metal-organic compounds
Poly[tris(dimethylformamide)(μ3-2,4,6-triiodobenzene-1,3,5-tricarboxylato)samarium(III)]
aKey Laboratory for Special Functional Aggregated Materials of the Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
*Correspondence e-mail: wl-yanbin@163.com, sdp1214@gmail.com, yzhyang@sdu.edu.cn
In the title compound, [Sm(C9I3O6)(C3H7NO)3]n, the SmIII atom is coordinated by nine O atoms, viz. six carboxylate O atoms from three 2,4,6-triiodobenzene-1,3,5-tricarboxylate (I3BTC) ligands and three O atoms from three N,N-dimethylformamide (DMF) molecules. Each I3BTC ligand bridges three SmIII atoms, generating a three-dimensional metal-organic framework structure. The contains one SmIII ion and one I3BTC anion, both situated on a threefold axis, and one DMF molecule in a general position.
Related literature
For applications of compounds with metal-organic framework structures (MOFs), see: Nakanishi & Tanaka (2007); Phan et al. (2010); Suib et al. (2008). For related structures, see: Daiguebonne et al. (2002); Han et al. (2012); Lu et al. (2008); Serre et al. (2004).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
10.1107/S1600536813003358/cv5378sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813003358/cv5378Isup2.hkl
The title compound was prepared by the solvothermal reaction of Sm(NO3)3.6H2O (100 mg), 2,4,6-triiodobenzene-1,3,5-tricarboxylic acid (100 mg), DMF (4 ml) and ethanol (4 ml) at 90 °C for 72 h. The autoclave was subsequently allowed to cool to room temperature. After washing with ethanol, colourless block crystals were obtained.
All H atoms were placed in geometrically calculated positions (C—H = 0.93–0.96 %A), and refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).[Sm(C9I3O6)(C3H7NO)3] | Dx = 2.245 Mg m−3 |
Mr = 954.43 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, P213 | Cell parameters from 2685 reflections |
Hall symbol: P 2ac 2ab 3 | θ = 3.2–27.2° |
a = 14.1341 (16) Å | µ = 5.41 mm−1 |
V = 2823.6 (6) Å3 | T = 295 K |
Z = 4 | Prism, yellow |
F(000) = 1772 | 0.16 × 0.15 × 0.15 mm |
Bruker APEXII CCD area-detector diffractometer | 2143 independent reflections |
Radiation source: fine-focus sealed tube | 2026 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 27.4°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −12→7 |
Tmin = 0.478, Tmax = 0.498 | k = 0→18 |
5119 measured reflections | l = −16→12 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + (0.0236P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.049 | (Δ/σ)max = 0.002 |
S = 1.03 | Δρmax = 0.72 e Å−3 |
2143 reflections | Δρmin = −0.62 e Å−3 |
106 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00049 (7) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 943 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.02 (2) |
[Sm(C9I3O6)(C3H7NO)3] | Z = 4 |
Mr = 954.43 | Mo Kα radiation |
Cubic, P213 | µ = 5.41 mm−1 |
a = 14.1341 (16) Å | T = 295 K |
V = 2823.6 (6) Å3 | 0.16 × 0.15 × 0.15 mm |
Bruker APEXII CCD area-detector diffractometer | 2143 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2026 reflections with I > 2σ(I) |
Tmin = 0.478, Tmax = 0.498 | Rint = 0.020 |
5119 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.049 | Δρmax = 0.72 e Å−3 |
S = 1.03 | Δρmin = −0.62 e Å−3 |
2143 reflections | Absolute structure: Flack (1983), 943 Friedel pairs |
106 parameters | Absolute structure parameter: 0.02 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. SHELXTL (Sheldrick, 2008) |
x | y | z | Uiso*/Ueq | ||
O2 | 0.9837 (2) | −0.17185 (19) | 0.4744 (2) | 0.0341 (7) | |
C1 | 0.9099 (3) | −0.1640 (3) | 0.4268 (3) | 0.0219 (8) | |
C2 | 0.8710 (2) | −0.2536 (3) | 0.3796 (3) | 0.0227 (8) | |
C3 | 0.9151 (3) | −0.2914 (3) | 0.2996 (3) | 0.0236 (8) | |
C4 | 0.8963 (4) | 0.2099 (3) | 0.4875 (4) | 0.0464 (12) | |
H4 | 0.9575 | 0.2290 | 0.5023 | 0.056* | |
C5 | 0.8521 (6) | 0.3734 (5) | 0.5058 (7) | 0.125 (4) | |
H5A | 0.8541 | 0.4090 | 0.4479 | 0.187* | |
H5B | 0.9125 | 0.3772 | 0.5367 | 0.187* | |
H5C | 0.8042 | 0.3990 | 0.5465 | 0.187* | |
C6 | 0.7318 (5) | 0.2501 (7) | 0.4593 (7) | 0.126 (4) | |
H6A | 0.7297 | 0.1860 | 0.4370 | 0.189* | |
H6B | 0.7099 | 0.2918 | 0.4103 | 0.189* | |
H6C | 0.6920 | 0.2564 | 0.5139 | 0.189* | |
I1 | 1.03806 (2) | −0.22509 (2) | 0.248693 (19) | 0.03739 (10) | |
N1 | 0.8303 (4) | 0.2748 (3) | 0.4848 (4) | 0.0687 (14) | |
O1 | 0.8674 (2) | −0.08834 (19) | 0.4139 (2) | 0.0304 (6) | |
O3 | 0.8828 (2) | 0.1250 (2) | 0.4717 (2) | 0.0428 (8) | |
Sm1 | 0.999507 (13) | 0.000493 (13) | 0.500493 (13) | 0.01931 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0346 (17) | 0.0259 (14) | 0.0419 (17) | 0.0000 (12) | −0.0116 (13) | −0.0055 (12) |
C1 | 0.0222 (19) | 0.0212 (19) | 0.0224 (19) | −0.0053 (15) | 0.0077 (15) | −0.0030 (15) |
C2 | 0.0207 (19) | 0.022 (2) | 0.025 (2) | −0.0016 (15) | −0.0020 (14) | −0.0003 (15) |
C3 | 0.0211 (19) | 0.026 (2) | 0.0234 (19) | −0.0046 (15) | 0.0047 (15) | 0.0007 (15) |
C4 | 0.050 (3) | 0.042 (3) | 0.047 (3) | 0.022 (2) | 0.000 (2) | 0.005 (2) |
C5 | 0.170 (9) | 0.061 (5) | 0.143 (8) | 0.061 (5) | −0.040 (7) | −0.039 (5) |
C6 | 0.072 (5) | 0.147 (10) | 0.160 (9) | 0.056 (6) | −0.011 (5) | −0.011 (6) |
I1 | 0.03269 (16) | 0.04066 (18) | 0.03881 (18) | −0.01484 (12) | 0.01194 (11) | −0.00927 (13) |
N1 | 0.086 (4) | 0.053 (3) | 0.067 (3) | 0.046 (3) | 0.003 (3) | −0.007 (2) |
O1 | 0.0303 (16) | 0.0243 (15) | 0.0365 (17) | 0.0005 (12) | −0.0038 (13) | −0.0024 (12) |
O3 | 0.0369 (18) | 0.0390 (19) | 0.053 (2) | 0.0154 (14) | 0.0044 (15) | 0.0053 (16) |
Sm1 | 0.01931 (8) | 0.01931 (8) | 0.01931 (8) | 0.00093 (7) | 0.00093 (7) | −0.00093 (7) |
O2—C1 | 1.245 (5) | C5—H5C | 0.9600 |
O2—Sm1 | 2.474 (3) | C6—N1 | 1.480 (10) |
C1—O1 | 1.240 (5) | C6—H6A | 0.9600 |
C1—C2 | 1.534 (5) | C6—H6B | 0.9600 |
C1—Sm1 | 2.844 (4) | C6—H6C | 0.9600 |
C2—C3i | 1.393 (5) | O1—Sm1 | 2.562 (3) |
C2—C3 | 1.397 (5) | O3—Sm1 | 2.446 (3) |
C3—C2ii | 1.393 (5) | Sm1—O3iii | 2.446 (3) |
C3—I1 | 2.101 (4) | Sm1—O3iv | 2.446 (3) |
C4—O3 | 1.236 (6) | Sm1—O2iv | 2.474 (3) |
C4—N1 | 1.309 (6) | Sm1—O2iii | 2.474 (3) |
C4—H4 | 0.9300 | Sm1—O1iii | 2.562 (3) |
C5—N1 | 1.458 (9) | Sm1—O1iv | 2.562 (3) |
C5—H5A | 0.9600 | Sm1—C1iv | 2.844 (4) |
C5—H5B | 0.9600 | Sm1—C1iii | 2.844 (4) |
C1—O2—Sm1 | 93.9 (2) | O3iv—Sm1—O1 | 73.51 (10) |
O1—C1—O2 | 124.2 (4) | O2iv—Sm1—O1 | 133.46 (10) |
O1—C1—C2 | 118.3 (3) | O2—Sm1—O1 | 51.69 (9) |
O2—C1—C2 | 117.5 (3) | O2iii—Sm1—O1 | 71.50 (9) |
O1—C1—Sm1 | 64.2 (2) | O3iii—Sm1—O1iii | 77.37 (10) |
O2—C1—Sm1 | 60.20 (19) | O3—Sm1—O1iii | 73.51 (10) |
C2—C1—Sm1 | 173.6 (2) | O3iv—Sm1—O1iii | 142.72 (11) |
C3i—C2—C3 | 118.3 (4) | O2iv—Sm1—O1iii | 71.50 (9) |
C3i—C2—C1 | 121.2 (3) | O2—Sm1—O1iii | 133.46 (10) |
C3—C2—C1 | 120.5 (3) | O2iii—Sm1—O1iii | 51.69 (9) |
C2ii—C3—C2 | 121.7 (4) | O1—Sm1—O1iii | 118.13 (3) |
C2ii—C3—I1 | 119.9 (3) | O3iii—Sm1—O1iv | 73.51 (10) |
C2—C3—I1 | 118.4 (3) | O3—Sm1—O1iv | 142.72 (11) |
O3—C4—N1 | 124.4 (5) | O3iv—Sm1—O1iv | 77.37 (10) |
O3—C4—H4 | 117.8 | O2iv—Sm1—O1iv | 51.69 (9) |
N1—C4—H4 | 117.8 | O2—Sm1—O1iv | 71.50 (9) |
N1—C5—H5A | 109.5 | O2iii—Sm1—O1iv | 133.46 (10) |
N1—C5—H5B | 109.5 | O1—Sm1—O1iv | 118.13 (3) |
H5A—C5—H5B | 109.5 | O1iii—Sm1—O1iv | 118.13 (3) |
N1—C5—H5C | 109.5 | O3iii—Sm1—C1 | 152.70 (11) |
H5A—C5—H5C | 109.5 | O3—Sm1—C1 | 103.10 (11) |
H5B—C5—H5C | 109.5 | O3iv—Sm1—C1 | 77.91 (10) |
N1—C6—H6A | 109.5 | O2iv—Sm1—C1 | 110.46 (10) |
N1—C6—H6B | 109.5 | O2—Sm1—C1 | 25.90 (10) |
H6A—C6—H6B | 109.5 | O2iii—Sm1—C1 | 77.28 (10) |
N1—C6—H6C | 109.5 | O1—Sm1—C1 | 25.84 (10) |
H6A—C6—H6C | 109.5 | O1iii—Sm1—C1 | 128.98 (10) |
H6B—C6—H6C | 109.5 | O1iv—Sm1—C1 | 95.43 (10) |
C4—N1—C5 | 120.9 (6) | O3iii—Sm1—C1iv | 77.91 (10) |
C4—N1—C6 | 120.8 (6) | O3—Sm1—C1iv | 152.70 (11) |
C5—N1—C6 | 118.3 (5) | O3iv—Sm1—C1iv | 103.10 (11) |
C1—O1—Sm1 | 89.9 (2) | O2iv—Sm1—C1iv | 25.90 (10) |
C4—O3—Sm1 | 124.4 (3) | O2—Sm1—C1iv | 77.28 (10) |
O3iii—Sm1—O3 | 75.35 (12) | O2iii—Sm1—C1iv | 110.46 (10) |
O3iii—Sm1—O3iv | 75.35 (12) | O1—Sm1—C1iv | 128.98 (10) |
O3—Sm1—O3iv | 75.35 (12) | O1iii—Sm1—C1iv | 95.43 (10) |
O3iii—Sm1—O2iv | 82.62 (10) | O1iv—Sm1—C1iv | 25.84 (10) |
O3—Sm1—O2iv | 141.85 (10) | C1—Sm1—C1iv | 103.16 (9) |
O3iv—Sm1—O2iv | 128.50 (10) | O3iii—Sm1—C1iii | 103.10 (11) |
O3iii—Sm1—O2 | 141.85 (10) | O3—Sm1—C1iii | 77.91 (10) |
O3—Sm1—O2 | 128.50 (10) | O3iv—Sm1—C1iii | 152.70 (11) |
O3iv—Sm1—O2 | 82.62 (10) | O2iv—Sm1—C1iii | 77.28 (10) |
O2iv—Sm1—O2 | 87.46 (10) | O2—Sm1—C1iii | 110.46 (10) |
O3iii—Sm1—O2iii | 128.50 (10) | O2iii—Sm1—C1iii | 25.90 (10) |
O3—Sm1—O2iii | 82.62 (10) | O1—Sm1—C1iii | 95.43 (10) |
O3iv—Sm1—O2iii | 141.85 (10) | O1iii—Sm1—C1iii | 25.84 (10) |
O2iv—Sm1—O2iii | 87.46 (10) | O1iv—Sm1—C1iii | 128.98 (10) |
O2—Sm1—O2iii | 87.46 (10) | C1—Sm1—C1iii | 103.16 (9) |
O3iii—Sm1—O1 | 142.72 (11) | C1iv—Sm1—C1iii | 103.16 (9) |
O3—Sm1—O1 | 77.37 (10) | ||
Sm1—O2—C1—O1 | −5.3 (4) | C1—O1—Sm1—O3iv | −96.3 (2) |
Sm1—O2—C1—C2 | 173.3 (3) | C1—O1—Sm1—O2iv | 31.5 (3) |
O1—C1—C2—C3i | −76.0 (5) | C1—O1—Sm1—O2 | −2.7 (2) |
O2—C1—C2—C3i | 105.3 (4) | C1—O1—Sm1—O2iii | 99.1 (2) |
Sm1—C1—C2—C3i | 172 (2) | C1—O1—Sm1—O1iii | 122.17 (19) |
O1—C1—C2—C3 | 104.2 (4) | C1—O1—Sm1—O1iv | −31.0 (3) |
O2—C1—C2—C3 | −74.4 (5) | C1—O1—Sm1—C1iv | −2.6 (3) |
Sm1—C1—C2—C3 | −8 (3) | C1—O1—Sm1—C1iii | 109.2 (3) |
C3i—C2—C3—C2ii | 2.2 (7) | O1—C1—Sm1—O3iii | 88.8 (3) |
C1—C2—C3—C2ii | −178.0 (3) | O2—C1—Sm1—O3iii | −86.3 (3) |
C3i—C2—C3—I1 | −177.81 (18) | C2—C1—Sm1—O3iii | −156 (2) |
C1—C2—C3—I1 | 2.0 (5) | O1—C1—Sm1—O3 | 5.5 (3) |
O3—C4—N1—C5 | 179.1 (7) | O2—C1—Sm1—O3 | −169.7 (2) |
O3—C4—N1—C6 | −1.6 (9) | C2—C1—Sm1—O3 | 120 (2) |
O2—C1—O1—Sm1 | 5.1 (4) | O1—C1—Sm1—O3iv | 77.1 (2) |
C2—C1—O1—Sm1 | −173.4 (3) | O2—C1—Sm1—O3iv | −98.1 (2) |
N1—C4—O3—Sm1 | −170.0 (4) | C2—C1—Sm1—O3iv | −168 (2) |
C4—O3—Sm1—O3iii | 33.2 (4) | O1—C1—Sm1—O2iv | −156.1 (2) |
C4—O3—Sm1—O3iv | 111.6 (4) | O2—C1—Sm1—O2iv | 28.8 (2) |
C4—O3—Sm1—O2iv | −23.6 (5) | C2—C1—Sm1—O2iv | −41 (2) |
C4—O3—Sm1—O2 | 179.4 (4) | O1—C1—Sm1—O2 | 175.1 (4) |
C4—O3—Sm1—O2iii | −99.8 (4) | C2—C1—Sm1—O2 | −70 (2) |
C4—O3—Sm1—O1 | −172.4 (4) | O1—C1—Sm1—O2iii | −73.7 (2) |
C4—O3—Sm1—O1iii | −47.7 (4) | O2—C1—Sm1—O2iii | 111.1 (3) |
C4—O3—Sm1—O1iv | 67.3 (4) | C2—C1—Sm1—O2iii | 41 (2) |
C4—O3—Sm1—C1 | −174.9 (4) | O2—C1—Sm1—O1 | −175.1 (4) |
C4—O3—Sm1—C1iv | 21.3 (5) | C2—C1—Sm1—O1 | 115 (2) |
C4—O3—Sm1—C1iii | −74.0 (4) | O1—C1—Sm1—O1iii | −73.78 (19) |
C1—O2—Sm1—O3iii | 132.2 (2) | O2—C1—Sm1—O1iii | 111.1 (2) |
C1—O2—Sm1—O3 | 12.9 (3) | C2—C1—Sm1—O1iii | 41 (2) |
C1—O2—Sm1—O3iv | 77.5 (2) | O1—C1—Sm1—O1iv | 152.9 (2) |
C1—O2—Sm1—O2iv | −153.2 (2) | O2—C1—Sm1—O1iv | −22.3 (2) |
C1—O2—Sm1—O2iii | −65.6 (3) | C2—C1—Sm1—O1iv | −92 (2) |
C1—O2—Sm1—O1 | 2.7 (2) | O1—C1—Sm1—C1iv | 177.9 (2) |
C1—O2—Sm1—O1iii | −91.8 (3) | O2—C1—Sm1—C1iv | 2.8 (3) |
C1—O2—Sm1—O1iv | 156.6 (2) | C2—C1—Sm1—C1iv | −67 (2) |
C1—O2—Sm1—C1iv | −177.2 (3) | O1—C1—Sm1—C1iii | −75.0 (3) |
C1—O2—Sm1—C1iii | −77.76 (18) | O2—C1—Sm1—C1iii | 109.90 (18) |
C1—O1—Sm1—O3iii | −130.8 (2) | C2—C1—Sm1—C1iii | 40 (2) |
C1—O1—Sm1—O3 | −174.6 (3) |
Symmetry codes: (i) −y+1/2, −z, x−1/2; (ii) z+1/2, −x+1/2, −y; (iii) −z+3/2, −x+1, y+1/2; (iv) −y+1, z−1/2, −x+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Sm(C9I3O6)(C3H7NO)3] |
Mr | 954.43 |
Crystal system, space group | Cubic, P213 |
Temperature (K) | 295 |
a (Å) | 14.1341 (16) |
V (Å3) | 2823.6 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.41 |
Crystal size (mm) | 0.16 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.478, 0.498 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5119, 2143, 2026 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.646 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.049, 1.03 |
No. of reflections | 2143 |
No. of parameters | 106 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.62 |
Absolute structure | Flack (1983), 943 Friedel pairs |
Absolute structure parameter | 0.02 (2) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 2012).
Acknowledgements
The authors acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 21276142 and 21076115).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2005). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Daiguebonne, C., Gerault, Y., Le Dret, F., Guillou, O. & Boubekeur, K. (2002). J. Alloys Compd, 344, 179–185. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Han, Y.-F., Fu, L.-S., Mafra, L. & Shi, F.-N. (2012). J. Solid State Chem. 186, 165–170. Web of Science CSD CrossRef CAS Google Scholar
Lu, J.-H., Xu, H.-W., Liu, Y., Zhao, Y.-S., Daemen, L. L., Brown, C., Timofeeva, T. V., Ma, S.-Q. & Zhou, H.-C. (2008). J. Am. Chem. Soc. 130, 9626–9627. Web of Science PubMed Google Scholar
Nakanishi, K. & Tanaka, N. (2007). Acc. Chem. Res. 40, 863–873. Web of Science CrossRef PubMed CAS Google Scholar
Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M. & Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58–67. Web of Science CrossRef PubMed CAS Google Scholar
Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem. 14, 1540–1543. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suib, S. L. (2008). Acc. Chem. Res. 41, 479–487. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic framework (MOF) compounds have attracted considerable interest because of their potential applications in a variety of areas, including catalysis, shape-selective adsorption, gas storage, photochemistry, and materials with magnetic properties (Nakanishi et al., 2007; Phan et al., 2010; Suib et al., 2008). The design and synthesis of MOFs with great potential for chemical and structural diversity, is one of the major current challenges in inorganic chemistry. To the best of our knowledge, MOF structure of the I3BTC ligand is not reported so far. The I3BTC ligand, besides three iodine atoms at the 2,4,6-sites of benzene ring, is same as 1,3,5- benzenetricarboxylic acid (H3BTC). Although the coordinated ability of carbonylic O atoms is influenced by the electronic properties of iodine atoms to some extent, its coordinated mode is almost no change (Daiguebonne et al., 2002). In recent years, the construction of MOFs based on H3BTC ligand has been widely investigated owing to their fascinating coordination modes (Han et al., 2012; Lu et al., 2008; Serre et al., 2004). Herein we report the hydrothermal synthesis and crystal structure of the title compound (I).
In (I), the asymmetric unit contains one SmIII ion and one I3BTC anion, both situated on a threefold axis, and one DMF molecule in general position. As shown in Fig. 1, each Sm center is coordinated by nine O atoms -six carboxylate O atoms from three ligands and three O atoms from three DMF molecules. The Sm1–O bond lengths fall in the range of 2.446 (3)–2.562 (3) Å, and the O–Sm–O angles varying from 51.702 (88)–142.712 (91)°, thus falling in the expected region. Each ligand I3BTC bridges three Sm atoms to produce a three-dimensional metal organic framework structure, while coordinated solvent molecules (DMF) exist among the pore canals by coordinating O atoms to central metal ions.