organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A diastereomer of methyl (1R,3′S)-1′,1′′-di­methyl-2,2′′-dioxo-2H-di­spiro­[ace­naphthyl­ene-1,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 22 January 2013; accepted 19 February 2013; online 23 February 2013)

In the title compound, C26H22N2O4, the central pyrrolidine ring adopts a twist conformation and the cyclo­pentane ring of the dihydro­acenapthylene group adopts an envelope conformation with the spiro C atom as the flap. The naphthalene ring system of the dihydro­acenaphthyl­ene group forms dihedral angles of 83.4 (9) and 61.3 (7)°, respectively, with the mean planes of the pyrrolidine and indole rings. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds. The title compound is a diastereomer of a previously reported structure.

Related literature

For background literature and the previously reported diastereomer, see: Ganesh et al. (2013[Ganesh, G., Yuvaraj, P. S., Divakara, C., Reddy, B. S. R. & SubbiahPandi, A. (2013). Acta Cryst. E69, o235.]). For a related structure, see: Wei et al. (2012[Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1340-o1341.]). For information on ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N2O4

  • Mr = 426.46

  • Orthorhombic, P b c n

  • a = 27.2997 (15) Å

  • b = 9.7923 (6) Å

  • c = 15.8557 (10) Å

  • V = 4238.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.983

  • 23813 measured reflections

  • 5039 independent reflections

  • 3022 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.02

  • 5039 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O3i 0.96 2.48 3.299 (3) 143
C20—H20⋯O3ii 0.93 2.59 3.403 (3) 146
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We have recently reported the structure of a diastereomer of the title compound (Ganesh et al., 2013). Here we report the structural details of its diastereomer.

X–Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of the acenaphthylene and pyrrolidine ring systems are comparable with the related structure (Wei et al., 2012). The sum of the angles at N1 [339.5 (1)°] and N2 [359.8 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridization. The naphthalene ring system [C7–C16] of the dihydroacenaphthylene group forms dihedral angles of 83.4 (9) and 61.3 (7)° with the central pyrrolidine ring [N1/C2–C5] and the indole ring [N2/C4/C17–C23]. The central pyrrolidine also makes a dihedral angle of 87.6 (9)° with the indole which shows that these two rings are almost perpendicular with each other.

The pyrrolidine rings [N1/C2-C5] adopts a twist conformation, on C4 and C5 atoms with puckering parameters of q2 = 0.470 (2) Å, ϕ = 128.1 (2) (Cremer & Pople, 1975). The cyclopentane ring [C5-C7/C12-C13] in the dihydroacenapthylene group adopts an envelope conformation [q2 = 0.074 (9)(2) Å and ϕ = 173.3 (2)°], and with atom C5 deviating by 0.044 (2) Å from the least-squares plane passing through the remaining four atoms (C13/C12/C7/C6) of that ring. In the crystal, the molecules are linked by intermolecular C20-H20···O3 and C1-H1B···O3 hydrogen bonds Fig. 2.

Related literature top

For background literature and the previously reported diastereomer, see: Ganesh et al. (2013). For a related structure, see: Wei et al. (2012). For information on ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 1 eq of (E)-methyl 2-(1-methyl-2-oxoindolin-3-ylidene) acetate, 1 eq of isatin and 1.5 eq of acenaphthylene-1,2-dione were dissolved in acetonitrile. This reaction mixture was refluxed at 353K for 8 hours. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the the product was dried and purified by coloumn chromatography using ethyl acetate and hexane (1:9) as an elutent to affored pure dispiro oxindole. Yield (78%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the b axis. Dashed lines shows the intermolecular C-H···O hydrogen bonds.
Methyl (1R,3'S)-1',1''-dimethyl-2,2''-dioxo-2H-dispiro[acenaphthylene-1,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate top
Crystal data top
C26H22N2O4F(000) = 1792
Mr = 426.46Dx = 1.337 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5039 reflections
a = 27.2997 (15) Åθ = 1.5–27.9°
b = 9.7923 (6) ŵ = 0.09 mm1
c = 15.8557 (10) ÅT = 293 K
V = 4238.7 (4) Å3Block, colourless
Z = 80.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5039 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3531
Tmin = 0.978, Tmax = 0.983k = 1211
23813 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.3523P]
where P = (Fo2 + 2Fc2)/3
5039 reflections(Δ/σ)max = 0.002
292 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C26H22N2O4V = 4238.7 (4) Å3
Mr = 426.46Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 27.2997 (15) ŵ = 0.09 mm1
b = 9.7923 (6) ÅT = 293 K
c = 15.8557 (10) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3022 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.033
23813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
5039 reflectionsΔρmin = 0.17 e Å3
292 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.55248 (7)0.08437 (18)0.02663 (15)0.0583 (6)
H1A0.57400.16070.03540.087*
H1B0.55270.05960.03200.087*
H1C0.51980.10880.04320.087*
C20.57113 (7)0.0054 (2)0.16787 (14)0.0543 (5)
H2A0.57840.08970.17940.065*
H2B0.54020.02850.19430.065*
C30.61210 (7)0.09760 (19)0.20075 (12)0.0463 (5)
H30.64120.04090.20980.056*
C40.62250 (6)0.19357 (17)0.12618 (11)0.0380 (4)
C50.61516 (6)0.09285 (16)0.05178 (12)0.0380 (4)
C60.65873 (6)0.01367 (18)0.04464 (13)0.0454 (5)
C70.68374 (6)0.0100 (2)0.03587 (13)0.0492 (5)
C80.72342 (7)0.0500 (2)0.07337 (16)0.0672 (6)
H80.74040.12020.04690.081*
C90.73756 (9)0.0022 (3)0.15287 (18)0.0842 (8)
H90.76520.03990.17810.101*
C100.71257 (9)0.0973 (3)0.19492 (16)0.0778 (7)
H100.72340.12580.24770.093*
C110.67050 (8)0.1574 (2)0.15918 (14)0.0573 (5)
C120.65758 (7)0.11197 (19)0.07840 (12)0.0444 (4)
C130.61607 (6)0.15884 (17)0.03457 (12)0.0401 (4)
C140.58614 (7)0.24994 (19)0.07357 (13)0.0500 (5)
H140.55810.28180.04670.060*
C150.59812 (9)0.2955 (2)0.15527 (14)0.0617 (6)
H150.57730.35710.18190.074*
C160.63878 (9)0.2529 (2)0.19651 (14)0.0661 (6)
H160.64580.28720.24990.079*
C170.67325 (6)0.26047 (19)0.12476 (12)0.0413 (4)
C180.61710 (6)0.43187 (17)0.11591 (11)0.0368 (4)
C190.58897 (6)0.31498 (16)0.12240 (11)0.0359 (4)
C200.53874 (6)0.32524 (19)0.12696 (13)0.0479 (5)
H200.51930.24770.13220.058*
C210.51788 (7)0.4538 (2)0.12360 (16)0.0627 (6)
H210.48400.46270.12680.075*
C220.54625 (8)0.5680 (2)0.11568 (16)0.0644 (6)
H220.53130.65320.11320.077*
C230.59676 (7)0.55977 (19)0.11128 (13)0.0501 (5)
H230.61610.63740.10540.060*
C240.70630 (7)0.4956 (2)0.11344 (14)0.0560 (5)
H24A0.73700.44870.10840.084*
H24B0.70600.54810.16460.084*
H24C0.70200.55540.06600.084*
C250.60097 (8)0.1700 (2)0.28144 (14)0.0548 (5)
C260.63246 (11)0.3314 (3)0.37857 (16)0.0865 (8)
H26A0.59880.35580.38760.130*
H26B0.65200.41270.37560.130*
H26C0.64360.27550.42450.130*
N10.56904 (5)0.03024 (14)0.07673 (10)0.0434 (4)
N20.66700 (5)0.39740 (15)0.11545 (9)0.0403 (4)
O10.66576 (5)0.10603 (14)0.09387 (10)0.0617 (4)
O20.71209 (5)0.20188 (14)0.12955 (10)0.0625 (4)
O30.56571 (6)0.1529 (2)0.32417 (11)0.0878 (6)
O40.63683 (6)0.25647 (16)0.30058 (10)0.0693 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0490 (11)0.0381 (10)0.0879 (17)0.0046 (9)0.0040 (11)0.0022 (10)
C20.0531 (12)0.0480 (11)0.0617 (14)0.0003 (10)0.0105 (10)0.0145 (10)
C30.0414 (10)0.0462 (10)0.0512 (12)0.0086 (8)0.0057 (9)0.0108 (9)
C40.0278 (8)0.0392 (9)0.0470 (11)0.0050 (7)0.0022 (7)0.0035 (8)
C50.0293 (8)0.0356 (8)0.0491 (11)0.0030 (7)0.0016 (8)0.0035 (8)
C60.0369 (9)0.0405 (10)0.0588 (12)0.0054 (8)0.0038 (9)0.0033 (9)
C70.0354 (9)0.0547 (11)0.0576 (13)0.0022 (9)0.0015 (9)0.0152 (10)
C80.0456 (12)0.0851 (16)0.0708 (16)0.0130 (11)0.0014 (11)0.0249 (13)
C90.0501 (14)0.130 (2)0.0731 (18)0.0053 (16)0.0132 (13)0.0356 (18)
C100.0615 (15)0.118 (2)0.0535 (15)0.0135 (15)0.0146 (12)0.0166 (15)
C110.0541 (12)0.0691 (14)0.0487 (13)0.0160 (11)0.0033 (10)0.0122 (11)
C120.0383 (10)0.0490 (10)0.0460 (11)0.0077 (8)0.0008 (8)0.0098 (9)
C130.0346 (9)0.0391 (9)0.0465 (11)0.0042 (7)0.0007 (8)0.0018 (8)
C140.0522 (11)0.0468 (10)0.0510 (12)0.0023 (9)0.0042 (9)0.0033 (9)
C150.0739 (15)0.0565 (12)0.0546 (14)0.0030 (11)0.0114 (12)0.0076 (10)
C160.0824 (16)0.0717 (15)0.0443 (13)0.0195 (14)0.0002 (12)0.0046 (11)
C170.0298 (9)0.0503 (10)0.0439 (11)0.0042 (8)0.0005 (8)0.0039 (8)
C180.0312 (9)0.0406 (9)0.0388 (10)0.0001 (7)0.0009 (7)0.0022 (7)
C190.0302 (8)0.0364 (9)0.0410 (10)0.0028 (7)0.0035 (7)0.0027 (7)
C200.0287 (9)0.0435 (10)0.0716 (14)0.0002 (8)0.0057 (9)0.0043 (9)
C210.0327 (10)0.0522 (12)0.1033 (19)0.0103 (9)0.0043 (11)0.0031 (12)
C220.0507 (12)0.0411 (11)0.1013 (19)0.0123 (10)0.0040 (12)0.0057 (11)
C230.0472 (11)0.0385 (10)0.0646 (14)0.0027 (8)0.0034 (10)0.0049 (9)
C240.0359 (10)0.0637 (12)0.0684 (15)0.0142 (9)0.0005 (10)0.0036 (11)
C250.0512 (12)0.0612 (13)0.0522 (13)0.0139 (10)0.0039 (10)0.0137 (10)
C260.113 (2)0.0783 (17)0.0680 (17)0.0095 (16)0.0000 (16)0.0145 (14)
N10.0343 (8)0.0364 (8)0.0595 (10)0.0005 (6)0.0051 (7)0.0061 (7)
N20.0283 (7)0.0451 (8)0.0474 (9)0.0041 (6)0.0004 (6)0.0007 (7)
O10.0559 (9)0.0494 (8)0.0797 (11)0.0188 (7)0.0000 (8)0.0083 (8)
O20.0301 (7)0.0664 (9)0.0908 (12)0.0120 (6)0.0030 (7)0.0080 (8)
O30.0700 (11)0.1265 (15)0.0668 (11)0.0017 (10)0.0238 (9)0.0047 (11)
O40.0766 (11)0.0749 (10)0.0566 (10)0.0028 (9)0.0069 (8)0.0051 (8)
Geometric parameters (Å, º) top
C1—N11.447 (2)C13—C141.359 (2)
C1—H1A0.9600C14—C151.408 (3)
C1—H1B0.9600C14—H140.9300
C1—H1C0.9600C15—C161.354 (3)
C2—N11.467 (3)C15—H150.9300
C2—C31.529 (3)C16—H160.9300
C2—H2A0.9700C17—O21.208 (2)
C2—H2B0.9700C17—N21.360 (2)
C3—C251.494 (3)C18—C231.372 (2)
C3—C41.537 (2)C18—C191.382 (2)
C3—H30.9800C18—N21.403 (2)
C4—C191.502 (2)C19—C201.377 (2)
C4—C171.533 (2)C20—C211.383 (3)
C4—C51.551 (2)C20—H200.9300
C5—N11.455 (2)C21—C221.366 (3)
C5—C131.514 (2)C21—H210.9300
C5—C61.586 (2)C22—C231.383 (3)
C6—O11.210 (2)C22—H220.9300
C6—C71.466 (3)C23—H230.9300
C7—C81.368 (3)C24—N21.441 (2)
C7—C121.401 (3)C24—H24A0.9600
C8—C91.399 (4)C24—H24B0.9600
C8—H80.9300C24—H24C0.9600
C9—C101.364 (4)C25—O31.189 (2)
C9—H90.9300C25—O41.330 (3)
C10—C111.410 (3)C26—O41.443 (3)
C10—H100.9300C26—H26A0.9600
C11—C121.401 (3)C26—H26B0.9600
C11—C161.406 (3)C26—H26C0.9600
C12—C131.406 (2)
N1—C1—H1A109.5C12—C13—C5108.70 (15)
N1—C1—H1B109.5C13—C14—C15119.1 (2)
H1A—C1—H1B109.5C13—C14—H14120.4
N1—C1—H1C109.5C15—C14—H14120.4
H1A—C1—H1C109.5C16—C15—C14122.5 (2)
H1B—C1—H1C109.5C16—C15—H15118.8
N1—C2—C3105.47 (15)C14—C15—H15118.8
N1—C2—H2A110.6C15—C16—C11120.4 (2)
C3—C2—H2A110.6C15—C16—H16119.8
N1—C2—H2B110.6C11—C16—H16119.8
C3—C2—H2B110.6O2—C17—N2125.81 (17)
H2A—C2—H2B108.8O2—C17—C4126.13 (17)
C25—C3—C2115.06 (17)N2—C17—C4108.05 (14)
C25—C3—C4113.98 (16)C23—C18—C19122.33 (16)
C2—C3—C4103.53 (15)C23—C18—N2127.75 (16)
C25—C3—H3108.0C19—C18—N2109.91 (14)
C2—C3—H3108.0C20—C19—C18119.80 (15)
C4—C3—H3108.0C20—C19—C4131.52 (15)
C19—C4—C17102.25 (13)C18—C19—C4108.64 (14)
C19—C4—C3113.70 (14)C19—C20—C21118.33 (17)
C17—C4—C3116.09 (15)C19—C20—H20120.8
C19—C4—C5113.23 (14)C21—C20—H20120.8
C17—C4—C5112.19 (14)C22—C21—C20121.03 (18)
C3—C4—C599.93 (13)C22—C21—H21119.5
N1—C5—C13116.08 (14)C20—C21—H21119.5
N1—C5—C499.96 (13)C21—C22—C23121.47 (18)
C13—C5—C4114.48 (13)C21—C22—H22119.3
N1—C5—C6113.03 (13)C23—C22—H22119.3
C13—C5—C6101.76 (14)C18—C23—C22117.02 (18)
C4—C5—C6112.06 (14)C18—C23—H23121.5
O1—C6—C7127.30 (17)C22—C23—H23121.5
O1—C6—C5124.36 (17)N2—C24—H24A109.5
C7—C6—C5107.91 (15)N2—C24—H24B109.5
C8—C7—C12120.0 (2)H24A—C24—H24B109.5
C8—C7—C6132.8 (2)N2—C24—H24C109.5
C12—C7—C6107.11 (16)H24A—C24—H24C109.5
C7—C8—C9117.8 (2)H24B—C24—H24C109.5
C7—C8—H8121.1O3—C25—O4123.7 (2)
C9—C8—H8121.1O3—C25—C3125.9 (2)
C10—C9—C8122.8 (2)O4—C25—C3110.38 (17)
C10—C9—H9118.6O4—C26—H26A109.5
C8—C9—H9118.6O4—C26—H26B109.5
C9—C10—C11120.6 (2)H26A—C26—H26B109.5
C9—C10—H10119.7O4—C26—H26C109.5
C11—C10—H10119.7H26A—C26—H26C109.5
C12—C11—C16116.18 (19)H26B—C26—H26C109.5
C12—C11—C10116.1 (2)C1—N1—C5116.59 (15)
C16—C11—C10127.6 (2)C1—N1—C2115.12 (15)
C7—C12—C11122.55 (18)C5—N1—C2107.69 (14)
C7—C12—C13113.93 (18)C17—N2—C18111.00 (14)
C11—C12—C13123.44 (19)C17—N2—C24124.54 (15)
C14—C13—C12118.29 (18)C18—N2—C24124.22 (15)
C14—C13—C5133.00 (17)C25—O4—C26117.31 (19)
N1—C2—C3—C25137.57 (16)C12—C13—C14—C151.0 (3)
N1—C2—C3—C412.55 (18)C5—C13—C14—C15178.08 (18)
C25—C3—C4—C1941.3 (2)C13—C14—C15—C160.7 (3)
C2—C3—C4—C1984.45 (18)C14—C15—C16—C111.5 (3)
C25—C3—C4—C1777.0 (2)C12—C11—C16—C150.6 (3)
C2—C3—C4—C17157.33 (15)C10—C11—C16—C15176.3 (2)
C25—C3—C4—C5162.21 (15)C19—C4—C17—O2177.45 (19)
C2—C3—C4—C536.50 (16)C3—C4—C17—O253.1 (3)
C19—C4—C5—N173.87 (16)C5—C4—C17—O260.9 (2)
C17—C4—C5—N1171.02 (13)C19—C4—C17—N23.77 (19)
C3—C4—C5—N147.41 (14)C3—C4—C17—N2128.12 (16)
C19—C4—C5—C1350.91 (19)C5—C4—C17—N2117.86 (16)
C17—C4—C5—C1364.20 (18)C23—C18—C19—C202.0 (3)
C3—C4—C5—C13172.20 (14)N2—C18—C19—C20177.74 (17)
C19—C4—C5—C6166.14 (14)C23—C18—C19—C4179.96 (17)
C17—C4—C5—C651.03 (19)N2—C18—C19—C40.3 (2)
C3—C4—C5—C672.58 (16)C17—C4—C19—C20175.3 (2)
N1—C5—C6—O140.9 (3)C3—C4—C19—C2049.4 (3)
C13—C5—C6—O1166.14 (18)C5—C4—C19—C2063.8 (3)
C4—C5—C6—O171.1 (2)C17—C4—C19—C182.39 (18)
N1—C5—C6—C7131.98 (16)C3—C4—C19—C18128.31 (16)
C13—C5—C6—C76.77 (17)C5—C4—C19—C18118.52 (16)
C4—C5—C6—C7115.98 (16)C18—C19—C20—C210.9 (3)
O1—C6—C7—C88.3 (4)C4—C19—C20—C21178.4 (2)
C5—C6—C7—C8179.0 (2)C19—C20—C21—C220.2 (3)
O1—C6—C7—C12168.86 (19)C20—C21—C22—C230.4 (4)
C5—C6—C7—C123.79 (19)C19—C18—C23—C221.7 (3)
C12—C7—C8—C92.4 (3)N2—C18—C23—C22177.93 (19)
C6—C7—C8—C9179.3 (2)C21—C22—C23—C180.5 (3)
C7—C8—C9—C102.3 (4)C2—C3—C25—O36.7 (3)
C8—C9—C10—C110.0 (4)C4—C3—C25—O3126.1 (2)
C9—C10—C11—C122.0 (3)C2—C3—C25—O4174.36 (16)
C9—C10—C11—C16174.9 (2)C4—C3—C25—O455.0 (2)
C8—C7—C12—C110.4 (3)C13—C5—N1—C163.6 (2)
C6—C7—C12—C11178.03 (17)C4—C5—N1—C1172.74 (14)
C8—C7—C12—C13176.48 (17)C6—C5—N1—C153.5 (2)
C6—C7—C12—C131.1 (2)C13—C5—N1—C2165.25 (15)
C16—C11—C12—C7175.42 (18)C4—C5—N1—C241.59 (16)
C10—C11—C12—C71.8 (3)C6—C5—N1—C277.70 (18)
C16—C11—C12—C131.2 (3)C3—C2—N1—C1150.60 (15)
C10—C11—C12—C13178.42 (18)C3—C2—N1—C518.64 (18)
C7—C12—C13—C14174.87 (16)O2—C17—N2—C18177.33 (18)
C11—C12—C13—C142.0 (3)C4—C17—N2—C183.9 (2)
C7—C12—C13—C55.8 (2)O2—C17—N2—C242.8 (3)
C11—C12—C13—C5177.31 (16)C4—C17—N2—C24178.40 (16)
N1—C5—C13—C1450.3 (3)C23—C18—N2—C17177.32 (19)
C4—C5—C13—C1465.5 (2)C19—C18—N2—C172.4 (2)
C6—C5—C13—C14173.43 (19)C23—C18—N2—C242.8 (3)
N1—C5—C13—C12130.55 (15)C19—C18—N2—C24176.90 (17)
C4—C5—C13—C12113.69 (15)O3—C25—O4—C261.0 (3)
C6—C5—C13—C127.40 (17)C3—C25—O4—C26177.94 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.962.483.299 (3)143
C20—H20···O3ii0.932.593.403 (3)146
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H22N2O4
Mr426.46
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)27.2997 (15), 9.7923 (6), 15.8557 (10)
V3)4238.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
23813, 5039, 3022
Rint0.033
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.02
No. of reflections5039
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.962.483.299 (3)142.8
C20—H20···O3ii0.932.593.403 (3)145.7
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2.
 

Acknowledgements

ASP thanks the University Grants Commission, India, for a Minor research Project.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGanesh, G., Yuvaraj, P. S., Divakara, C., Reddy, B. S. R. & SubbiahPandi, A. (2013). Acta Cryst. E69, o235.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1340–o1341.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds