organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Meth­­oxy­phen­yl)(4-propyl­cyclo­hex­yl)methanone

aPharmacy Department of the Second Artillery General Hospital, Beijing 100088, People's Republic of China
*Correspondence e-mail: chengmin_li@yahoo.com

(Received 30 January 2013; accepted 5 February 2013; online 20 February 2013)

The asymmetric unit of the title compound, C17H24O2, contains two independent mol­ecules with different conformations. The least-squares plane through the cyclohexane ring makes dihedral angles of 52.9 (5) and 81.4 (4)° with the benzene ring in the two molecules. The cyclo­hexane ring adopts a chair conformation in both mol­ecules. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules related by translation in [100] into two crystallographically independent chains.

Related literature

For the anti­hyperglycemic activity of SGLT2 inhibitors, see: Washburn (2009[Washburn, W. N. (2009). J. Med. Chem. 52, 1785-1794.]); Zhao et al. (2011[Zhao, W. J., Shi, Y. H., Zhao, G. L., Wang, Y. L., Shao, H., Tang, L. D. & Wang, J. W. (2011). Chin. Chem. Lett. 22, 1215-1218.]); Shao et al. (2011[Shao, H., Gao, Y. L., Lou, Y. Y., Wang, Y. L., Liu, W., Xu, W. R., Wang, J. W., Zhao, G. L. & Tang, L. D. (2011). Chin. J. Org. Chem. 31, 836-842.]). For the structure of (5-bromo-2-meth­oxy­phen­yl)(4-ethyl­cyclo­hex­yl)methanone, see: Wang et al. (2011[Wang, L., Chang, Z., Ding, C., Shao, H. & Sun, J. (2011). Acta Cryst. E67, o1173.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24O2

  • Mr = 260.36

  • Triclinic, [P \overline 1]

  • a = 5.679 (1) Å

  • b = 7.3260 (12) Å

  • c = 35.020 (4) Å

  • α = 93.74 (1)°

  • β = 91.877 (6)°

  • γ = 94.436 (1)°

  • V = 1448.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.14 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.986, Tmax = 0.989

  • 14496 measured reflections

  • 6762 independent reflections

  • 5234 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.03

  • 6762 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 1.00 2.58 3.4661 (14) 147
C26—H26⋯O3ii 1.00 2.58 3.5200 (14) 156
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

SGLT2 inhibitors constitute new class of hyperglycemic agents, and the most advanced drug dapagliflozin has been approved recently in EU for the treatment of type 2 diabetes (Washburn, 2009). The title compound has been obtained in our laboratory as an intermediate used in the synthesis of SGLT2 inhibitors (Zhao et al., 2011; Shao et al., 2011).

The asymmetric unit of the title compound, C17H24O2, contains two independent molecules differing in conformations. In one independent molecule, the mean planes of C27/C28/C30/C31 and benzene ring C19–C24 form a dihedral angle of 52.9 (5)°, while in another independent molecule, the mean planes of C10/C11/C13/C14 and benzene ring C2–C7 form a dihedral angle of 81.4 (4)°. The cyclohexane ring adopts a chair conformation in both molecules. All bond lengths are normal and correspond to those observed in the related compound (Wang et al., 2011).

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules related by translation in [100] into two crystallographically independent chains.

Related literature top

For the antihyperglycemic activity of SGLT2 inhibitors, see: Washburn (2009); Zhao et al. (2011); Shao et al. (2011). For the structure of (5-bromo-2-methoxyphenyl)(4-ethylcyclohexyl)methanone, see: Wang et al. (2011).

Experimental top

17.03 g (0.1 mol) of trans-4-propylcyclohexanecarboxylic acid was stirred in 150 ml of dried dichloromethane at room temperature, followed by dropwise addition of 17.80 g (0.13 mol) of freshly distilled oxalyl chloride and 0.1 ml of dried DMF. The resulting mixture was stirred at room temperature for 5 h and evaporated in vacuo to remove the solvent and excessive oxalyl chloride to give a residue, which was dissolved in 100 ml of dried dichloromethane followed by addition of 10.81 g (0.1 mol) of anisole. The mixture thus obtained was stirred at 10 centigrade followed by addition of 14.67 g (0.11 mol) of AlCl3 portionwise. The reaction mixture was then stirred at room temperature overnight, poured into 300 ml of ice-water and extracted with 100 ml, three times of dichloromethane. The combined extracts were washed with brine, dried over Na2SO4 and evaporated to dryness. The residue was purified by column chromatography to afford the pure title compound as colorless crystals. The single crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation at room temperature of a 0.2 M solution of the title compound in dichloromethane/hexane (1/15).

Refinement top

All H atoms were geometrically positioned (C–H = 0.95–1.00 Å) , and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2009); cell refinement: CrystalClear (Rigaku/MSC, 2009); data reduction: CrystalClear (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound showing the atomic numbering and 40% probability displacement ellipsoids.
(4-Methoxyphenyl)(4-propylcyclohexyl)methanone top
Crystal data top
C17H24O2Z = 4
Mr = 260.36F(000) = 568
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 5.679 (1) ÅCell parameters from 3880 reflections
b = 7.3260 (12) Åθ = 1.7–27.9°
c = 35.020 (4) ŵ = 0.08 mm1
α = 93.74 (1)°T = 113 K
β = 91.877 (6)°Prism, colorless
γ = 94.436 (1)°0.18 × 0.16 × 0.14 mm
V = 1448.5 (4) Å3
Data collection top
Rigaku Saturn724 CCD
diffractometer
6762 independent reflections
Radiation source: rotating anode5234 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.027
Detector resolution: 14.222 pixels mm-1θmax = 27.9°, θmin = 1.8°
ω scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
k = 99
Tmin = 0.986, Tmax = 0.989l = 4545
14496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0748P)2]
where P = (Fo2 + 2Fc2)/3
6762 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H24O2γ = 94.436 (1)°
Mr = 260.36V = 1448.5 (4) Å3
Triclinic, P1Z = 4
a = 5.679 (1) ÅMo Kα radiation
b = 7.3260 (12) ŵ = 0.08 mm1
c = 35.020 (4) ÅT = 113 K
α = 93.74 (1)°0.18 × 0.16 × 0.14 mm
β = 91.877 (6)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
6762 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2009)
5234 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.989Rint = 0.027
14496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
6762 reflectionsΔρmin = 0.21 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.99880 (12)0.35024 (11)0.15912 (2)0.0289 (2)
O20.66126 (13)0.59253 (10)0.32334 (2)0.02519 (18)
O30.01039 (13)1.20793 (12)0.33989 (2)0.0331 (2)
O40.30237 (13)0.86232 (11)0.18076 (2)0.02688 (19)
C10.79648 (17)0.37013 (14)0.16884 (3)0.0199 (2)
C20.75366 (17)0.43668 (13)0.20893 (3)0.0182 (2)
C30.94045 (17)0.53011 (13)0.23066 (3)0.0200 (2)
H31.08730.55510.21900.024*
C40.91789 (17)0.58768 (14)0.26880 (3)0.0210 (2)
H41.04610.65390.28300.025*
C50.70437 (18)0.54689 (13)0.28593 (3)0.0197 (2)
C60.51423 (17)0.45635 (13)0.26461 (3)0.0207 (2)
H60.36790.43100.27630.025*
C70.53761 (17)0.40306 (13)0.22639 (3)0.0200 (2)
H70.40620.34320.21190.024*
C80.8581 (2)0.66708 (16)0.34736 (3)0.0295 (3)
H8A0.98380.58270.34620.035*
