organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[1-(4-Methyl­phen­yl)-2-nitro­but­yl]-4-phenyl-1,2,3-selena­diazole

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Sri Sarada College for Women (Autonomus), Fairlands, Salem 636 016, India, and cDepartment of Industrial Chemistry, Alagappa University, Karaikudi 630 003, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 29 November 2012; accepted 18 February 2013; online 23 February 2013)

In the title compound, C19H19N3O2Se, the selenadiazole ring is roughly planar [maximum deviation 0.033 (6) Å]. The attached phenyl ring is twisted away at an angle of 47.5 (1)°. The butyl group is in an extended conformation [C—C—C—C torsion angle = 174.7 (2)°]. In the crystal, C—H⋯O inter­actions form C(10) chains running aling the c-axis direction.

Related literature

For general background to selenadiazol derivatives, see: El-Bahaie et al. (1990[El-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791-793.]); El-Kashef et al. (1986[El-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27-30.]); Kuroda et al. (2001[Kuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6166054.]); Khanna (2005[Khanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951-955.]); Padmavathi et al. (2002[Padmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9-12.]); Plano et al. (2010[Plano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680-691.]); Stadtman (1991[Stadtman, T. C. (1991). J. Biol. Chem. 266, 16257-16260.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19N3O2Se

  • Mr = 400.33

  • Triclinic, [P \overline 1]

  • a = 8.2088 (5) Å

  • b = 8.4755 (5) Å

  • c = 13.7031 (8) Å

  • α = 80.669 (3)°

  • β = 81.832 (3)°

  • γ = 76.681 (3)°

  • V = 910.00 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 0.688

  • 16036 measured reflections

  • 4516 independent reflections

  • 3581 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.083

  • S = 1.04

  • 4516 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O2i 0.96 2.52 3.414 (3) 155
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Selenadiazoles, having one selenium and two nitrogen atoms in a five membered ring, are the important class of organoselenium compounds utilized in the synthesis of semiconductor nanoparticles (Khanna, 2005). These 1,2, 3-selenadiazoles are used as the synthetic intermediates in the preparation of many alkynes and other selenium compounds. In addition, 1,2,3-selenadiazoles are of interest owing to their chemical properties and biological applications such as anti-fungal (Kuroda et al., 2001), anti-bacterial (El-Kashef et al., 1986), anti-microbial (El-Bahaie et al., 1990), anti-cancer (Plano et al., 2010) and insecticidal (Padmavathi et al., 2002) properties. Glutathione peroxidases (GPx) are the antioxidant selenoenzymes protecting various organisms from oxidative stress by catalyzing the reduction of hydroperoxides at the expense of glutathione (GSH) (Stadtman, 1991). Owing to the above said important properties of selenium containing compounds, the crystal structure of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The attached phenyl ring is twisted away at an angle of 47.5 (1)° with respect to selenadiazol ring. The bond lengths [Se1—N1] 1.882 (2) Å and [Se1—C8] 1.839 (2) Å are comparable with the values reported in the literature (Allen et al., 1987). In nitro group, the bond lengths [N3—O1] 1.205 (3) Å and [N3—O2] 1.218 (3) Å indicate the typical resonance character.

The tolyl group is oriented to the planar nitro group at an angle of 64.4 (1)°. The butyl group is in an extended conformation, which can be seen from the torsion angle value of [C9—C16—C17—C18 ] 174.7 (2)°. The molecular packing is controlled by C—H···O interactions in addition to van der Waals forces (Fig.2).

Related literature top

For general background to selenadiazol derivatives, see: El-Bahaie et al. (1990); El-Kashef et al. (1986); Kuroda et al. (2001); Khanna (2005); Padmavathi et al. (2002); Plano et al. (2010); Stadtman (1991). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-nitro-1-phenyl-3-(4-methylphenyl)-hexan-1-one (1 mmol), semicarbazide hydrochloride (2 mmol) and sodium acetate (3 mmol) in ethanol (10 ml) was refluxed for 4 h. After completion of the reaction as monitored by TLC, the mixture was poured into ice cold water and the resulting semicarbazone was filtered off. Then, a mixture of semicarbazone (1 mmol) and SeO2 (2 mmol) in tetrahydrofuran (10 ml) were refluxed on a water bath for 1 h. The selenium deposited on cooling was removed by filtration, and the filtrate was poured into crushed ice, extracted with dichloromethane, and purified by column chromatography using silica gel (60–120 mesh) with 97:3 petroleum ether: ethyl acetate as eluent to give 5-(2-nitro-1-p-tolylbutyl)-4-phenyl-1,2,3-selenadiazole.

Refinement top

H atoms were positioned geometrically (N—H=0.88–0.90 Å and C—H=0.93–0.98 Å) and allowed to ride on their parent atoms,with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis.
5-[1-(4-Methylphenyl)-2-nitrobutyl]-4-phenyl-1,2,3-selenadiazole top
Crystal data top
C19H19N3O2SeZ = 2
Mr = 400.33F(000) = 408
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2088 (5) ÅCell parameters from 3581 reflections
b = 8.4755 (5) Åθ = 1.5–28.4°
c = 13.7031 (8) ŵ = 2.08 mm1
α = 80.669 (3)°T = 293 K
β = 81.832 (3)°Block, colourless
γ = 76.681 (3)°0.22 × 0.20 × 0.18 mm
V = 910.00 (9) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4516 independent reflections
Radiation source: fine-focus sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.639, Tmax = 0.688k = 1111
16036 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.2693P]
where P = (Fo2 + 2Fc2)/3
4516 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C19H19N3O2Seγ = 76.681 (3)°
Mr = 400.33V = 910.00 (9) Å3
Triclinic, P1Z = 2
a = 8.2088 (5) ÅMo Kα radiation
b = 8.4755 (5) ŵ = 2.08 mm1
c = 13.7031 (8) ÅT = 293 K
α = 80.669 (3)°0.22 × 0.20 × 0.18 mm
β = 81.832 (3)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4516 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3581 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.688Rint = 0.029
16036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
4516 reflectionsΔρmin = 0.35 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2947 (3)0.3855 (3)1.00144 (16)0.0503 (5)
H10.35330.46910.98170.060*
C20.1576 (3)0.4047 (3)1.07280 (18)0.0629 (6)
H20.12490.50111.10130.075*
C30.0694 (3)0.2834 (3)1.10192 (18)0.0652 (6)
H30.02390.29831.14930.078*
C40.1185 (3)0.1394 (3)1.06127 (16)0.0556 (5)
H40.05910.05661.08170.067*
C50.2557 (3)0.1179 (3)0.99035 (14)0.0458 (4)
H50.28850.02020.96330.055*
C60.3455 (2)0.2407 (2)0.95882 (13)0.0401 (4)
C70.4922 (2)0.2231 (2)0.88259 (14)0.0387 (4)
C80.5046 (2)0.1710 (2)0.79162 (13)0.0374 (4)
C90.3631 (2)0.1341 (2)0.74558 (13)0.0368 (4)
H90.27980.10650.80060.044*
C100.2765 (2)0.2886 (2)0.68336 (13)0.0355 (4)
C110.3452 (2)0.3521 (2)0.59131 (14)0.0435 (4)
H110.44830.29740.56320.052*
C120.2619 (3)0.4961 (3)0.54083 (15)0.0472 (5)
H120.31040.53650.47910.057*
C130.1083 (3)0.5815 (2)0.57996 (15)0.0439 (4)
C140.0403 (3)0.5158 (3)0.67137 (16)0.0527 (5)
H140.06340.56990.69930.063*
C150.1222 (2)0.3722 (3)0.72230 (14)0.0476 (5)
H150.07290.33110.78360.057*
C160.4238 (2)0.0165 (2)0.69108 (15)0.0437 (4)
H160.51910.00030.64150.052*
C170.4758 (3)0.1734 (3)0.76190 (19)0.0647 (6)
H17A0.57170.16460.79310.078*
H17B0.38390.18280.81400.078*
C180.5217 (4)0.3281 (3)0.7132 (3)0.0928 (10)
H18A0.55150.42090.76250.139*
H18B0.61550.32230.66320.139*
H18C0.42710.33930.68290.139*
C190.0164 (3)0.7377 (3)0.52454 (19)0.0585 (6)
H19A0.08700.77880.56350.088*
H19B0.00790.71630.46210.088*
H19C0.08560.81750.51280.088*
N10.7608 (2)0.2547 (2)0.83861 (15)0.0553 (4)
N20.6345 (2)0.2673 (2)0.90304 (13)0.0477 (4)
N30.2804 (2)0.0354 (2)0.63942 (14)0.0503 (4)
O10.1466 (2)0.0390 (2)0.68800 (15)0.0737 (5)
O20.3084 (2)0.0475 (2)0.55093 (13)0.0743 (5)
Se10.71589 (3)0.17548 (3)0.726788 (16)0.05444 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0530 (11)0.0487 (12)0.0547 (12)0.0144 (9)0.0076 (9)0.0163 (9)
C20.0634 (14)0.0657 (15)0.0626 (14)0.0092 (12)0.0011 (11)0.0309 (12)
C30.0566 (13)0.0859 (18)0.0541 (13)0.0153 (13)0.0065 (11)0.0231 (12)
C40.0597 (13)0.0662 (14)0.0441 (11)0.0243 (11)0.0021 (10)0.0037 (10)
C50.0565 (11)0.0445 (11)0.0386 (10)0.0149 (9)0.0050 (9)0.0062 (8)
C60.0440 (10)0.0419 (10)0.0359 (9)0.0078 (8)0.0108 (8)0.0059 (8)
C70.0424 (9)0.0327 (9)0.0424 (10)0.0087 (7)0.0101 (8)0.0035 (7)
C80.0357 (8)0.0378 (9)0.0377 (9)0.0082 (7)0.0039 (7)0.0020 (7)
C90.0347 (8)0.0416 (10)0.0343 (9)0.0096 (7)0.0024 (7)0.0053 (7)
C100.0336 (8)0.0411 (9)0.0344 (9)0.0099 (7)0.0045 (7)0.0094 (7)
C110.0350 (9)0.0507 (11)0.0428 (10)0.0083 (8)0.0023 (8)0.0071 (8)
C120.0475 (11)0.0520 (12)0.0425 (10)0.0180 (9)0.0027 (8)0.0012 (9)
C130.0479 (10)0.0422 (10)0.0470 (11)0.0117 (8)0.0157 (8)0.0092 (8)
C140.0436 (10)0.0608 (13)0.0476 (11)0.0066 (9)0.0041 (9)0.0153 (10)
C150.0416 (10)0.0614 (13)0.0341 (9)0.0037 (9)0.0020 (8)0.0061 (9)
C160.0406 (9)0.0429 (10)0.0498 (11)0.0073 (8)0.0093 (8)0.0110 (8)
C170.0781 (17)0.0461 (12)0.0714 (16)0.0045 (11)0.0276 (13)0.0080 (11)
C180.107 (2)0.0507 (15)0.121 (3)0.0067 (15)0.040 (2)0.0229 (16)
C190.0648 (14)0.0447 (12)0.0698 (14)0.0094 (10)0.0281 (12)0.0042 (10)
N10.0464 (9)0.0612 (11)0.0647 (12)0.0214 (8)0.0099 (9)0.0091 (9)
N20.0479 (9)0.0458 (9)0.0551 (10)0.0156 (7)0.0135 (8)0.0085 (8)
N30.0512 (10)0.0465 (10)0.0584 (11)0.0126 (8)0.0115 (8)0.0135 (8)
O10.0512 (9)0.0907 (13)0.0909 (13)0.0282 (9)0.0038 (9)0.0312 (10)
O20.0850 (13)0.0909 (13)0.0587 (10)0.0269 (10)0.0189 (9)0.0225 (9)
Se10.03995 (12)0.07233 (17)0.05185 (14)0.01761 (10)0.00149 (9)0.00817 (10)
Geometric parameters (Å, º) top
C1—C21.380 (3)C12—C131.384 (3)
C1—C61.396 (3)C12—H120.9300
C1—H10.9300C13—C141.382 (3)
C2—C31.366 (4)C13—C191.508 (3)
C2—H20.9300C14—C151.379 (3)
C3—C41.376 (3)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.377 (3)C16—N31.508 (3)
C4—H40.9300C16—C171.526 (3)
C5—C61.389 (3)C16—H160.9800
C5—H50.9300C17—C181.514 (3)
C6—C71.475 (3)C17—H17A0.9700
C7—C81.372 (3)C17—H17B0.9700
C7—N21.383 (2)C18—H18A0.9600
C8—C91.511 (2)C18—H18B0.9600
C8—Se11.8385 (18)C18—H18C0.9600
C9—C101.526 (2)C19—H19A0.9600
C9—C161.532 (3)C19—H19B0.9600
C9—H90.9800C19—H19C0.9600
C10—C151.382 (2)N1—N21.259 (2)
C10—C111.384 (3)N1—Se11.8824 (19)
C11—C121.382 (3)N3—O11.205 (2)
C11—H110.9300N3—O21.218 (2)
C2—C1—C6120.1 (2)C14—C13—C12117.15 (18)
C2—C1—H1120.0C14—C13—C19121.15 (19)
C6—C1—H1120.0C12—C13—C19121.7 (2)
C3—C2—C1120.6 (2)C15—C14—C13121.71 (18)
C3—C2—H2119.7C15—C14—H14119.1
C1—C2—H2119.7C13—C14—H14119.1
C2—C3—C4120.1 (2)C14—C15—C10120.83 (19)
C2—C3—H3120.0C14—C15—H15119.6
C4—C3—H3120.0C10—C15—H15119.6
C3—C4—C5120.0 (2)N3—C16—C17107.96 (18)
C3—C4—H4120.0N3—C16—C9108.05 (15)
C5—C4—H4120.0C17—C16—C9112.39 (17)
C4—C5—C6120.69 (19)N3—C16—H16109.5
C4—C5—H5119.7C17—C16—H16109.5
C6—C5—H5119.7C9—C16—H16109.5
C5—C6—C1118.49 (18)C18—C17—C16114.6 (2)
C5—C6—C7122.41 (17)C18—C17—H17A108.6
C1—C6—C7119.10 (18)C16—C17—H17A108.6
C8—C7—N2115.11 (17)C18—C17—H17B108.6
C8—C7—C6127.85 (17)C16—C17—H17B108.6
N2—C7—C6117.02 (16)H17A—C17—H17B107.6
C7—C8—C9126.13 (16)C17—C18—H18A109.5
C7—C8—Se1109.15 (13)C17—C18—H18B109.5
C9—C8—Se1124.37 (13)H18A—C18—H18B109.5
C8—C9—C10109.47 (15)C17—C18—H18C109.5
C8—C9—C16111.39 (14)H18A—C18—H18C109.5
C10—C9—C16115.25 (15)H18B—C18—H18C109.5
C8—C9—H9106.7C13—C19—H19A109.5
C10—C9—H9106.7C13—C19—H19B109.5
C16—C9—H9106.7H19A—C19—H19B109.5
C15—C10—C11118.05 (18)C13—C19—H19C109.5
C15—C10—C9118.02 (16)H19A—C19—H19C109.5
C11—C10—C9123.92 (16)H19B—C19—H19C109.5
C12—C11—C10120.65 (17)N2—N1—Se1110.60 (13)
C12—C11—H11119.7N1—N2—C7118.12 (17)
C10—C11—H11119.7O1—N3—O2124.26 (19)
C11—C12—C13121.60 (19)O1—N3—C16118.29 (18)
C11—C12—H12119.2O2—N3—C16117.45 (18)
C13—C12—H12119.2C8—Se1—N187.01 (8)
C6—C1—C2—C30.5 (4)C9—C10—C11—C12177.63 (18)
C1—C2—C3—C41.0 (4)C10—C11—C12—C130.0 (3)
C2—C3—C4—C50.7 (4)C11—C12—C13—C140.7 (3)
C3—C4—C5—C60.2 (3)C11—C12—C13—C19179.36 (19)
C4—C5—C6—C10.7 (3)C12—C13—C14—C150.7 (3)
C4—C5—C6—C7179.56 (19)C19—C13—C14—C15179.3 (2)
C2—C1—C6—C50.3 (3)C13—C14—C15—C100.1 (3)
C2—C1—C6—C7179.92 (19)C11—C10—C15—C140.9 (3)
C5—C6—C7—C848.6 (3)C9—C10—C15—C14177.67 (19)
C1—C6—C7—C8131.6 (2)C8—C9—C16—N3174.74 (15)
C5—C6—C7—N2132.97 (19)C10—C9—C16—N349.2 (2)
C1—C6—C7—N246.8 (2)C8—C9—C16—C1766.3 (2)
N2—C7—C8—C9172.54 (17)C10—C9—C16—C17168.26 (17)
C6—C7—C8—C95.9 (3)N3—C16—C17—C1855.6 (3)
N2—C7—C8—Se10.9 (2)C9—C16—C17—C18174.7 (2)
C6—C7—C8—Se1179.30 (15)Se1—N1—N2—C70.2 (2)
C7—C8—C9—C1090.5 (2)C8—C7—N2—N10.7 (3)
Se1—C8—C9—C1081.96 (17)C6—C7—N2—N1179.36 (17)
C7—C8—C9—C16140.87 (19)C17—C16—N3—O168.7 (2)
Se1—C8—C9—C1646.7 (2)C9—C16—N3—O153.1 (2)
C8—C9—C10—C15103.79 (19)C17—C16—N3—O2110.7 (2)
C16—C9—C10—C15129.73 (19)C9—C16—N3—O2127.50 (19)
C8—C9—C10—C1174.6 (2)C7—C8—Se1—N10.60 (14)
C16—C9—C10—C1151.8 (2)C9—C8—Se1—N1172.95 (16)
C15—C10—C11—C120.8 (3)N2—N1—Se1—C80.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O2i0.962.523.414 (3)155
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H19N3O2Se
Mr400.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2088 (5), 8.4755 (5), 13.7031 (8)
α, β, γ (°)80.669 (3), 81.832 (3), 76.681 (3)
V3)910.00 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.639, 0.688
No. of measured, independent and
observed [I > 2σ(I)] reflections
16036, 4516, 3581
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.04
No. of reflections4516
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19C···O2i0.962.523.414 (3)154.9
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the TBI consultancy, University of Madras, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Bahaie, S., Assy, M. G. & Hassanien, M. M. (1990). Pharmazie, 45, 791–793.  CAS PubMed Web of Science Google Scholar
First citationEl-Kashef, H. S., E-Bayoumy, B. & Aly, T. I. (1986). Egypt. J. Pharm. Sci. 27, 27–30.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhanna, P. K. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 951–955.  Web of Science CrossRef CAS Google Scholar
First citationKuroda, K., Uchikurohane, T., Tajima, S. & Tsubata, K. (2001). US Patent 6166054.  Google Scholar
First citationPadmavathi, V., Sumathi, R. P. & Padmaja, A. (2002). J. Ecobiol. 14, 9–12.  CAS Google Scholar
First citationPlano, D., Moreno, E., Font, M., Encio, I., Palop, J. A. & Sanmartin, C. (2010). Arch. Pharm. Chem. Life Sci. 10, 680–691.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadtman, T. C. (1991). J. Biol. Chem. 266, 16257–16260.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds