metal-organic compounds
cis-Chlorido(ethylamine)bis(propane-1,3-diamine)cobalt(III) dichloride
aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: mnpsy2004@yahoo.com
In the title compound, [CoCl(C2H7N)(C3H10N2)2]Cl2, the CoIII ion has a distorted octahedral coordination environment and is surrounded by four N atoms in the equatorial plane, with the other N and Cl atoms occupying the axial positions. The crystal packing is stabilized by N—H⋯Cl hydrogen bonds, forming a layered arrangement parallel to (1-10).
Related literature
For supramolecular structures, see: Desiraju (1995); Khlobystov et al. (2001); Lehn (1995); Seo et al. (2000). For CoIII complexes, see: Chang et al. (2010). For related and comparable structures, see: Anbalagan et al. (2009); Lee et al. (2007); Ramesh et al. (2008); Ravichandran et al. (2009). For the preparation of (1,3-diaminopropane)cobalt(III), see: Bailar & Work (1946).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536813004650/bt6888sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813004650/bt6888Isup2.hkl
2 grams of trans-[CoIII(tn)2Cl2]Cl solid was made in the path using 3–4 drops of water. To the solid mass, about 0.12M ethyl amine (EtNH2) was dropped for 20 min and mixed well. The grinding was continued until the colour turned dull green to red (Bailar & Work, 1946). The reaction mixture was set aside until no further change was observed and the product was allowed to stand overnight. Finally, the solid was washed. The final solid was dissolved in 5–10 ml of water pre-heated to 70°C and allowed to crystallize using hot acidified water. Finally Microcrystalline pink color crystal was retrieved (yield 0.85 g). The crystals were filtered, washed with ethanol and dried over vacuum. X-ray quality crystals were obtained by recrystallization from hot acidified distilled water.
All H atoms were discernable in a difference map. C-bound H atoms were positioned geometrically (C–H =0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The H atoms bonded to N were freely refined.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level. | |
Fig. 2. The packing of the molecules viewed down a axis. |
[CoCl(C2H7N)(C3H10N2)2]Cl2 | Z = 2 |
Mr = 358.63 | F(000) = 376 |
Triclinic, P1 | Dx = 1.547 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8847 (4) Å | Cell parameters from 2784 reflections |
b = 8.0627 (4) Å | θ = 3.4–29.0° |
c = 12.6526 (5) Å | µ = 1.62 mm−1 |
α = 102.780 (3)° | T = 293 K |
β = 99.936 (4)° | Block, yellow |
γ = 92.580 (4)° | 0.45 × 0.35 × 0.35 mm |
V = 769.76 (6) Å3 |
Oxford Diffraction Xcalibur Eos diffractometer | 2711 independent reflections |
Radiation source: fine-focus sealed tube | 2299 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 25.0°, θmin = 2.8° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.600, Tmax = 1.000 | k = −9→9 |
4965 measured reflections | l = −15→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.036P)2] where P = (Fo2 + 2Fc2)/3 |
2711 reflections | (Δ/σ)max = 0.001 |
194 parameters | Δρmax = 0.30 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[CoCl(C2H7N)(C3H10N2)2]Cl2 | γ = 92.580 (4)° |
Mr = 358.63 | V = 769.76 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8847 (4) Å | Mo Kα radiation |
b = 8.0627 (4) Å | µ = 1.62 mm−1 |
c = 12.6526 (5) Å | T = 293 K |
α = 102.780 (3)° | 0.45 × 0.35 × 0.35 mm |
β = 99.936 (4)° |
Oxford Diffraction Xcalibur Eos diffractometer | 2711 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2299 reflections with I > 2σ(I) |
Tmin = 0.600, Tmax = 1.000 | Rint = 0.018 |
4965 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.30 e Å−3 |
2711 reflections | Δρmin = −0.35 e Å−3 |
194 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7176 (3) | 0.6154 (3) | 0.98937 (17) | 0.0278 (5) | |
H1A | 0.7705 | 0.6146 | 1.0644 | 0.033* | |
H1B | 0.6287 | 0.5210 | 0.9632 | 0.033* | |
C2 | 0.6360 (3) | 0.7792 (3) | 0.98931 (16) | 0.0289 (5) | |
H2A | 0.7265 | 0.8717 | 1.0056 | 0.035* | |
H2B | 0.5691 | 0.8005 | 1.0477 | 0.035* | |
C3 | 0.5193 (3) | 0.7803 (3) | 0.88121 (16) | 0.0253 (5) | |
H3A | 0.4308 | 0.6858 | 0.8637 | 0.030* | |
H3B | 0.4622 | 0.8853 | 0.8896 | 0.030* | |
C4 | 1.0645 (3) | 0.9053 (3) | 0.74479 (16) | 0.0364 (6) | |
H4A | 1.1607 | 0.8388 | 0.7295 | 0.044* | |
H4B | 1.1112 | 1.0209 | 0.7820 | 0.044* | |
C5 | 0.9486 (4) | 0.9081 (3) | 0.63747 (19) | 0.0460 (7) | |
H5A | 0.8456 | 0.9630 | 0.6526 | 0.055* | |
H5B | 1.0082 | 0.9744 | 0.5975 | 0.055* | |
C6 | 0.8976 (3) | 0.7309 (3) | 0.56745 (17) | 0.0359 (6) | |
H6A | 0.8494 | 0.7373 | 0.4927 | 0.043* | |
H6B | 0.9996 | 0.6683 | 0.5650 | 0.043* | |
C7 | 0.4777 (3) | 0.3755 (3) | 0.7108 (2) | 0.0333 (5) | |
H7A | 0.4207 | 0.4316 | 0.6557 | 0.040* | |
H7B | 0.4483 | 0.4289 | 0.7811 | 0.040* | |
C8 | 0.4119 (3) | 0.1879 (3) | 0.6799 (2) | 0.0432 (7) | |
H8A | 0.2888 | 0.1776 | 0.6750 | 0.065* | |
H8B | 0.4656 | 0.1326 | 0.7353 | 0.065* | |
H8C | 0.4396 | 0.1349 | 0.6100 | 0.065* | |
N1 | 0.8505 (2) | 0.5908 (2) | 0.91895 (14) | 0.0205 (4) | |
N2 | 0.6139 (2) | 0.7664 (2) | 0.78807 (14) | 0.0202 (4) | |
N3 | 0.9726 (3) | 0.8316 (2) | 0.81887 (14) | 0.0210 (4) | |
N4 | 0.7690 (3) | 0.6375 (3) | 0.61050 (14) | 0.0223 (4) | |
N5 | 0.6662 (2) | 0.3992 (2) | 0.71863 (16) | 0.0222 (4) | |
Cl1 | 1.03872 (7) | 0.47044 (7) | 0.74016 (4) | 0.03006 (14) | |
Cl2 | 0.79985 (7) | 0.17837 (6) | 0.92229 (4) | 0.02905 (14) | |
Cl3 | 0.36383 (7) | 0.73553 (7) | 0.55285 (4) | 0.03125 (14) | |
Co1 | 0.80944 (3) | 0.62246 (3) | 0.766006 (19) | 0.01506 (9) | |
H2C | 0.543 (3) | 0.741 (3) | 0.7294 (17) | 0.024 (6)* | |
H3C | 0.926 (3) | 0.908 (3) | 0.8502 (17) | 0.020 (7)* | |
H3D | 1.052 (3) | 0.797 (3) | 0.8632 (17) | 0.022 (6)* | |
H4D | 0.685 (3) | 0.678 (3) | 0.5978 (17) | 0.019 (7)* | |
H1C | 0.882 (3) | 0.490 (3) | 0.9103 (16) | 0.020 (6)* | |
H4C | 0.756 (3) | 0.532 (3) | 0.5693 (16) | 0.020 (6)* | |
H2D | 0.652 (3) | 0.867 (3) | 0.7894 (17) | 0.030 (7)* | |
H5D | 0.693 (3) | 0.360 (3) | 0.659 (2) | 0.037 (7)* | |
H1D | 0.937 (3) | 0.652 (3) | 0.9535 (17) | 0.024 (6)* | |
H5C | 0.717 (3) | 0.339 (3) | 0.763 (2) | 0.042 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0319 (13) | 0.0330 (12) | 0.0235 (11) | 0.0038 (10) | 0.0115 (10) | 0.0120 (10) |
C2 | 0.0376 (14) | 0.0307 (12) | 0.0203 (11) | 0.0054 (10) | 0.0138 (10) | 0.0030 (9) |
C3 | 0.0241 (12) | 0.0242 (11) | 0.0291 (11) | 0.0077 (9) | 0.0117 (9) | 0.0033 (9) |
C4 | 0.0341 (14) | 0.0469 (15) | 0.0264 (12) | −0.0202 (12) | 0.0066 (11) | 0.0086 (11) |
C5 | 0.0562 (17) | 0.0496 (16) | 0.0346 (13) | −0.0224 (14) | 0.0048 (12) | 0.0233 (12) |
C6 | 0.0319 (13) | 0.0576 (16) | 0.0186 (11) | −0.0099 (12) | 0.0059 (10) | 0.0113 (11) |
C7 | 0.0252 (12) | 0.0287 (12) | 0.0428 (13) | −0.0039 (10) | 0.0049 (11) | 0.0037 (10) |
C8 | 0.0386 (15) | 0.0320 (14) | 0.0556 (16) | −0.0137 (11) | 0.0004 (13) | 0.0130 (12) |
N1 | 0.0189 (10) | 0.0188 (10) | 0.0230 (9) | 0.0011 (8) | 0.0022 (8) | 0.0047 (8) |
N2 | 0.0198 (10) | 0.0212 (10) | 0.0184 (9) | 0.0030 (8) | 0.0005 (8) | 0.0039 (8) |
N3 | 0.0210 (10) | 0.0211 (10) | 0.0206 (9) | −0.0018 (8) | 0.0032 (8) | 0.0051 (8) |
N4 | 0.0196 (11) | 0.0259 (11) | 0.0188 (9) | −0.0004 (9) | 0.0013 (8) | 0.0021 (8) |
N5 | 0.0224 (10) | 0.0205 (9) | 0.0213 (10) | −0.0017 (8) | 0.0027 (8) | 0.0016 (8) |
Cl1 | 0.0230 (3) | 0.0349 (3) | 0.0332 (3) | 0.0107 (2) | 0.0084 (2) | 0.0057 (2) |
Cl2 | 0.0321 (3) | 0.0204 (3) | 0.0321 (3) | −0.0007 (2) | 0.0000 (2) | 0.0061 (2) |
Cl3 | 0.0277 (3) | 0.0351 (3) | 0.0248 (3) | 0.0028 (2) | 0.0000 (2) | −0.0022 (2) |
Co1 | 0.01382 (15) | 0.01541 (15) | 0.01497 (15) | 0.00020 (10) | 0.00225 (10) | 0.00205 (10) |
C1—N1 | 1.481 (3) | C7—H7A | 0.9700 |
C1—C2 | 1.495 (3) | C7—H7B | 0.9700 |
C1—H1A | 0.9700 | C8—H8A | 0.9600 |
C1—H1B | 0.9700 | C8—H8B | 0.9600 |
C2—C3 | 1.513 (3) | C8—H8C | 0.9600 |
C2—H2A | 0.9700 | N1—Co1 | 1.9811 (17) |
C2—H2B | 0.9700 | N1—H1C | 0.85 (2) |
C3—N2 | 1.486 (2) | N1—H1D | 0.82 (2) |
C3—H3A | 0.9700 | N2—Co1 | 1.9921 (18) |
C3—H3B | 0.9700 | N2—H2C | 0.83 (2) |
C4—N3 | 1.483 (2) | N2—H2D | 0.84 (2) |
C4—C5 | 1.506 (3) | N3—Co1 | 1.9887 (17) |
C4—H4A | 0.9700 | N3—H3C | 0.79 (2) |
C4—H4B | 0.9700 | N3—H3D | 0.87 (2) |
C5—C6 | 1.502 (3) | N4—Co1 | 1.9698 (18) |
C5—H5A | 0.9700 | N4—H4D | 0.76 (2) |
C5—H5B | 0.9700 | N4—H4C | 0.88 (2) |
C6—N4 | 1.482 (3) | N5—Co1 | 1.9953 (16) |
C6—H6A | 0.9700 | N5—H5D | 0.82 (2) |
C6—H6B | 0.9700 | N5—H5C | 0.88 (3) |
C7—N5 | 1.474 (3) | Cl1—Co1 | 2.2591 (6) |
C7—C8 | 1.519 (3) | ||
N1—C1—C2 | 112.37 (17) | H8B—C8—H8C | 109.5 |
N1—C1—H1A | 109.1 | C1—N1—Co1 | 122.70 (14) |
C2—C1—H1A | 109.1 | C1—N1—H1C | 111.0 (14) |
N1—C1—H1B | 109.1 | Co1—N1—H1C | 102.2 (13) |
C2—C1—H1B | 109.1 | C1—N1—H1D | 106.7 (15) |
H1A—C1—H1B | 107.9 | Co1—N1—H1D | 108.1 (14) |
C1—C2—C3 | 113.66 (17) | H1C—N1—H1D | 105 (2) |
C1—C2—H2A | 108.8 | C3—N2—Co1 | 124.93 (14) |
C3—C2—H2A | 108.8 | C3—N2—H2C | 108.5 (15) |
C1—C2—H2B | 108.8 | Co1—N2—H2C | 106.5 (15) |
C3—C2—H2B | 108.8 | C3—N2—H2D | 106.4 (15) |
H2A—C2—H2B | 107.7 | Co1—N2—H2D | 105.9 (16) |
N2—C3—C2 | 112.96 (17) | H2C—N2—H2D | 102 (2) |
N2—C3—H3A | 109.0 | C4—N3—Co1 | 122.95 (13) |
C2—C3—H3A | 109.0 | C4—N3—H3C | 105.6 (15) |
N2—C3—H3B | 109.0 | Co1—N3—H3C | 109.9 (15) |
C2—C3—H3B | 109.0 | C4—N3—H3D | 105.5 (14) |
H3A—C3—H3B | 107.8 | Co1—N3—H3D | 100.6 (14) |
N3—C4—C5 | 112.45 (18) | H3C—N3—H3D | 112 (2) |
N3—C4—H4A | 109.1 | C6—N4—Co1 | 120.95 (14) |
C5—C4—H4A | 109.1 | C6—N4—H4D | 105.3 (16) |
N3—C4—H4B | 109.1 | Co1—N4—H4D | 109.1 (16) |
C5—C4—H4B | 109.1 | C6—N4—H4C | 105.5 (13) |
H4A—C4—H4B | 107.8 | Co1—N4—H4C | 107.6 (13) |
C6—C5—C4 | 111.3 (2) | H4D—N4—H4C | 108 (2) |
C6—C5—H5A | 109.4 | C7—N5—Co1 | 125.65 (15) |
C4—C5—H5A | 109.4 | C7—N5—H5D | 110.9 (17) |
C6—C5—H5B | 109.4 | Co1—N5—H5D | 100.9 (16) |
C4—C5—H5B | 109.4 | C7—N5—H5C | 109.0 (16) |
H5A—C5—H5B | 108.0 | Co1—N5—H5C | 103.4 (16) |
N4—C6—C5 | 111.91 (19) | H5D—N5—H5C | 105 (2) |
N4—C6—H6A | 109.2 | N4—Co1—N1 | 176.20 (8) |
C5—C6—H6A | 109.2 | N4—Co1—N3 | 94.63 (7) |
N4—C6—H6B | 109.2 | N1—Co1—N3 | 88.27 (8) |
C5—C6—H6B | 109.2 | N4—Co1—N2 | 88.57 (8) |
H6A—C6—H6B | 107.9 | N1—Co1—N2 | 93.94 (7) |
N5—C7—C8 | 111.9 (2) | N3—Co1—N2 | 89.27 (9) |
N5—C7—H7A | 109.2 | N4—Co1—N5 | 88.27 (8) |
C8—C7—H7A | 109.2 | N1—Co1—N5 | 88.62 (8) |
N5—C7—H7B | 109.2 | N3—Co1—N5 | 173.98 (9) |
C8—C7—H7B | 109.2 | N2—Co1—N5 | 96.09 (8) |
H7A—C7—H7B | 107.9 | N4—Co1—Cl1 | 90.49 (7) |
C7—C8—H8A | 109.5 | N1—Co1—Cl1 | 87.13 (6) |
C7—C8—H8B | 109.5 | N3—Co1—Cl1 | 88.21 (7) |
H8A—C8—H8B | 109.5 | N2—Co1—Cl1 | 177.23 (6) |
C7—C8—H8C | 109.5 | N5—Co1—Cl1 | 86.49 (6) |
H8A—C8—H8C | 109.5 | ||
N1—C1—C2—C3 | 70.5 (2) | C1—N1—Co1—N5 | −75.46 (17) |
C1—C2—C3—N2 | −64.4 (2) | C1—N1—Co1—Cl1 | −162.02 (16) |
N3—C4—C5—C6 | −68.7 (3) | C4—N3—Co1—N4 | −20.0 (2) |
C4—C5—C6—N4 | 73.7 (3) | C4—N3—Co1—N1 | 157.5 (2) |
C2—C1—N1—Co1 | −48.3 (2) | C4—N3—Co1—N2 | −108.52 (19) |
C2—C3—N2—Co1 | 37.7 (2) | C4—N3—Co1—Cl1 | 70.34 (19) |
C5—C4—N3—Co1 | 43.3 (3) | C3—N2—Co1—N4 | 161.39 (17) |
C5—C6—N4—Co1 | −51.5 (3) | C3—N2—Co1—N1 | −15.75 (17) |
C8—C7—N5—Co1 | −175.91 (15) | C3—N2—Co1—N3 | −103.96 (17) |
C6—N4—Co1—N3 | 23.7 (2) | C3—N2—Co1—N5 | 73.28 (17) |
C6—N4—Co1—N2 | 112.81 (19) | C7—N5—Co1—N4 | −89.73 (19) |
C6—N4—Co1—N5 | −151.1 (2) | C7—N5—Co1—N1 | 92.47 (19) |
C6—N4—Co1—Cl1 | −64.58 (19) | C7—N5—Co1—N2 | −1.35 (19) |
C1—N1—Co1—N3 | 109.69 (17) | C7—N5—Co1—Cl1 | 179.67 (18) |
C1—N1—Co1—N2 | 20.54 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2D···Cl2i | 0.84 (2) | 2.77 (2) | 3.5033 (19) | 145.6 (18) |
N3—H3C···Cl2i | 0.79 (2) | 2.49 (2) | 3.275 (2) | 168 (2) |
N1—H1D···Cl2ii | 0.82 (2) | 2.52 (2) | 3.3278 (19) | 173.2 (18) |
N3—H3D···Cl2ii | 0.87 (2) | 2.72 (2) | 3.472 (2) | 145.6 (18) |
N4—H4C···Cl3iii | 0.88 (2) | 2.40 (2) | 3.261 (2) | 163.7 (19) |
N5—H5D···Cl3iii | 0.82 (2) | 2.57 (2) | 3.329 (2) | 154 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CoCl(C2H7N)(C3H10N2)2]Cl2 |
Mr | 358.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.8847 (4), 8.0627 (4), 12.6526 (5) |
α, β, γ (°) | 102.780 (3), 99.936 (4), 92.580 (4) |
V (Å3) | 769.76 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.62 |
Crystal size (mm) | 0.45 × 0.35 × 0.35 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.600, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4965, 2711, 2299 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.060, 0.99 |
No. of reflections | 2711 |
No. of parameters | 194 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.35 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2D···Cl2i | 0.84 (2) | 2.77 (2) | 3.5033 (19) | 145.6 (18) |
N3—H3C···Cl2i | 0.79 (2) | 2.49 (2) | 3.275 (2) | 168 (2) |
N1—H1D···Cl2ii | 0.82 (2) | 2.52 (2) | 3.3278 (19) | 173.2 (18) |
N3—H3D···Cl2ii | 0.87 (2) | 2.72 (2) | 3.472 (2) | 145.6 (18) |
N4—H4C···Cl3iii | 0.88 (2) | 2.40 (2) | 3.261 (2) | 163.7 (19) |
N5—H5D···Cl3iii | 0.82 (2) | 2.57 (2) | 3.329 (2) | 154 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+2; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
KA is thankful to the CSIR, New Delhi (Lr: No. 01 (2570)/12/EMR-II/3.4.2012) for financial support through a major research project. The authors are thankful to the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.
References
Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bailar, J. C. & Work, J. B. (1946). J. Am. Chem. Soc. 68, 232–235. CrossRef CAS Web of Science Google Scholar
Chang, E. L., Simmers, C. & Andrew Knight, D. (2010). Pharmaceuticals, 3, 1711–1728. CrossRef CAS Google Scholar
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V. & Schroder, M. (2001). Coord. Chem. Rev. 222, 155–192. Web of Science CrossRef CAS Google Scholar
Lee, D. N., Lee, E. Y., Kim, C., Kim, S.-J. & Kim, Y. (2007). Acta Cryst. E63, m1949–m1950. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lehn, J. M. (1995). In Supramolecular Chemistry. Concepts and Perspectives. Weinheim: VCH. Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravichandran, K., Ramesh, P., Tamilselvan, M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1174–m1175. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, considerable effort has been dedicated to the design and synthesis of supramolecular architectures of coordination complexes (Lehn, 1995; Khlobystov et al.,2001). The primary reason for the interest in such complexes is their new and versatile topologies and potential applications in functional materials (Desiraju, 1995; Seo et al., 2000).
The interaction of transition metal polyamine complexes of cobalt(III) with DNA has received considerable attention in the recent years. Using mixed ligand complexes, it is possible to systematically vary parameters of interest by changing the properties of the interacting units either by the use of suitable substituents or simply by changing the nature of ancillary ligand.
In addition, cobalt(III) complexes have received a sustained high level of attention due to their relevance in various redox processes in biological systems and act as promising agents for antitumor, anthelmintic, antiparasitic, antibiotic and antimicrobial activities, as well as their multiple applications in fields of medicine and drug delivery (Chang et al., 2010). Against this background and to ascertain the molecular structure and conformation of the title compound, the crystal structure determination has been carried out.
The ORTEP plot of the molecule is shown in Fig. 1. The molecular geometry is not a perfect octahedron. The metal centre is surrounded by four N atoms in an equatorial plane, with the other N and Cl atoms occupying the axial positions.
The bond lengths [Co—N] and [Co—Cl] are comparable with the values reported in the literature (Lee et al., 2007; Ramesh et al., 2008; Anbalagan et al., 2009; Ravichandran et al., 2009).
The packing of the molecules viewed down the a axis is shown in Fig. 2. The packing is stabilized by N—H···Cl and N—H···N types of inter- and intramolecular interaction.