H8B0.80840.68390.37380.035*
H8C0.91710.78580.33860.035*
C90.59203 (17)0.33767 (14)0.13965 (3)0.0208 (2)
H90.44310.30660.15310.025*
C100.63021 (19)0.18261 (14)0.10969 (3)0.0246 (2)
H10A0.78680.20580.09860.030*
H10B0.62920.06520.12220.030*
C110.43893 (19)0.16664 (14)0.07775 (3)0.0248 (2)
H11A0.28410.13240.08860.030*
H11B0.47240.06770.05850.030*
C120.42516 (18)0.34571 (14)0.05803 (3)0.0216 (2)
H120.58170.37620.04680.026*
C130.38275 (19)0.49986 (15)0.08810 (3)0.0240 (2)
H13A0.38110.61710.07560.029*
H13B0.22600.47430.09900.029*
C140.57195 (19)0.51957 (14)0.12039 (3)0.0241 (2)
H14A0.53250.61570.13980.029*
H14B0.72630.55890.11000.029*
C150.23631 (18)0.33204 (15)0.02564 (3)0.0242 (2)
H15A0.08260.29070.03600.029*
H15B0.22190.45610.01660.029*
C160.2837 (2)0.20226 (16)0.00861 (3)0.0273 (2)
H16A0.44230.23730.01800.033*
H16B0.28450.07580.00020.033*
C170.1010 (2)0.20485 (17)0.04126 (3)0.0315 (3)
H17A0.05540.16430.03250.038*
H17B0.14190.12210.06270.038*
H17C0.09870.32980.04960.038*
C180.18165 (18)1.15443 (14)0.33140 (3)0.0213 (2)
C190.21375 (17)1.07129 (13)0.29201 (3)0.0192 (2)
C200.03936 (17)1.08960 (13)0.26396 (3)0.0200 (2)
H200.09771.14920.27070.024*
C210.06192 (17)1.02246 (14)0.22640 (3)0.0210 (2)
H210.05761.03710.20750.025*
C220.26183 (18)0.93344 (13)0.21679 (3)0.0209 (2)
C230.43692 (17)0.91194 (14)0.24449 (3)0.0212 (2)
H230.57170.84920.23790.025*
C240.41410 (17)0.98210 (14)0.28166 (3)0.0207 (2)
H240.53560.96980.30040.025*
C250.1211 (2)0.87346 (16)0.15194 (3)0.0308 (3)
H25A0.02560.80850.15950.037*
H25B0.16950.81700.12760.037*
H25C0.09511.00250.14890.037*
C260.38631 (17)1.17056 (14)0.36072 (3)0.0203 (2)
H260.53741.19220.34720.024*
C270.36464 (18)1.33026 (14)0.39046 (3)0.0230 (2)
H27A0.37201.44680.37760.028*
H27B0.20951.31510.40250.028*
C280.56124 (18)1.33969 (14)0.42140 (3)0.0240 (2)
H28A0.53971.44240.44040.029*
H28B0.71561.36470.40960.029*
C290.56315 (18)1.16106 (14)0.44176 (3)0.0220 (2)
H290.40711.13990.45380.026*
C300.58677 (19)1.00186 (14)0.41190 (3)0.0235 (2)
H30A0.74211.01850.40000.028*
H30B0.58120.88530.42480.028*
C310.39091 (18)0.98958 (14)0.38069 (3)0.0231 (2)
H31A0.23640.96140.39220.028*
H31B0.41630.88840.36150.028*
C320.75613 (19)1.16748 (15)0.47336 (3)0.0242 (2)
H32A0.76431.04250.48230.029*
H32B0.91001.20330.46240.029*
C330.7207 (2)1.29943 (15)0.50788 (3)0.0268 (2)
H33A0.72671.42630.49960.032*
H33B0.56211.27020.51790.032*
C340.9062 (2)1.28984 (16)0.53987 (3)0.0307 (3)
H34A0.90181.16440.54810.037*
H34B0.87311.37430.56150.037*
H34C1.06311.32460.53050.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (4)0.0423 (5)0.0243 (4)0.0054 (3)0.0018 (3)0.0008 (3)
O20.0282 (4)0.0283 (4)0.0184 (4)0.0021 (3)0.0006 (3)0.0026 (3)
O30.0219 (4)0.0504 (5)0.0271 (4)0.0089 (4)0.0020 (3)0.0033 (4)
O40.0308 (4)0.0312 (4)0.0187 (4)0.0075 (3)0.0016 (3)0.0025 (3)
C10.0203 (5)0.0204 (5)0.0191 (5)0.0023 (4)0.0004 (4)0.0026 (4)
C20.0188 (5)0.0171 (5)0.0190 (5)0.0026 (4)0.0008 (4)0.0035 (4)
C30.0182 (5)0.0200 (5)0.0221 (5)0.0015 (4)0.0001 (4)0.0041 (4)
C40.0192 (5)0.0196 (5)0.0239 (5)0.0007 (4)0.0028 (4)0.0016 (4)
C50.0250 (5)0.0171 (5)0.0175 (5)0.0047 (4)0.0008 (4)0.0024 (4)
C60.0195 (5)0.0187 (5)0.0243 (5)0.0008 (4)0.0037 (4)0.0035 (4)
C70.0180 (5)0.0176 (5)0.0240 (5)0.0000 (4)0.0010 (4)0.0012 (4)
C80.0341 (6)0.0328 (6)0.0206 (5)0.0039 (5)0.0051 (4)0.0045 (4)
C90.0184 (5)0.0265 (5)0.0174 (5)0.0024 (4)0.0004 (4)0.0007 (4)
C100.0285 (6)0.0226 (5)0.0226 (5)0.0060 (4)0.0039 (4)0.0010 (4)
C110.0290 (6)0.0229 (5)0.0217 (5)0.0019 (4)0.0047 (4)0.0021 (4)
C120.0217 (5)0.0264 (5)0.0166 (5)0.0032 (4)0.0003 (4)0.0006 (4)
C130.0291 (6)0.0250 (5)0.0185 (5)0.0082 (4)0.0028 (4)0.0001 (4)
C140.0282 (6)0.0242 (5)0.0198 (5)0.0057 (4)0.0026 (4)0.0021 (4)
C150.0261 (6)0.0284 (6)0.0182 (5)0.0055 (4)0.0022 (4)0.0005 (4)
C160.0319 (6)0.0291 (6)0.0207 (5)0.0056 (5)0.0028 (4)0.0022 (4)
C170.0382 (7)0.0336 (6)0.0215 (5)0.0033 (5)0.0072 (5)0.0029 (5)
C180.0203 (5)0.0230 (5)0.0208 (5)0.0008 (4)0.0020 (4)0.0038 (4)
C190.0188 (5)0.0179 (5)0.0207 (5)0.0016 (4)0.0005 (4)0.0028 (4)
C200.0173 (5)0.0191 (5)0.0237 (5)0.0001 (4)0.0007 (4)0.0034 (4)
C210.0205 (5)0.0204 (5)0.0221 (5)0.0002 (4)0.0031 (4)0.0037 (4)
C220.0252 (5)0.0178 (5)0.0196 (5)0.0002 (4)0.0024 (4)0.0019 (4)
C230.0204 (5)0.0200 (5)0.0238 (5)0.0028 (4)0.0020 (4)0.0034 (4)
C240.0193 (5)0.0216 (5)0.0215 (5)0.0008 (4)0.0009 (4)0.0046 (4)
C250.0371 (7)0.0338 (6)0.0211 (5)0.0078 (5)0.0053 (4)0.0025 (4)
C260.0197 (5)0.0229 (5)0.0181 (5)0.0016 (4)0.0009 (4)0.0010 (4)
C270.0250 (5)0.0231 (5)0.0209 (5)0.0045 (4)0.0003 (4)0.0003 (4)
C280.0267 (6)0.0231 (5)0.0218 (5)0.0023 (4)0.0017 (4)0.0018 (4)
C290.0229 (5)0.0251 (5)0.0181 (5)0.0030 (4)0.0003 (4)0.0001 (4)
C300.0288 (6)0.0226 (5)0.0192 (5)0.0049 (4)0.0012 (4)0.0001 (4)
C310.0260 (5)0.0228 (5)0.0202 (5)0.0010 (4)0.0001 (4)0.0001 (4)
C320.0259 (6)0.0274 (6)0.0196 (5)0.0057 (4)0.0017 (4)0.0002 (4)
C330.0319 (6)0.0275 (6)0.0207 (5)0.0051 (4)0.0020 (4)0.0017 (4)
C340.0361 (7)0.0326 (6)0.0226 (5)0.0027 (5)0.0063 (5)0.0010 (4)
Geometric parameters (Å, º) top
O1—C11.2256 (12)C17—H17A0.9800
O2—C51.3657 (11)C17—H17B0.9800
O2—C81.4280 (12)C17—H17C0.9800
O3—C181.2261 (12)C18—C191.4937 (13)
O4—C221.3669 (11)C18—C261.5178 (14)
O4—C251.4284 (12)C19—C201.3921 (13)
C1—C21.4897 (13)C19—C241.4014 (14)
C1—C91.5157 (13)C20—C211.3874 (13)
C2—C31.3927 (13)C20—H200.9500
C2—C71.4007 (13)C21—C221.3922 (14)
C3—C41.3872 (13)C21—H210.9500
C3—H30.9500C22—C231.3913 (14)
C4—C51.3909 (14)C23—C241.3816 (13)
C4—H40.9500C23—H230.9500
C5—C61.3910 (14)C24—H240.9500
C6—C71.3834 (13)C25—H25A0.9800
C6—H60.9500C25—H25B0.9800
C7—H70.9500C25—H25C0.9800
C8—H8A0.9800C26—C271.5298 (13)
C8—H8B0.9800C26—C311.5404 (14)
C8—H8C0.9800C26—H261.0000
C9—C101.5285 (13)C27—C281.5246 (14)
C9—C141.5426 (15)C27—H27A0.9900
C9—H91.0000C27—H27B0.9900
C10—C111.5259 (14)C28—C291.5311 (15)
C10—H10A0.9900C28—H28A0.9900
C10—H10B0.9900C28—H28B0.9900
C11—C121.5278 (15)C29—C321.5277 (14)
C11—H11A0.9900C29—C301.5316 (13)
C11—H11B0.9900C29—H291.0000
C12—C151.5284 (14)C30—C311.5270 (14)
C12—C131.5314 (13)C30—H30A0.9900
C12—H121.0000C30—H30B0.9900
C13—C141.5262 (14)C31—H31A0.9900
C13—H13A0.9900C31—H31B0.9900
C13—H13B0.9900C32—C331.5263 (13)
C14—H14A0.9900C32—H32A0.9900
C14—H14B0.9900C32—H32B0.9900
C15—C161.5253 (13)C33—C341.5210 (15)
C15—H15A0.9900C33—H33A0.9900
C15—H15B0.9900C33—H33B0.9900
C16—C171.5207 (15)C34—H34A0.9800
C16—H16A0.9900C34—H34B0.9800
C16—H16B0.9900C34—H34C0.9800
C5—O2—C8117.03 (8)H17B—C17—H17C109.5
C22—O4—C25117.07 (8)O3—C18—C19119.74 (9)
O1—C1—C2119.73 (9)O3—C18—C26120.49 (9)
O1—C1—C9120.15 (8)C19—C18—C26119.77 (8)
C2—C1—C9120.03 (8)C20—C19—C24118.60 (9)
C3—C2—C7118.32 (9)C20—C19—C18118.07 (9)
C3—C2—C1118.42 (9)C24—C19—C18123.28 (9)
C7—C2—C1123.20 (8)C21—C20—C19121.24 (9)
C4—C3—C2121.78 (9)C21—C20—H20119.4
C4—C3—H3119.1C19—C20—H20119.4
C2—C3—H3119.1C20—C21—C22119.19 (9)
C3—C4—C5118.89 (9)C20—C21—H21120.4
C3—C4—H4120.6C22—C21—H21120.4
C5—C4—H4120.6O4—C22—C23115.43 (9)
O2—C5—C4124.58 (9)O4—C22—C21124.12 (9)
O2—C5—C6115.13 (9)C23—C22—C21120.46 (9)
C4—C5—C6120.28 (9)C24—C23—C22119.76 (9)
C7—C6—C5120.20 (9)C24—C23—H23120.1
C7—C6—H6119.9C22—C23—H23120.1
C5—C6—H6119.9C23—C24—C19120.73 (9)
C6—C7—C2120.46 (9)C23—C24—H24119.6
C6—C7—H7119.8C19—C24—H24119.6
C2—C7—H7119.8O4—C25—H25A109.5
O2—C8—H8A109.5O4—C25—H25B109.5
O2—C8—H8B109.5H25A—C25—H25B109.5
H8A—C8—H8B109.5O4—C25—H25C109.5
O2—C8—H8C109.5H25A—C25—H25C109.5
H8A—C8—H8C109.5H25B—C25—H25C109.5
H8B—C8—H8C109.5C18—C26—C27111.17 (8)
C1—C9—C10112.01 (8)C18—C26—C31109.14 (8)
C1—C9—C14106.69 (8)C27—C26—C31109.91 (8)
C10—C9—C14110.37 (8)C18—C26—H26108.9
C1—C9—H9109.2C27—C26—H26108.9
C10—C9—H9109.2C31—C26—H26108.9
C14—C9—H9109.2C28—C27—C26111.38 (8)
C11—C10—C9111.57 (8)C28—C27—H27A109.4
C11—C10—H10A109.3C26—C27—H27A109.4
C9—C10—H10A109.3C28—C27—H27B109.4
C11—C10—H10B109.3C26—C27—H27B109.4
C9—C10—H10B109.3H27A—C27—H27B108.0
H10A—C10—H10B108.0C27—C28—C29111.88 (9)
C10—C11—C12112.08 (9)C27—C28—H28A109.2
C10—C11—H11A109.2C29—C28—H28A109.2
C12—C11—H11A109.2C27—C28—H28B109.2
C10—C11—H11B109.2C29—C28—H28B109.2
C12—C11—H11B109.2H28A—C28—H28B107.9
H11A—C11—H11B107.9C32—C29—C28113.07 (9)
C11—C12—C15112.92 (9)C32—C29—C30111.21 (8)
C11—C12—C13109.03 (8)C28—C29—C30108.89 (8)
C15—C12—C13111.00 (8)C32—C29—H29107.8
C11—C12—H12107.9C28—C29—H29107.8
C15—C12—H12107.9C30—C29—H29107.8
C13—C12—H12107.9C31—C30—C29112.01 (8)
C14—C13—C12112.18 (8)C31—C30—H30A109.2
C14—C13—H13A109.2C29—C30—H30A109.2
C12—C13—H13A109.2C31—C30—H30B109.2
C14—C13—H13B109.2C29—C30—H30B109.2
C12—C13—H13B109.2H30A—C30—H30B107.9
H13A—C13—H13B107.9C30—C31—C26111.24 (8)
C13—C14—C9111.59 (9)C30—C31—H31A109.4
C13—C14—H14A109.3C26—C31—H31A109.4
C9—C14—H14A109.3C30—C31—H31B109.4
C13—C14—H14B109.3C26—C31—H31B109.4
C9—C14—H14B109.3H31A—C31—H31B108.0
H14A—C14—H14B108.0C33—C32—C29114.64 (9)
C16—C15—C12114.86 (9)C33—C32—H32A108.6
C16—C15—H15A108.6C29—C32—H32A108.6
C12—C15—H15A108.6C33—C32—H32B108.6
C16—C15—H15B108.6C29—C32—H32B108.6
C12—C15—H15B108.6H32A—C32—H32B107.6
H15A—C15—H15B107.5C34—C33—C32112.69 (9)
C17—C16—C15112.75 (9)C34—C33—H33A109.1
C17—C16—H16A109.0C32—C33—H33A109.1
C15—C16—H16A109.0C34—C33—H33B109.1
C17—C16—H16B109.0C32—C33—H33B109.1
C15—C16—H16B109.0H33A—C33—H33B107.8
H16A—C16—H16B107.8C33—C34—H34A109.5
C16—C17—H17A109.5C33—C34—H34B109.5
C16—C17—H17B109.5H34A—C34—H34B109.5
H17A—C17—H17B109.5C33—C34—H34C109.5
C16—C17—H17C109.5H34A—C34—H34C109.5
H17A—C17—H17C109.5H34B—C34—H34C109.5
O1—C1—C2—C320.66 (14)O3—C18—C19—C2012.36 (14)
C9—C1—C2—C3155.84 (9)C26—C18—C19—C20168.16 (9)
O1—C1—C2—C7156.50 (10)O3—C18—C19—C24170.06 (10)
C9—C1—C2—C726.99 (14)C26—C18—C19—C249.42 (14)
C7—C2—C3—C40.78 (15)C24—C19—C20—C210.35 (14)
C1—C2—C3—C4176.52 (9)C18—C19—C20—C21177.34 (9)
C2—C3—C4—C51.54 (15)C19—C20—C21—C220.70 (14)
C8—O2—C5—C47.96 (14)C25—O4—C22—C23176.92 (9)
C8—O2—C5—C6173.21 (9)C25—O4—C22—C213.15 (14)
C3—C4—C5—O2178.66 (9)C20—C21—C22—O4179.91 (9)
C3—C4—C5—C62.56 (15)C20—C21—C22—C230.02 (15)
O2—C5—C6—C7179.86 (9)O4—C22—C23—C24178.85 (9)
C4—C5—C6—C71.25 (15)C21—C22—C23—C241.08 (15)
C5—C6—C7—C21.13 (15)C22—C23—C24—C191.44 (15)
C3—C2—C7—C62.13 (15)C20—C19—C24—C230.73 (14)
C1—C2—C7—C6175.04 (9)C18—C19—C24—C23178.29 (9)
O1—C1—C9—C1034.71 (13)O3—C18—C26—C2727.44 (14)
C2—C1—C9—C10148.79 (9)C19—C18—C26—C27153.09 (9)
O1—C1—C9—C1486.17 (11)O3—C18—C26—C3193.96 (11)
C2—C1—C9—C1490.32 (10)C19—C18—C26—C3185.51 (11)
C1—C9—C10—C11172.99 (8)C18—C26—C27—C28176.42 (8)
C14—C9—C10—C1154.26 (11)C31—C26—C27—C2855.47 (11)
C9—C10—C11—C1257.09 (12)C26—C27—C28—C2957.59 (11)
C10—C11—C12—C15179.38 (8)C27—C28—C29—C32179.12 (8)
C10—C11—C12—C1356.75 (11)C27—C28—C29—C3056.73 (11)
C11—C12—C13—C1456.27 (11)C32—C29—C30—C31178.27 (8)
C15—C12—C13—C14178.73 (8)C28—C29—C30—C3156.49 (11)
C12—C13—C14—C955.85 (12)C29—C30—C31—C2656.83 (11)
C1—C9—C14—C13175.68 (8)C18—C26—C31—C30177.24 (8)
C10—C9—C14—C1353.76 (11)C27—C26—C31—C3055.08 (11)
C11—C12—C15—C1666.01 (12)C28—C29—C32—C3367.56 (12)
C13—C12—C15—C16171.21 (9)C30—C29—C32—C33169.58 (9)
C12—C15—C16—C17175.54 (9)C29—C32—C33—C34175.41 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i1.002.583.4661 (14)147
C26—H26···O3ii1.002.583.5200 (14)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H24O2
Mr260.36
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.679 (1), 7.3260 (12), 35.020 (4)
α, β, γ (°)93.74 (1), 91.877 (6), 94.436 (1)
V3)1448.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.14
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2009)
Tmin, Tmax0.986, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
14496, 6762, 5234
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.03
No. of reflections6762
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.21

Computer programs: CrystalClear (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i1.002.583.4661 (14)147.4
C26—H26···O3ii1.002.583.5200 (14)155.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

References

First citationRigaku/MSC (2009). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShao, H., Gao, Y. L., Lou, Y. Y., Wang, Y. L., Liu, W., Xu, W. R., Wang, J. W., Zhao, G. L. & Tang, L. D. (2011). Chin. J. Org. Chem. 31, 836–842.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Chang, Z., Ding, C., Shao, H. & Sun, J. (2011). Acta Cryst. E67, o1173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWashburn, W. N. (2009). J. Med. Chem. 52, 1785–1794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, W. J., Shi, Y. H., Zhao, G. L., Wang, Y. L., Shao, H., Tang, L. D. & Wang, J. W. (2011). Chin. Chem. Lett. 22, 1215–1218.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds