organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-(2,5-Di­fluoro­benz­yl)[(2-eth­­oxy­naphthalen-1-yl)methyl­­idene]amine

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Art and Science Faculty, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and cGiresun University, Arts and Science Faculty, Department of Physics, Giresun, Turkey
*Correspondence e-mail: merve.pekdemir@oposta.omu.edu.tr

(Received 20 December 2012; accepted 19 January 2013; online 9 February 2013)

In the title mol­ecule, C20H17F2NO, which adopts an E conformation with respect to the imine C=N double bond, the mean planes of the naphthalene ring system and the difluoro­phenyl ring form a dihedral angle of 85.82 (7)°. An intra­molecular C—H⋯N hydrogen bond occurs. In the crystal, weak C—H⋯F hydrogen bonds link the mol­ecules into zigzag chains along [010].

Related literature

For structural studies of Schiff bases by our group, see: Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]); Kantar et al. (2012[Kantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.]); Kargılı et al. (2012[Kargılı, H., Macit, M., Alpaslan, G., Kazak, C. & Erdönmez, A. (2012). Acta Cryst. E68, o3176.]); Pekdemir et al. (2012[Pekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148.]); Vesek et al. (2012[Vesek, H., Kazak, C., Alaman Ağar, A., Macit, M. & Soylu, M. S. (2012). Acta Cryst. E68, o2518.]). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17F2NO

  • Mr = 325.35

  • Monoclinic, P 21 /c

  • a = 12.5963 (8) Å

  • b = 14.3010 (8) Å

  • c = 9.8693 (8) Å

  • β = 108.672 (8)°

  • V = 1684.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Oxford Diffraction SuperNova Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.703, Tmax = 1.000

  • 5942 measured reflections

  • 2958 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.151

  • S = 1.06

  • 2958 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1 0.93 2.32 2.955 (3) 125
C6—H6⋯F1i 0.93 2.61 3.505 (4) 162
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In continuation of our structural study of Schiff bases (Gül et al., 2007; Kantar et al., 2012; Pekdemir et al., 2012; Vesek et al., 2012), herewith we present the title compound, (I).

In (I) (Fig. 1), the C13N1 bond distance of 1.262 (3) Å is shorter than the standart 1.28 Å value of CN double bond, similar to the corresponding bond distance in (E)—N-[(2- ethoxynaphthalen-1-yl)methylidene]-2-ethylaniline [1.261 (3) Å; Kargılı et al.,2012]. The dihedral angle between the naphthalene ring system and the benzene ring is 85.82 (7)°. The C13—N1—C14—C15 torsion angle is 179.4 (3)°. The molecular conformation is supported by an intramolecular C—H···N hydrogen bond, which generates S(6) ring (Bernstein et al., 1995).

In the crystal, weak intermolecular C—H···F hydrogen bonds (Table 1) link the molecules into zigzag chains in [010] (Fig. 2).

Related literature top

For structural studies of Schiff bases by our group, see: Gül et al. (2007); Kantar et al. (2012); Kargılı et al. (2012); Pekdemir et al. (2012); Vesek et al. (2012). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

(E)-1-(2,5-difluorophenyl)-N-((2-ethoxynaphthalen-1-yl) methylene)methanamine was prepared by refluxing a mixture of a solution containing 2-ethoxy-1-naphthaldehyde (20.0 mg, 0.1 mmol) in ethanol (20 ml) and a solution containing 2,5-difluorobenzylamine (14.3 mg, 0.1 mmol) in ethanol (20 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (Yield 74%; m.p.356 - 358 K).

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and constrained to ride on their parents atoms, with Uiso(H) = 1.2 – 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability. Dashed line denotes hydrogen bond.
[Figure 2] Fig. 2. A portion of the crystal packing showing weak intermolecular C—H···F hydrogen bonds as dashed lines.
(E)-(2,5-Difluorobenzyl)[(2-ethoxynaphthalen-1-yl)methylidene]amine top
Crystal data top
C20H17F2NOF(000) = 680
Mr = 325.35Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1869 reflections
a = 12.5963 (8) Åθ = 3.3–29.3°
b = 14.3010 (8) ŵ = 0.09 mm1
c = 9.8693 (8) ÅT = 293 K
β = 108.672 (8)°Block, yellow
V = 1684.3 (2) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova Eos
diffractometer
2958 independent reflections
Radiation source: fine-focus sealed tube1997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0454 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1717
Tmin = 0.703, Tmax = 1.000l = 1111
5942 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.5882P]
where P = (Fo2 + 2Fc2)/3
2958 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H17F2NOV = 1684.3 (2) Å3
Mr = 325.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5963 (8) ŵ = 0.09 mm1
b = 14.3010 (8) ÅT = 293 K
c = 9.8693 (8) Å0.30 × 0.25 × 0.25 mm
β = 108.672 (8)°
Data collection top
Oxford Diffraction SuperNova Eos
diffractometer
2958 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1997 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 1.000Rint = 0.018
5942 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2958 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05443 (18)0.09513 (16)0.9269 (2)0.0475 (6)
C20.04096 (19)0.08982 (16)0.8003 (3)0.0505 (6)
C30.0486 (2)0.02790 (19)0.6849 (3)0.0648 (7)
H30.01070.01210.69000.078*
C40.1420 (3)0.0264 (2)0.5666 (3)0.0792 (9)
H40.14450.01400.49180.095*
C50.2335 (2)0.0840 (2)0.5559 (3)0.0802 (9)
H50.29670.08160.47500.096*
C60.2300 (2)0.1434 (2)0.6633 (3)0.0690 (8)
H60.29170.18120.65610.083*
C70.1346 (2)0.14949 (18)0.7868 (3)0.0558 (6)
C80.1289 (2)0.2129 (2)0.8967 (3)0.0669 (7)
H80.18970.25200.88790.080*
C90.0383 (2)0.21936 (19)1.0152 (3)0.0657 (7)
H90.03690.26281.08590.079*
C100.0540 (2)0.15986 (17)1.0311 (3)0.0529 (6)
C110.1491 (2)0.2230 (2)1.2652 (3)0.0759 (8)
H11A0.08840.20491.30040.091*
H11B0.13860.28791.23530.091*
C120.2588 (3)0.2110 (2)1.3797 (3)0.0938 (10)
H12A0.26060.24911.46040.141*
H12B0.31820.22961.34410.141*
H12C0.26850.14661.40840.141*
C130.15149 (19)0.03193 (16)0.9571 (3)0.0515 (6)
H130.19010.01851.05240.062*
C140.2785 (2)0.07076 (19)0.9136 (3)0.0690 (8)
H14A0.25100.13380.88750.083*
H14B0.30830.06761.01710.083*
C150.37095 (19)0.05036 (18)0.8517 (3)0.0578 (7)
C160.4542 (2)0.1146 (2)0.8634 (3)0.0749 (8)
C170.5395 (3)0.1034 (3)0.8079 (4)0.0963 (11)
H170.59310.14990.81790.116*
C180.5443 (3)0.0221 (3)0.7371 (4)0.1016 (12)
H180.60080.01240.69670.122*
C190.4647 (3)0.0442 (3)0.7271 (4)0.0894 (10)
C200.3785 (2)0.0321 (2)0.7833 (3)0.0738 (8)
H200.32590.07920.77500.089*
F10.45086 (15)0.19516 (13)0.9363 (3)0.1126 (7)
F20.46988 (19)0.12570 (19)0.6602 (3)0.1524 (10)
N10.18605 (17)0.00533 (16)0.8631 (2)0.0647 (6)
O10.14961 (14)0.16450 (12)1.14686 (18)0.0653 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0479 (13)0.0437 (13)0.0606 (14)0.0002 (11)0.0309 (11)0.0012 (11)
C20.0504 (13)0.0479 (13)0.0615 (14)0.0059 (11)0.0294 (11)0.0034 (12)
C30.0580 (15)0.0659 (17)0.0731 (17)0.0086 (13)0.0248 (13)0.0090 (14)
C40.0711 (19)0.086 (2)0.079 (2)0.0214 (17)0.0224 (16)0.0187 (17)
C50.0602 (18)0.094 (2)0.080 (2)0.0175 (17)0.0126 (15)0.0027 (19)
C60.0533 (15)0.0746 (18)0.0803 (19)0.0004 (14)0.0233 (14)0.0203 (17)
C70.0538 (14)0.0550 (15)0.0662 (15)0.0011 (12)0.0299 (12)0.0122 (13)
C80.0624 (16)0.0677 (18)0.0804 (19)0.0171 (14)0.0367 (15)0.0094 (15)
C90.0726 (18)0.0666 (17)0.0673 (17)0.0152 (15)0.0356 (15)0.0071 (14)
C100.0554 (14)0.0545 (15)0.0566 (14)0.0043 (12)0.0289 (12)0.0005 (12)
C110.083 (2)0.080 (2)0.0684 (18)0.0049 (16)0.0296 (15)0.0219 (16)
C120.091 (2)0.105 (3)0.079 (2)0.006 (2)0.0167 (17)0.0266 (19)
C130.0515 (13)0.0468 (14)0.0621 (14)0.0025 (11)0.0265 (11)0.0008 (12)
C140.0623 (16)0.0550 (16)0.098 (2)0.0051 (13)0.0371 (15)0.0117 (15)
C150.0460 (13)0.0582 (15)0.0671 (16)0.0007 (12)0.0152 (11)0.0197 (13)
C160.0596 (17)0.0640 (18)0.106 (2)0.0023 (15)0.0332 (16)0.0129 (17)
C170.0589 (19)0.105 (3)0.135 (3)0.0102 (19)0.044 (2)0.017 (2)
C180.062 (2)0.142 (4)0.112 (3)0.005 (2)0.0430 (19)0.001 (3)
C190.067 (2)0.103 (3)0.096 (2)0.0109 (19)0.0223 (17)0.017 (2)
C200.0589 (16)0.076 (2)0.0832 (19)0.0036 (15)0.0179 (15)0.0035 (16)
F10.0883 (13)0.0712 (12)0.192 (2)0.0199 (10)0.0639 (14)0.0089 (13)
F20.1138 (17)0.161 (2)0.186 (2)0.0072 (16)0.0539 (17)0.078 (2)
N10.0534 (12)0.0723 (15)0.0744 (14)0.0099 (11)0.0288 (11)0.0132 (12)
O10.0654 (11)0.0716 (12)0.0626 (11)0.0083 (9)0.0257 (9)0.0139 (9)
Geometric parameters (Å, º) top
C1—C101.385 (3)C11—H11B0.9700
C1—C21.432 (3)C12—H12A0.9600
C1—C131.472 (3)C12—H12B0.9600
C2—C31.421 (3)C12—H12C0.9600
C2—C71.427 (3)C13—N11.262 (3)
C3—C41.366 (4)C13—H130.9300
C3—H30.9300C14—N11.452 (3)
C4—C51.394 (4)C14—C151.507 (3)
C4—H40.9300C14—H14A0.9700
C5—C61.348 (4)C14—H14B0.9700
C5—H50.9300C15—C161.371 (3)
C6—C71.414 (3)C15—C201.377 (4)
C6—H60.9300C16—C171.363 (4)
C7—C81.398 (4)C16—F11.366 (3)
C8—C91.351 (4)C17—C181.368 (5)
C8—H80.9300C17—H170.9300
C9—C101.408 (3)C18—C191.361 (5)
C9—H90.9300C18—H180.9300
C10—O11.371 (3)C19—F21.352 (4)
C11—O11.438 (3)C19—C201.379 (4)
C11—C121.489 (4)C20—H200.9300
C11—H11A0.9700
C10—C1—C2118.8 (2)C11—C12—H12A109.5
C10—C1—C13117.4 (2)C11—C12—H12B109.5
C2—C1—C13123.7 (2)H12A—C12—H12B109.5
C3—C2—C7117.1 (2)C11—C12—H12C109.5
C3—C2—C1123.7 (2)H12A—C12—H12C109.5
C7—C2—C1119.2 (2)H12B—C12—H12C109.5
C4—C3—C2120.9 (3)N1—C13—C1124.7 (2)
C4—C3—H3119.5N1—C13—H13117.6
C2—C3—H3119.5C1—C13—H13117.6
C3—C4—C5121.3 (3)N1—C14—C15112.0 (2)
C3—C4—H4119.3N1—C14—H14A109.2
C5—C4—H4119.3C15—C14—H14A109.2
C6—C5—C4119.7 (3)N1—C14—H14B109.2
C6—C5—H5120.2C15—C14—H14B109.2
C4—C5—H5120.2H14A—C14—H14B107.9
C5—C6—C7121.4 (3)C16—C15—C20116.4 (3)
C5—C6—H6119.3C16—C15—C14120.4 (3)
C7—C6—H6119.3C20—C15—C14123.3 (2)
C8—C7—C6121.8 (2)C17—C16—F1118.2 (3)
C8—C7—C2118.7 (2)C17—C16—C15124.6 (3)
C6—C7—C2119.6 (2)F1—C16—C15117.3 (3)
C9—C8—C7122.4 (2)C16—C17—C18118.4 (3)
C9—C8—H8118.8C16—C17—H17120.8
C7—C8—H8118.8C18—C17—H17120.8
C8—C9—C10119.6 (2)C19—C18—C17118.5 (3)
C8—C9—H9120.2C19—C18—H18120.8
C10—C9—H9120.2C17—C18—H18120.8
O1—C10—C1116.1 (2)F2—C19—C18119.1 (3)
O1—C10—C9122.5 (2)F2—C19—C20118.2 (3)
C1—C10—C9121.4 (2)C18—C19—C20122.7 (3)
O1—C11—C12107.7 (2)C15—C20—C19119.5 (3)
O1—C11—H11A110.2C15—C20—H20120.3
C12—C11—H11A110.2C19—C20—H20120.3
O1—C11—H11B110.2C13—N1—C14116.6 (2)
C12—C11—H11B110.2C10—O1—C11118.26 (19)
H11A—C11—H11B108.5
C10—C1—C2—C3178.3 (2)C8—C9—C10—C10.6 (4)
C13—C1—C2—C35.1 (3)C10—C1—C13—N1153.0 (2)
C10—C1—C2—C71.6 (3)C2—C1—C13—N130.4 (3)
C13—C1—C2—C7175.0 (2)N1—C14—C15—C16166.9 (2)
C7—C2—C3—C40.1 (4)N1—C14—C15—C2014.0 (4)
C1—C2—C3—C4179.8 (2)C20—C15—C16—C172.6 (4)
C2—C3—C4—C51.1 (4)C14—C15—C16—C17178.3 (3)
C3—C4—C5—C60.7 (5)C20—C15—C16—F1177.2 (2)
C4—C5—C6—C70.8 (4)C14—C15—C16—F11.9 (4)
C5—C6—C7—C8178.0 (3)F1—C16—C17—C18178.8 (3)
C5—C6—C7—C21.8 (4)C15—C16—C17—C181.0 (5)
C3—C2—C7—C8178.5 (2)C16—C17—C18—C190.9 (5)
C1—C2—C7—C81.4 (3)C17—C18—C19—F2178.6 (3)
C3—C2—C7—C61.3 (3)C17—C18—C19—C201.1 (5)
C1—C2—C7—C6178.8 (2)C16—C15—C20—C192.2 (4)
C6—C7—C8—C9179.9 (3)C14—C15—C20—C19178.7 (3)
C2—C7—C8—C90.3 (4)F2—C19—C20—C15179.8 (3)
C7—C8—C9—C100.8 (4)C18—C19—C20—C150.5 (5)
C2—C1—C10—O1177.18 (19)C1—C13—N1—C14175.9 (2)
C13—C1—C10—O16.1 (3)C15—C14—N1—C13130.8 (2)
C2—C1—C10—C90.6 (3)C1—C10—O1—C11173.3 (2)
C13—C1—C10—C9176.2 (2)C9—C10—O1—C119.0 (3)
C8—C9—C10—O1178.2 (2)C12—C11—O1—C10176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.322.955 (3)125
C6—H6···F1i0.932.613.505 (4)162
Symmetry code: (i) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H17F2NO
Mr325.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.5963 (8), 14.3010 (8), 9.8693 (8)
β (°) 108.672 (8)
V3)1684.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerOxford Diffraction SuperNova Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.703, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5942, 2958, 1997
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.151, 1.06
No. of reflections2958
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.322.955 (3)125
C6—H6···F1i0.932.613.505 (4)162
Symmetry code: (i) x, y+1/2, z+3/2.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKantar, E. N., Köysal, Y., Gümüş, S., Ağar, E. & Soylu, M. S. (2012). Acta Cryst. E68, o1587.  CSD CrossRef IUCr Journals Google Scholar
First citationKargılı, H., Macit, M., Alpaslan, G., Kazak, C. & Erdönmez, A. (2012). Acta Cryst. E68, o3176.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPekdemir, M., Işık, Ş. & Alaman Ağar, A. (2012). Acta Cryst. E68, o2148.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVesek, H., Kazak, C., Alaman Ağar, A., Macit, M. & Soylu, M. S. (2012). Acta Cryst. E68, o2518.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds