metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Pyridine-2-aldoximato-κ2N,N′)bis­­[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III)

aDepartment of Chemistry, International Institute of Information Technology, Bhubaneswar, Odisha 751 003, India
*Correspondence e-mail: snpal75@gmail.com

(Received 29 January 2013; accepted 13 February 2013; online 20 February 2013)

In the title complex, [Ir(C11H8N)2(C6H5N2O)], the octa­hedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-yl)phenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms inter­molecular C—H⋯O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100). C—H⋯π inter­actions are also observed.

Related literature

For the synthesis of the iridium phenyl­pyridine starting material, see: Nonoyama (1974[Nonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767-768.]). For preparation of phenyl pyridine-based Ir(III) complexes, see: Lamansky et al. (2001[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704-1711.]). For similar types of complexes, see: Neve et al. (1999[Neve, F., Crispini, A., Campagna, S. & Serroni, S. (1999). Inorg. Chem. 38, 2250-2258.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen bonding, see: Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]) and for C—H⋯π inter­actions, see: Ma & Dougherty (1997[Ma, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303-1324.]). For oxime ligands, see: Godycki & Rundle (1953[Godycki, L. E. & Rundle, R. E. (1953). Acta Cryst. 6, 487-495.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H8N)2(C6H5N2O)]

  • Mr = 621.71

  • Monoclinic, P 21

  • a = 9.414 (1) Å

  • b = 14.226 (2) Å

  • c = 9.551 (1) Å

  • β = 117.260 (7)°

  • V = 1137.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.90 mm−1

  • T = 293 K

  • 0.40 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]) Tmin = 0.201, Tmax = 0.332

  • 25091 measured reflections

  • 6898 independent reflections

  • 5718 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.063

  • S = 0.96

  • 6898 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.83 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3193 Friedel pairs

  • Flack parameter: 0.007 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C17–C22, N2/C12–C16 and N1/C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.35 3.235 (10) 159
C15—H15⋯O1ii 0.93 2.37 3.239 (9) 155
C3—H3⋯Cg1iii 0.93 2.74 3.604 (7) 155
C8—H8⋯Cg2i 0.93 2.69 3.606 (7) 170
C13—H13⋯Cg3iv 0.93 2.71 3.538 (9) 148
Symmetry codes: (i) x, y, z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Herein we describe the crystal structure of a neutral Ir(III) octahedral complex, namely [Ir(ppy)2(pyald)] (ppy = 2-phenylpyridine, pyald=2-pyridinealdoxime). The asymmetric unit is shown in Figure 2, which depicts that the Ir centre is coordinated by two 2-phenyl pyridine and one 2-pyridinealdoxime ligands. Two pyridine-N atoms from ppy moieties occupy the axial positions, whereas two phenyl-C from ppy ligands and two N atoms from the 2-pyridinealdoxime unit form the square plane. All three ligand tether the metal through five membered chelate rings, which ultimately lead to a distorted octahedral coordination geometry. The trans N1—Ir1—N2, C11—Ir1—N4 and C22—Ir1—N3 angles are 173.75 (19)°, 170.6 (2)° and 173.4 (18)° respectively ( ideal value: 180°). Corresponding cis angles show similar small deviation from 90°, for example, cis C22—Ir1—C11, C11—Ir1—N1, N4—Ir1—N3, and C11—Ir1—N3 angles are 88.4 (2)°, 80.4 (2)°, 77.15 (18)° and 95.41 (19)° respectively. The two phenylpyridine ligands are nearly perpendicular as indicated by the dihedral angle between their least square planes, 87.60 (11)°. The third ligand 2-pyridinealdoxime has a similar nearly perpendicular orientation with the adjacent 2-phenylpyridines. The dihedral angles of 2-pyridineadloxime to 2-phenylpyridines are 85.09 (11)° and 89.54 (15)°. The mean Ir—C [2.019 (4) Å] and Ir—N [2.087 (2) Å] bond distances are consistent with values reported in literature (see, Neve et al., 1999; Lamansky et al., 2001). The oxime-O of 2-pyridinealdoxime is deprotonated and remain non-coordinated. This is an expected fact for oxime ligands where the oxime-N binds a metal centre in presence of a deprotonated oxime-O (see, Godycki et al., 1953). The negative charge on the oxime-O is delocalized over the aldoxime moiety (Scheme1). This is supported by the N4—O1 [1.289 (6) Å] and C27—C28 [1.420 (8) Å] bond lengths, which clearly indicate their partial double bond character (see, Allen et al., 1987). Thus the negative charge is distributed over the pyridinealdoxime moiety through O1, N4, C28 and the pyridine ring.

The packing scheme is ruled by C—H···O hydrogen bonds (see, Desiraju,1991), which ultimately lead to the formation of a two dimensional hydrogen bonded polymeric structure (Figure 3) and weaker intermolecular C—H···π interactions (see, Ma et al., 1997). These interactions are presented in Table 1.

Related literature top

For the synthesis of the iridium phenylpyridine starting material, see: Nonoyama (1974). For preparation of phenyl pyridine-based Ir(III) complexes, see: Lamansky et al. (2001). For similar types of complexes, see: Neve et al. (1999).

For standard bond lengths, see: Allen et al. (1987). For hydrogen bonding, see: Desiraju (1991) and for C—H···π interactions, see: Ma & Dougherty (1997). For oxime ligands, see: Godycki & Rundle (1953).

Experimental top

The iridium starting material [(ppy)2Ir(µ –Cl)2Ir(ppy)2, ppy = 2-phenylpyridine] was prepared by following the procedure reported in the literature (see, Nonoyama,1974). The synthetic scheme of the title complex is shown in Figure 1. The detailed synthetic procedure is as follows:

In a 100 ml round bottom flask, 2-pyridinealdoxime (266 mg, 2.18 mmol) was taken in 25 ml of 2-methoxy ethanol and added with triehtyl amine (220.6 mg, 2.18 mmol). The mixture was thoroughly mixed by stirring and added with [(ppy)2Ir(µ –Cl)2Ir(ppy)2 ] (585 mg, 0.545 mmol) starting material. The resulted mixture was refluxed under a N2 atmosphere for 18 hrs. The yellow precipitate thus formed was filtered and dried under vacuum. The complex was purified on a neutral aluminium oxide column by eluting with dichloromethane. The first yellow band was discarded as starting material and the second yellow band was collected as the title compound. The solution was evaporated and the remaining solid washed with hexane and dried under vacuum to yield an yellow powder (140 mg, 41%).

Refinement top

All the non-H atoms were refined anisotropically. The ligands H atoms were included at idealized position using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic scheme of the title complex showing the starting material and ligand.
[Figure 2] Fig. 2. Molecular structure of the title complex with the atom numbering scheme. The displacement ellipsoids are shown at 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. A view of the hydrogen bonded (100) two dimensional polymeric network. Cyan coloured lines indicate the H-bond.
(Pyridine-2-aldoximato-κ2N,N')bis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) top
Crystal data top
[Ir(C11H8N)2(C6H5N2O)]F(000) = 604
Mr = 621.71Dx = 1.816 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4353 reflections
a = 9.414 (1) Åθ = 2.4–22.5°
b = 14.226 (2) ŵ = 5.90 mm1
c = 9.551 (1) ÅT = 293 K
β = 117.260 (7)°Rod, yellow
V = 1137.0 (2) Å30.40 × 0.32 × 0.24 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
6898 independent reflections
Radiation source: fine-focus sealed tube5718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.201, Tmax = 0.332k = 2019
25091 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
6898 reflectionsΔρmax = 1.34 e Å3
308 parametersΔρmin = 0.83 e Å3
1 restraintAbsolute structure: Flack (1983), 3193 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (10)
Crystal data top
[Ir(C11H8N)2(C6H5N2O)]V = 1137.0 (2) Å3
Mr = 621.71Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.414 (1) ŵ = 5.90 mm1
b = 14.226 (2) ÅT = 293 K
c = 9.551 (1) Å0.40 × 0.32 × 0.24 mm
β = 117.260 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6898 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5718 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.332Rint = 0.065
25091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.063Δρmax = 1.34 e Å3
S = 0.96Δρmin = 0.83 e Å3
6898 reflectionsAbsolute structure: Flack (1983), 3193 Friedel pairs
308 parametersAbsolute structure parameter: 0.007 (10)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.247960 (19)0.64537 (3)0.109712 (19)0.02879 (5)
C130.0866 (8)0.3975 (4)0.1836 (8)0.0513 (16)
H130.01050.37290.25750.062*
C110.2459 (6)0.5892 (4)0.3030 (7)0.0342 (12)
C150.3653 (8)0.3892 (4)0.0391 (8)0.0468 (16)
H150.46040.35750.01370.056*
C200.7684 (7)0.6230 (6)0.3712 (8)0.056 (3)
H200.85520.65620.44580.068*
C230.1127 (5)0.6426 (8)0.0322 (6)0.0425 (11)
H230.07890.61000.12640.051*
N20.2292 (5)0.5204 (3)0.0044 (5)0.0326 (10)
C170.5112 (7)0.5240 (4)0.1504 (7)0.0371 (12)
C50.2946 (7)0.7521 (5)0.3865 (7)0.0352 (13)
C270.0502 (7)0.7182 (4)0.1511 (7)0.0371 (12)
C10.3174 (8)0.8495 (4)0.2026 (8)0.0448 (14)
H10.31240.85720.10380.054*
C120.0920 (8)0.4817 (4)0.1096 (8)0.0447 (14)
H120.00340.51270.13370.054*
N40.2216 (6)0.7195 (3)0.0929 (6)0.0380 (11)
C240.2732 (7)0.6586 (7)0.0593 (8)0.052 (2)
H240.34690.63870.02600.062*
C60.2659 (6)0.6565 (8)0.4195 (6)0.0344 (19)
C140.2258 (9)0.3512 (4)0.1465 (8)0.0499 (16)
H140.22520.29410.19430.060*
N10.2887 (5)0.7645 (3)0.2439 (5)0.0327 (10)
C30.3588 (8)0.9144 (4)0.4456 (8)0.0511 (16)
H30.38370.96500.51450.061*
C20.3544 (8)0.9260 (4)0.3018 (9)0.0507 (16)
H20.37580.98420.27140.061*
C180.6659 (8)0.4887 (5)0.2082 (8)0.0496 (16)
H180.68290.43120.17210.060*
C160.3700 (7)0.4756 (4)0.0350 (7)0.0361 (12)
C40.3268 (9)0.8286 (4)0.4882 (7)0.0453 (15)
H40.32640.82110.58480.054*
O10.3361 (5)0.7455 (3)0.1226 (5)0.0514 (11)
C280.0738 (8)0.7441 (4)0.1892 (7)0.0461 (14)
H280.05090.77790.28050.055*
C100.2257 (8)0.4959 (5)0.3361 (8)0.0429 (14)
H100.21290.44970.26240.052*
C90.2242 (9)0.4701 (5)0.4751 (9)0.0549 (18)
H90.21080.40730.49350.066*
C250.3231 (8)0.7045 (5)0.2005 (9)0.0605 (19)
H250.43130.71530.26460.073*
C220.4815 (6)0.6111 (4)0.2015 (6)0.0359 (13)
C260.2123 (8)0.7343 (5)0.2466 (8)0.0549 (17)
H260.24560.76540.34220.066*
C190.7923 (7)0.5379 (5)0.3172 (8)0.0536 (17)
H190.89520.51390.35510.064*
C80.2420 (8)0.5359 (5)0.5848 (7)0.0529 (17)
H80.24190.51780.67830.063*
N30.0031 (5)0.6730 (3)0.0110 (5)0.0325 (10)
C70.2606 (7)0.6308 (10)0.5584 (7)0.048 (2)
H70.26920.67620.63200.058*
C210.6150 (7)0.6598 (6)0.3147 (7)0.043 (2)
H210.60040.71740.35240.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.02708 (8)0.03172 (8)0.02746 (9)0.0001 (2)0.01240 (6)0.0010 (2)
C130.047 (4)0.049 (4)0.053 (4)0.014 (3)0.019 (3)0.014 (3)
C110.024 (3)0.040 (3)0.036 (3)0.004 (2)0.012 (2)0.004 (3)
C150.059 (4)0.036 (3)0.053 (4)0.013 (3)0.032 (4)0.002 (3)
C200.033 (3)0.076 (9)0.053 (4)0.012 (3)0.013 (3)0.007 (4)
C230.035 (3)0.043 (2)0.055 (3)0.005 (6)0.025 (2)0.012 (7)
N20.031 (3)0.033 (2)0.036 (3)0.000 (2)0.017 (2)0.002 (2)
C170.034 (3)0.044 (3)0.035 (3)0.002 (2)0.018 (3)0.002 (2)
C50.023 (3)0.048 (4)0.033 (3)0.006 (3)0.011 (3)0.006 (3)
C270.037 (3)0.035 (3)0.032 (3)0.000 (2)0.009 (3)0.003 (2)
C10.052 (4)0.038 (3)0.043 (4)0.006 (3)0.021 (3)0.003 (3)
C120.047 (4)0.041 (3)0.052 (4)0.007 (3)0.028 (3)0.009 (3)
N40.047 (3)0.039 (3)0.031 (3)0.011 (2)0.021 (3)0.006 (2)
C240.040 (3)0.052 (6)0.061 (4)0.002 (3)0.022 (3)0.009 (4)
C60.029 (2)0.039 (6)0.034 (3)0.003 (3)0.013 (2)0.002 (3)
C140.068 (5)0.035 (3)0.054 (4)0.003 (3)0.034 (4)0.007 (3)
N10.024 (2)0.038 (2)0.031 (2)0.0002 (19)0.008 (2)0.0053 (19)
C30.050 (4)0.044 (3)0.049 (4)0.003 (3)0.013 (3)0.017 (3)
C20.043 (4)0.038 (3)0.064 (5)0.002 (3)0.017 (3)0.004 (3)
C180.040 (4)0.064 (4)0.048 (4)0.013 (3)0.023 (3)0.011 (3)
C160.041 (3)0.038 (3)0.033 (3)0.010 (2)0.020 (3)0.012 (2)
C40.052 (4)0.047 (4)0.032 (3)0.001 (3)0.015 (3)0.012 (3)
O10.055 (3)0.062 (3)0.048 (3)0.021 (2)0.032 (2)0.006 (2)
C280.049 (4)0.051 (4)0.032 (3)0.003 (3)0.012 (3)0.008 (3)
C100.035 (4)0.046 (4)0.048 (4)0.003 (3)0.019 (3)0.010 (3)
C90.050 (4)0.057 (4)0.064 (5)0.009 (3)0.032 (4)0.025 (4)
C250.030 (4)0.063 (4)0.068 (5)0.003 (3)0.006 (3)0.005 (4)
C220.028 (3)0.045 (3)0.033 (3)0.000 (2)0.013 (2)0.003 (2)
C260.045 (4)0.058 (4)0.048 (4)0.003 (3)0.010 (3)0.011 (3)
C190.024 (3)0.082 (5)0.051 (4)0.010 (3)0.014 (3)0.015 (4)
C80.052 (4)0.073 (5)0.036 (4)0.001 (3)0.022 (3)0.009 (3)
N30.030 (2)0.034 (3)0.030 (2)0.0030 (16)0.0109 (19)0.0012 (16)
C70.043 (3)0.071 (7)0.030 (3)0.001 (4)0.018 (2)0.005 (4)
C210.038 (3)0.041 (6)0.046 (3)0.002 (3)0.015 (3)0.003 (3)
Geometric parameters (Å, º) top
Ir1—C222.018 (5)C1—N11.337 (7)
Ir1—C112.020 (6)C1—C21.379 (8)
Ir1—N22.051 (4)C1—H10.9300
Ir1—N12.053 (4)C12—H120.9300
Ir1—N42.116 (5)N4—O11.289 (6)
Ir1—N32.139 (4)N4—C281.316 (8)
C13—C141.362 (9)C24—C251.374 (10)
C13—C121.379 (8)C24—H240.9300
C13—H130.9300C6—C71.399 (8)
C11—C101.397 (8)C14—H140.9300
C11—C61.414 (10)C3—C41.362 (9)
C15—C141.355 (9)C3—C21.365 (9)
C15—C161.409 (8)C3—H30.9300
C15—H150.9300C2—H20.9300
C20—C191.374 (11)C18—C191.362 (9)
C20—C211.392 (9)C18—H180.9300
C20—H200.9300C4—H40.9300
C23—N31.345 (7)C28—H280.9300
C23—C241.374 (8)C10—C91.384 (9)
C23—H230.9300C10—H100.9300
N2—C121.339 (7)C9—C81.357 (10)
N2—C161.360 (7)C9—H90.9300
C17—C181.392 (8)C25—C261.372 (10)
C17—C221.407 (7)C25—H250.9300
C17—C161.454 (8)C22—C211.408 (8)
C5—N11.348 (7)C26—H260.9300
C5—C41.397 (8)C19—H190.9300
C5—C61.449 (13)C8—C71.399 (16)
C27—N31.363 (7)C8—H80.9300
C27—C261.392 (9)C7—H70.9300
C27—C281.420 (8)C21—H210.9300
C22—Ir1—C1188.4 (2)C11—C6—C5115.8 (5)
C22—Ir1—N280.4 (2)C15—C14—C13119.2 (6)
C11—Ir1—N296.2 (2)C15—C14—H14120.4
C22—Ir1—N194.21 (19)C13—C14—H14120.4
C11—Ir1—N180.4 (2)C1—N1—C5119.8 (5)
N2—Ir1—N1173.75 (19)C1—N1—Ir1124.6 (4)
C22—Ir1—N499.6 (2)C5—N1—Ir1115.6 (4)
C11—Ir1—N4170.6 (2)C4—C3—C2120.0 (6)
N2—Ir1—N490.0 (2)C4—C3—H3120.0
N1—Ir1—N493.99 (17)C2—C3—H3120.0
C22—Ir1—N3173.47 (18)C3—C2—C1118.5 (6)
C11—Ir1—N395.41 (19)C3—C2—H2120.7
N2—Ir1—N393.90 (17)C1—C2—H2120.7
N1—Ir1—N391.65 (16)C19—C18—C17120.5 (6)
N4—Ir1—N377.15 (18)C19—C18—H18119.8
C14—C13—C12118.8 (6)C17—C18—H18119.8
C14—C13—H13120.6N2—C16—C15117.9 (6)
C12—C13—H13120.6N2—C16—C17115.1 (5)
C10—C11—C6116.6 (6)C15—C16—C17127.0 (5)
C10—C11—Ir1129.9 (5)C3—C4—C5119.8 (6)
C6—C11—Ir1113.4 (5)C3—C4—H4120.1
C14—C15—C16121.7 (6)C5—C4—H4120.1
C14—C15—H15119.2N4—C28—C27118.8 (5)
C16—C15—H15119.2N4—C28—H28120.6
C19—C20—C21120.4 (6)C27—C28—H28120.6
C19—C20—H20119.8C9—C10—C11122.1 (7)
C21—C20—H20119.8C9—C10—H10119.0
N3—C23—C24121.8 (6)C11—C10—H10119.0
N3—C23—H23119.1C8—C9—C10120.4 (6)
C24—C23—H23119.1C8—C9—H9119.8
C12—N2—C16119.9 (5)C10—C9—H9119.8
C12—N2—Ir1125.0 (4)C26—C25—C24119.6 (6)
C16—N2—Ir1115.1 (4)C26—C25—H25120.2
C18—C17—C22121.2 (6)C24—C25—H25120.2
C18—C17—C16123.8 (5)C17—C22—C21116.8 (5)
C22—C17—C16115.0 (5)C17—C22—Ir1114.4 (4)
N1—C5—C4119.7 (6)C21—C22—Ir1128.8 (4)
N1—C5—C6114.7 (5)C25—C26—C27120.4 (6)
C4—C5—C6125.6 (5)C25—C26—H26119.8
N3—C27—C26119.1 (5)C27—C26—H26119.8
N3—C27—C28116.0 (5)C18—C19—C20120.2 (6)
C26—C27—C28124.9 (6)C18—C19—H19119.9
N1—C1—C2122.1 (6)C20—C19—H19119.9
N1—C1—H1118.9C9—C8—C7120.5 (6)
C2—C1—H1118.9C9—C8—H8119.7
N2—C12—C13122.6 (6)C7—C8—H8119.7
N2—C12—H12118.7C23—N3—C27120.2 (5)
C13—C12—H12118.7C23—N3—Ir1126.1 (4)
O1—N4—C28119.5 (5)C27—N3—Ir1113.4 (3)
O1—N4—Ir1125.8 (4)C6—C7—C8119.0 (10)
C28—N4—Ir1114.6 (4)C6—C7—H7120.5
C25—C24—C23119.0 (6)C8—C7—H7120.5
C25—C24—H24120.5C20—C21—C22121.0 (7)
C23—C24—H24120.5C20—C21—H21119.5
C7—C6—C11121.3 (11)C22—C21—H21119.5
C7—C6—C5122.9 (9)
C22—Ir1—C11—C1084.3 (6)C12—N2—C16—C17179.9 (5)
N2—Ir1—C11—C104.2 (6)Ir1—N2—C16—C170.6 (6)
N1—Ir1—C11—C10178.9 (6)C14—C15—C16—N20.0 (8)
N3—Ir1—C11—C1090.4 (6)C14—C15—C16—C17179.4 (6)
C22—Ir1—C11—C696.7 (4)C18—C17—C16—N2178.7 (5)
N2—Ir1—C11—C6176.8 (4)C22—C17—C16—N21.4 (7)
N1—Ir1—C11—C62.1 (4)C18—C17—C16—C151.9 (9)
N3—Ir1—C11—C688.6 (4)C22—C17—C16—C15178.0 (5)
C22—Ir1—N2—C12179.1 (5)C2—C3—C4—C52.1 (10)
C11—Ir1—N2—C1293.6 (5)N1—C5—C4—C32.9 (10)
N4—Ir1—N2—C1279.4 (5)C6—C5—C4—C3177.1 (6)
N3—Ir1—N2—C122.3 (5)O1—N4—C28—C27177.4 (5)
C22—Ir1—N2—C161.6 (4)Ir1—N4—C28—C271.1 (7)
C11—Ir1—N2—C1685.7 (4)N3—C27—C28—N43.2 (8)
N4—Ir1—N2—C16101.3 (4)C26—C27—C28—N4175.7 (6)
N3—Ir1—N2—C16178.4 (4)C6—C11—C10—C90.4 (9)
C16—N2—C12—C131.2 (9)Ir1—C11—C10—C9178.5 (5)
Ir1—N2—C12—C13179.6 (5)C11—C10—C9—C80.2 (11)
C14—C13—C12—N21.1 (10)C23—C24—C25—C260.8 (12)
C22—Ir1—N4—O110.4 (5)C18—C17—C22—C210.8 (8)
N2—Ir1—N4—O190.6 (4)C16—C17—C22—C21179.3 (5)
N1—Ir1—N4—O184.6 (4)C18—C17—C22—Ir1177.3 (4)
N3—Ir1—N4—O1175.4 (5)C16—C17—C22—Ir12.7 (6)
C22—Ir1—N4—C28173.6 (4)C11—Ir1—C22—C1794.2 (4)
N2—Ir1—N4—C2893.4 (4)N2—Ir1—C22—C172.4 (4)
N1—Ir1—N4—C2891.4 (4)N1—Ir1—C22—C17174.5 (4)
N3—Ir1—N4—C280.6 (4)N4—Ir1—C22—C1790.8 (4)
N3—C23—C24—C251.9 (14)C11—Ir1—C22—C2181.8 (5)
C10—C11—C6—C72.0 (8)N2—Ir1—C22—C21178.4 (5)
Ir1—C11—C6—C7177.2 (4)N1—Ir1—C22—C211.6 (5)
C10—C11—C6—C5177.0 (6)N4—Ir1—C22—C2193.2 (5)
Ir1—C11—C6—C53.8 (6)C24—C25—C26—C270.0 (11)
N1—C5—C6—C7177.2 (5)N3—C27—C26—C250.4 (9)
C4—C5—C6—C72.9 (9)C28—C27—C26—C25178.5 (6)
N1—C5—C6—C113.8 (7)C17—C18—C19—C200.0 (9)
C4—C5—C6—C11176.1 (6)C21—C20—C19—C180.2 (10)
C16—C15—C14—C130.1 (9)C10—C9—C8—C70.7 (11)
C12—C13—C14—C150.4 (9)C24—C23—N3—C272.3 (13)
C2—C1—N1—C50.3 (9)C24—C23—N3—Ir1175.4 (7)
C2—C1—N1—Ir1175.7 (4)C26—C27—N3—C231.5 (9)
C4—C5—N1—C11.7 (8)C28—C27—N3—C23177.5 (7)
C6—C5—N1—C1178.3 (5)C26—C27—N3—Ir1175.4 (4)
C4—C5—N1—Ir1178.0 (5)C28—C27—N3—Ir13.5 (6)
C6—C5—N1—Ir12.0 (6)C11—Ir1—N3—C2310.0 (6)
C22—Ir1—N1—C188.4 (5)N2—Ir1—N3—C2386.6 (6)
C11—Ir1—N1—C1176.0 (5)N1—Ir1—N3—C2390.5 (6)
N4—Ir1—N1—C111.5 (5)N4—Ir1—N3—C23175.8 (6)
N3—Ir1—N1—C188.7 (5)C11—Ir1—N3—C27176.5 (4)
C22—Ir1—N1—C587.7 (4)N2—Ir1—N3—C2786.9 (4)
C11—Ir1—N1—C50.1 (4)N1—Ir1—N3—C2796.0 (4)
N4—Ir1—N1—C5172.4 (4)N4—Ir1—N3—C272.3 (3)
N3—Ir1—N1—C595.1 (4)C11—C6—C7—C82.9 (8)
C4—C3—C2—C10.2 (10)C5—C6—C7—C8176.1 (6)
N1—C1—C2—C31.1 (9)C9—C8—C7—C62.2 (10)
C22—C17—C18—C190.5 (9)C19—C20—C21—C220.1 (10)
C16—C17—C18—C19179.6 (6)C17—C22—C21—C200.6 (8)
C12—N2—C16—C150.6 (7)Ir1—C22—C21—C20176.5 (5)
Ir1—N2—C16—C15179.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, N2/C12–C16 and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.353.235 (10)159
C15—H15···O1ii0.932.373.239 (9)155
C3—H3···Cg1iii0.932.743.604 (7)155
C8—H8···Cg2i0.932.693.606 (7)170
C13—H13···Cg3iv0.932.713.538 (9)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ir(C11H8N)2(C6H5N2O)]
Mr621.71
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.414 (1), 14.226 (2), 9.551 (1)
β (°) 117.260 (7)
V3)1137.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.90
Crystal size (mm)0.40 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.201, 0.332
No. of measured, independent and
observed [I > 2σ(I)] reflections
25091, 6898, 5718
Rint0.065
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.063, 0.96
No. of reflections6898
No. of parameters308
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 0.83
Absolute structureFlack (1983), 3193 Friedel pairs
Absolute structure parameter0.007 (10)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C17–C22, N2/C12–C16 and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.353.235 (10)159
C15—H15···O1ii0.932.373.239 (9)155
C3—H3···Cg1iii0.932.743.604 (7)155
C8—H8···Cg2i0.932.693.606 (7)170
C13—H13···Cg3iv0.932.713.538 (9)148
Symmetry codes: (i) x, y, z+1; (ii) x+1, y1/2, z; (iii) x+1, y+1/2, z+1; (iv) x, y1/2, z.
 

Acknowledgements

The authors would like to thank the Department of Science and Technology, Government of India (Fast-Track project, Grant No. SR/FT/CS-050/2009) for research funding. We also gratefully acknowlege the University of Hyderabad (India) single-crystal X-ray facility for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGodycki, L. E. & Rundle, R. E. (1953). Acta Cryst. 6, 487–495.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, J. C. & Dougherty, D. A. (1997). Chem. Rev. 97, 1303–1324.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNeve, F., Crispini, A., Campagna, S. & Serroni, S. (1999). Inorg. Chem. 38, 2250–2258.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonoyama, M. (1974). Bull. Chem. Soc. Jpn, 47, 767–768.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds