C180.0204 (7)0.0592 (11)0.0396 (9)0.0008 (7)0.0015 (7)0.0090 (8)
C190.0258 (8)0.0504 (10)0.0340 (8)0.0102 (8)0.0022 (7)0.0047 (7)
C200.0293 (8)0.0325 (8)0.0224 (7)0.0061 (6)0.0009 (6)0.0020 (6)
C210.0212 (7)0.0278 (7)0.0163 (6)0.0004 (6)0.0006 (5)0.0005 (5)
C220.0216 (7)0.0223 (7)0.0186 (6)0.0010 (6)0.0021 (5)0.0011 (5)
C230.0233 (7)0.0208 (7)0.0188 (6)0.0004 (5)0.0055 (5)0.0006 (5)
C240.0263 (7)0.0221 (7)0.0204 (6)0.0000 (6)0.0043 (6)0.0016 (6)
C250.0328 (8)0.0248 (7)0.0245 (7)0.0027 (6)0.0020 (6)0.0004 (6)
C260.0343 (8)0.0327 (8)0.0246 (7)0.0109 (7)0.0022 (6)0.0018 (6)
C270.0259 (7)0.0333 (8)0.0275 (7)0.0028 (6)0.0004 (6)0.0075 (6)
C280.0276 (8)0.0266 (7)0.0266 (7)0.0024 (6)0.0021 (6)0.0041 (6)
C290.0227 (7)0.0242 (7)0.0218 (7)0.0011 (6)0.0034 (5)0.0010 (6)
C300.0232 (7)0.0221 (7)0.0223 (6)0.0020 (6)0.0042 (5)0.0011 (6)
O1S0.0582 (9)0.0541 (8)0.0497 (8)0.0259 (7)0.0012 (7)0.0048 (7)
C1S0.0512 (11)0.0473 (11)0.0453 (10)0.0082 (9)0.0092 (9)0.0008 (8)
C2S0.0588 (13)0.0618 (13)0.0430 (10)0.0186 (10)0.0028 (9)0.0056 (9)
O1W0.0324 (5)0.0324 (5)0.0394 (9)0.0010 (7)0.0075 (5)0.0075 (5)
Geometric parameters (Å, º) top
O1—C81.361 (2)C12—H12A0.9500
O1—H1O0.86 (2)C13—C141.391 (2)
O2—C141.3630 (19)C13—H13A0.9500
O2—H2O0.88 (2)C15—C161.479 (2)
O3—C151.2082 (18)C16—C171.377 (2)
O4—C221.2050 (18)C16—C211.383 (2)
O5—C231.2137 (17)C17—C181.390 (2)
O6—C301.2078 (18)C17—H17A0.9500
N1—C151.4030 (18)C18—C191.380 (3)
N1—C221.4033 (18)C18—H18A0.9500
N1—C11.4815 (17)C19—C201.397 (2)
N2—C231.3909 (18)C19—H19A0.9500
N2—C301.4081 (18)C20—C211.384 (2)
N2—C21.4749 (18)C20—H20A0.9500
C1—C31.5222 (19)C21—C221.4832 (19)
C1—C21.5444 (18)C23—C241.489 (2)
C1—H1A1.0000C24—C251.379 (2)
C2—C91.5173 (19)C24—C291.387 (2)
C2—H2A1.0000C25—C261.391 (2)
C3—C41.393 (2)C25—H25A0.9500
C3—C81.397 (2)C26—C271.390 (2)
C4—C51.389 (2)C26—H26A0.9500
C4—H4A0.9500C27—C281.394 (2)
C5—C61.376 (3)C27—H27A0.9500
C5—H5A0.9500C28—C291.380 (2)
C6—C71.387 (3)C28—H28A0.9500
C6—H6A0.9500C29—C301.488 (2)
C7—C81.393 (2)O1S—C1S1.427 (2)
C7—H7A0.9500O1S—H1SO1.06 (4)
C9—C101.387 (2)C1S—C2S1.481 (3)
C9—C141.397 (2)C1S—H1SA0.9900
C10—C111.388 (2)C1S—H1SB0.9900
C10—H10A0.9500C2S—H2SA0.9800
C11—C121.389 (2)C2S—H2SB0.9800
C11—H11A0.9500C2S—H2SC0.9800
C12—C131.377 (2)O1W—H1W1.06 (3)
C8—O1—H1O108.3 (15)C17—C16—C21121.72 (14)
C14—O2—H2O108.4 (14)C17—C16—C15130.12 (14)
C15—N1—C22111.07 (11)C21—C16—C15108.13 (12)
C15—N1—C1120.88 (11)C16—C17—C18117.14 (16)
C22—N1—C1128.01 (11)C16—C17—H17A121.4
C23—N2—C30111.23 (11)C18—C17—H17A121.4
C23—N2—C2125.82 (11)C19—C18—C17121.30 (16)
C30—N2—C2122.64 (11)C19—C18—H18A119.4
N1—C1—C3111.94 (11)C17—C18—H18A119.4
N1—C1—C2109.82 (11)C18—C19—C20121.61 (15)
C3—C1—C2114.75 (11)C18—C19—H19A119.2
N1—C1—H1A106.6C20—C19—H19A119.2
C3—C1—H1A106.6C21—C20—C19116.56 (15)
C2—C1—H1A106.6C21—C20—H20A121.7
N2—C2—C9110.91 (10)C19—C20—H20A121.7
N2—C2—C1108.73 (11)C16—C21—C20121.66 (14)
C9—C2—C1114.44 (11)C16—C21—C22108.45 (13)
N2—C2—H2A107.5C20—C21—C22129.89 (14)
C9—C2—H2A107.5O4—C22—N1126.39 (12)
C1—C2—H2A107.5O4—C22—C21127.65 (13)
C4—C3—C8118.56 (13)N1—C22—C21105.96 (12)
C4—C3—C1122.80 (13)O5—C23—N2125.38 (13)
C8—C3—C1118.64 (13)O5—C23—C24128.16 (13)
C5—C4—C3121.22 (15)N2—C23—C24106.45 (11)
C5—C4—H4A119.4C25—C24—C29121.47 (14)
C3—C4—H4A119.4C25—C24—C23130.33 (13)
C6—C5—C4119.56 (15)C29—C24—C23108.16 (12)
C6—C5—H5A120.2C24—C25—C26117.33 (14)
C4—C5—H5A120.2C24—C25—H25A121.3
C5—C6—C7120.41 (14)C26—C25—H25A121.3
C5—C6—H6A119.8C27—C26—C25121.36 (14)
C7—C6—H6A119.8C27—C26—H26A119.3
C6—C7—C8120.02 (16)C25—C26—H26A119.3
C6—C7—H7A120.0C26—C27—C28120.89 (14)
C8—C7—H7A120.0C26—C27—H27A119.6
O1—C8—C7121.83 (14)C28—C27—H27A119.6
O1—C8—C3117.96 (13)C29—C28—C27117.36 (14)
C7—C8—C3120.21 (15)C29—C28—H28A121.3
C10—C9—C14118.27 (13)C27—C28—H28A121.3
C10—C9—C2123.96 (12)C28—C29—C24121.58 (14)
C14—C9—C2117.72 (12)C28—C29—C30130.44 (13)
C9—C10—C11121.31 (13)C24—C29—C30107.96 (12)
C9—C10—H10A119.3O6—C30—N2124.71 (13)
C11—C10—H10A119.3O6—C30—C29129.13 (13)
C10—C11—C12119.53 (14)N2—C30—C29106.16 (12)
C10—C11—H11A120.2C1S—O1S—H1SO112.9 (17)
C12—C11—H11A120.2O1S—C1S—C2S108.83 (16)
C13—C12—C11120.16 (14)O1S—C1S—H1SA109.9
C13—C12—H12A119.9C2S—C1S—H1SA109.9
C11—C12—H12A119.9O1S—C1S—H1SB109.9
C12—C13—C14120.01 (14)C2S—C1S—H1SB109.9
C12—C13—H13A120.0H1SA—C1S—H1SB108.3
C14—C13—H13A120.0C1S—C2S—H2SA109.5
O2—C14—C13122.18 (13)C1S—C2S—H2SB109.5
O2—C14—C9117.10 (13)H2SA—C2S—H2SB109.5
C13—C14—C9120.71 (14)C1S—C2S—H2SC109.5
O3—C15—N1124.43 (14)H2SA—C2S—H2SC109.5
O3—C15—C16129.23 (13)H2SB—C2S—H2SC109.5
N1—C15—C16106.32 (11)
C15—N1—C1—C3116.36 (13)O3—C15—C16—C21175.63 (15)
C22—N1—C1—C365.99 (17)N1—C15—C16—C212.64 (15)
C15—N1—C1—C2114.96 (13)C21—C16—C17—C180.9 (2)
C22—N1—C1—C262.69 (17)C15—C16—C17—C18177.31 (15)
C23—N2—C2—C955.50 (17)C16—C17—C18—C190.7 (3)
C30—N2—C2—C9131.43 (13)C17—C18—C19—C200.0 (3)
C23—N2—C2—C171.16 (16)C18—C19—C20—C210.5 (2)
C30—N2—C2—C1101.91 (14)C17—C16—C21—C200.4 (2)
N1—C1—C2—N251.45 (13)C15—C16—C21—C20178.14 (12)
C3—C1—C2—N2178.57 (11)C17—C16—C21—C22179.33 (14)
N1—C1—C2—C9176.06 (10)C15—C16—C21—C222.09 (15)
C3—C1—C2—C956.82 (15)C19—C20—C21—C160.3 (2)
N1—C1—C3—C473.68 (16)C19—C20—C21—C22180.00 (15)
C2—C1—C3—C452.35 (18)C15—N1—C22—O4178.83 (13)
N1—C1—C3—C8105.50 (14)C1—N1—C22—O41.0 (2)
C2—C1—C3—C8128.47 (14)C15—N1—C22—C210.94 (15)
C8—C3—C4—C51.6 (2)C1—N1—C22—C21178.78 (12)
C1—C3—C4—C5177.58 (13)C16—C21—C22—O4179.46 (14)
C3—C4—C5—C61.7 (2)C20—C21—C22—O40.3 (2)
C4—C5—C6—C70.6 (2)C16—C21—C22—N10.78 (15)
C5—C6—C7—C80.6 (2)C20—C21—C22—N1179.48 (14)
C6—C7—C8—O1179.03 (15)C30—N2—C23—O5176.69 (13)
C6—C7—C8—C30.7 (2)C2—N2—C23—O53.0 (2)
C4—C3—C8—O1179.85 (13)C30—N2—C23—C241.99 (15)
C1—C3—C8—O10.9 (2)C2—N2—C23—C24175.74 (11)
C4—C3—C8—C70.4 (2)O5—C23—C24—C250.8 (2)
C1—C3—C8—C7178.83 (14)N2—C23—C24—C25179.41 (14)
N2—C2—C9—C1099.23 (15)O5—C23—C24—C29177.04 (13)
C1—C2—C9—C1024.22 (18)N2—C23—C24—C291.60 (15)
N2—C2—C9—C1478.18 (15)C29—C24—C25—C261.1 (2)
C1—C2—C9—C14158.37 (13)C23—C24—C25—C26176.41 (14)
C14—C9—C10—C110.6 (2)C24—C25—C26—C270.9 (2)
C2—C9—C10—C11177.99 (13)C25—C26—C27—C280.3 (2)
C9—C10—C11—C120.3 (2)C26—C27—C28—C291.2 (2)
C10—C11—C12—C130.4 (2)C27—C28—C29—C241.0 (2)
C11—C12—C13—C140.5 (2)C27—C28—C29—C30177.11 (14)
C12—C13—C14—O2177.19 (14)C25—C24—C29—C280.2 (2)
C12—C13—C14—C91.4 (2)C23—C24—C29—C28177.82 (13)
C10—C9—C14—O2177.22 (13)C25—C24—C29—C30178.67 (13)
C2—C9—C14—O20.34 (19)C23—C24—C29—C300.63 (15)
C10—C9—C14—C131.5 (2)C23—N2—C30—O6177.39 (13)
C2—C9—C14—C13179.05 (13)C2—N2—C30—O63.4 (2)
C22—N1—C15—O3176.19 (14)C23—N2—C30—C291.62 (15)
C1—N1—C15—O31.8 (2)C2—N2—C30—C29175.60 (11)
C22—N1—C15—C162.18 (15)C28—C29—C30—O60.1 (3)
C1—N1—C15—C16179.80 (11)C24—C29—C30—O6178.40 (14)
O3—C15—C16—C172.8 (3)C28—C29—C30—N2178.82 (14)
N1—C15—C16—C17178.95 (15)C24—C29—C30—N20.55 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.86 (2)1.89 (2)2.7263 (13)165 (2)
O2—H2O···O5i0.88 (2)1.95 (2)2.8238 (15)177 (2)
O1S—H1SO···O41.06 (4)1.76 (4)2.7905 (17)161 (3)
O1W—H1W···O1Sii1.06 (3)1.65 (3)2.6927 (16)169 (3)
Symmetry codes: (i) x1/2, y1/2, z+1/4; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H20N2O6·C2H6O·0.5H2O
Mr559.56
Crystal system, space groupTetragonal, P41212
Temperature (K)147
a, c (Å)10.6848 (3), 47.9935 (17)
V3)5479.2 (3)
Z8
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.29 × 0.18 × 0.18
Data collection
DiffractometerBruker Kappa APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.696, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
35250, 4786, 4756
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.12
No. of reflections4786
No. of parameters391
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.18
Absolute structureFlack (1983), 1895 Friedel pairs
Absolute structure parameter0.03 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1W0.86 (2)1.89 (2)2.7263 (13)165 (2)
O2—H2O···O5i0.88 (2)1.95 (2)2.8238 (15)177 (2)
O1S—H1SO···O41.06 (4)1.76 (4)2.7905 (17)161 (3)
O1W—H1W···O1Sii1.06 (3)1.65 (3)2.6927 (16)169 (3)
Symmetry codes: (i) x1/2, y1/2, z+1/4; (ii) x, y+1, z.
 

Acknowledgements

Financial support of this research by the NSERC is gratefully acknowledged. DK gratefully acknowledges the sabbatical program of Dongduk Womens University. The University of Toronto thanks the NSERC Canada for funding.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKim, H., Nguyen, Y., Yen, C. P.-H., Chagal, L., Lough, A. J., Kim, B. M. & Chin, J. (2008). J. Am. Chem. Soc. 130, 12184–12191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, H., So, S. M., Chin, J. & Kim, B. M. (2008). Aldrichim. Acta, 41, 77–88.  Google Scholar
First citationLi, C., Fu, X.-K., Wu, C.-L. & Huang, J. (2011). Acta Cryst. E67, o1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y. & Ding, K. (2005). J. Am. Chem. Soc. 127, 10488–10489.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, Z.-J., Fu, X.-K., Hu, Z.-K., Wu, X.-J. & Wu, L. (2011). Acta Cryst. E67, o1562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNoyori, R., Tomino, I., Tanimoto, Y. & Nishizawa, M. (1984). J. Am. Chem. Soc. 106, 6709–6716.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSo, S. M., Mui, L., Kim, H. & Chin, J. (2012). Acc. Chem. Res. 45, 1345–1355.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakaya, H., Akutagawa, S. & Noyori, R. (1989). Org. Synth. 67, 20–32.  CAS Google Scholar
First citationVan den Berg, M., Haak, R. M., Minnaard, A. J., De Vries, A. H. M., De Vries, J. G. & Feringa, B. L. (2002). Adv. Synth. Catal. 344, 1003–1007.  CAS Google Scholar
First citationXu, B., Zhu, S.-F., Xie, X.-L., Shen, J.-J. & Zhou, Q.-L. (2011). Angew. Chem. Int. Ed. Engl. 50, 11483–11486.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamaguchi, A., Matsunaga, S. & Shibasaki, M. (2009). J. Am. Chem. Soc. 131, 10842–10843.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o406-o407
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds