organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{[(1Z)-3-Chloro-1H-isoindol-1-yl­­idene]meth­yl}di­methyl­amine

aSchool of Chemistry and Material Science, Anhui Normal University, Wuhu, People's Republic of China
*Correspondence e-mail: shine_zywang@yahoo.com.cn

(Received 11 February 2013; accepted 20 February 2013; online 28 February 2013)

The asymmetric unit of the title compound, C11H11ClN2, contains two almost-planar independent mol­ecules: the isoindole and dimethyl­amino­methyl­ene mean planes in the two mol­ecules form dihedral angles of 5.45 (8) and 1.34 (8)°. The crystal packing exhibits no short inter­molecular contacts, except for a relatively short Cl⋯Cl distance of 3.4907 (7) Å.

Related literature

For applications of related isoindole derivatives, see: Jiao et al. (2010[Jiao, L. J., Yu, C. J., Liu, M. M., Wu, Y. C., Cong, K. B., Meng, T., Wang, Y. Q. & Hao, E. H. (2010). J. Org. Chem. 75, 6035-6038.]). For details of the synthesis, see: von Doheneck et al. (1969[Doheneck, H. von, Reinhard, H., Deuhel, H. & Wolkenstein, D. (1969). Chem. Ber. 102, 1357-1362.]). For the crystal structure of the related compound 4,5,6,7-tetra­fluoro-1-(N,N-dimethyl­amino­methyl­ene)-1H-isoindole, see: Uno et al. (2007[Uno, H., Masuda, G., Tukiji, M., Nishioka, Y. & Iida, T. (2007). Tetrahedron Lett. 48, 7512-7515.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClN2

  • Mr = 206.67

  • Monoclinic, P 21 /c

  • a = 12.1588 (9) Å

  • b = 10.4087 (8) Å

  • c = 16.3165 (12) Å

  • β = 92.720 (1)°

  • V = 2062.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.937

  • 14393 measured reflections

  • 3628 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.02

  • 3628 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was obtained as an intermediate in our ongoing search (Jiao et al., 2010) for new synthetic routes to boron-dipyrromethene (BODIPY). In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in the related 4,5,6,7-tetrafluoro-1-(N,N-dimethylaminomethylene)-1H-isoindole (Uno et al., 2007). In the crystal structure, there are no short intermolecular contacts, except of relatively short Cl···Cl distance of 3.4907 (7) Å.

Related literature top

For applications of related isoindole derivatives, see: Jiao et al. (2010). For details of the synthesis, see: von Doheneck et al. (1969). For the crystal structure of the related compound 4,5,6,7-tetrafluoro-1-(N,N-dimethylaminomethylene)-1H-isoindole, see: Uno et al. (2007).

Experimental top

The title compound was prepared following the known procedure (von Doheneck et al., 1969). To DMF (2.4 ml, 30 mmol) in 7 ml CH2Cl2 was added POCl3 (2.0 ml, 20 mmol), the reaction mixture was stirred under ice-cold condition for 0.5 h. Then isoindolin-1-one (1 g, 7.5 mmol) in 10 ml CH2Cl2 was added. After stirring at 333 k for 3 h, the reaction was monitored by TLC, adjusted pH-value to 8 with saturated potassium carbonate, poured into water (50 ml) and extracted with CH2Cl2 (3\30 ml). Organic layers were combined, dried over Na2SO4, and evaporated to dryness under vacuum. The desired compound was obtained as powder in 30% (280 mg) from column chromatography.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 Ueq.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
{[(1Z)-3-Chloro-1H-isoindol-1-ylidene]methyl}dimethylamine top
Crystal data top
C11H11ClN2F(000) = 864
Mr = 206.67Dx = 1.331 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9633 reflections
a = 12.1588 (9) Åθ = 2.3–27.6°
b = 10.4087 (8) ŵ = 0.33 mm1
c = 16.3165 (12) ÅT = 293 K
β = 92.720 (1)°Block, colourless
V = 2062.6 (3) Å30.30 × 0.30 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3628 independent reflections
Radiation source: fine-focus sealed tube3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1214
Tmin = 0.908, Tmax = 0.937k = 1212
14393 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6549P]
where P = (Fo2 + 2Fc2)/3
3628 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H11ClN2V = 2062.6 (3) Å3
Mr = 206.67Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.1588 (9) ŵ = 0.33 mm1
b = 10.4087 (8) ÅT = 293 K
c = 16.3165 (12) Å0.30 × 0.30 × 0.20 mm
β = 92.720 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3175 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.937Rint = 0.023
14393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3628 reflectionsΔρmin = 0.25 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10344 (14)0.95021 (15)0.17664 (10)0.0446 (4)
H10.09951.03080.15200.054*
C20.09492 (15)0.93661 (16)0.25997 (10)0.0485 (4)
H20.08551.00900.29230.058*
C30.10025 (14)0.81523 (16)0.29649 (10)0.0462 (4)
H30.09480.80860.35300.055*
C40.11330 (13)0.70544 (15)0.25124 (9)0.0413 (4)
H40.11580.62530.27640.050*
C50.12269 (12)0.71688 (14)0.16626 (9)0.0351 (3)
C60.11816 (12)0.83963 (14)0.13021 (9)0.0360 (3)
C70.13229 (13)0.81558 (14)0.04517 (9)0.0379 (3)
C80.13736 (12)0.62763 (14)0.09977 (9)0.0363 (3)
C90.14062 (12)0.49581 (14)0.10851 (9)0.0382 (3)
H90.13830.46700.16240.046*
C100.14543 (16)0.26882 (15)0.07727 (12)0.0540 (4)
H10A0.14930.26280.13600.081*
H10B0.20760.22570.05570.081*
H10C0.07870.22920.05600.081*
C110.14694 (16)0.42637 (17)0.03484 (10)0.0521 (4)
H11A0.14020.51680.04540.078*
H11B0.08620.38190.06180.078*
H11C0.21470.39550.05540.078*
C120.59631 (16)1.03344 (17)0.23675 (11)0.0538 (4)
H120.66071.04640.26880.065*
C130.50202 (19)1.1010 (2)0.25156 (13)0.0660 (5)
H130.50231.16030.29420.079*
C140.40623 (19)1.0810 (2)0.20311 (14)0.0709 (6)
H140.34311.12660.21490.085*
C150.40161 (16)0.9966 (2)0.13874 (13)0.0624 (5)
H150.33710.98640.10650.075*
C160.49652 (14)0.92593 (16)0.12242 (10)0.0478 (4)
C170.59264 (14)0.94515 (15)0.17246 (10)0.0448 (4)
C180.66982 (13)0.85782 (16)0.13977 (10)0.0434 (4)
C190.52280 (14)0.82944 (16)0.06357 (10)0.0471 (4)
C200.45005 (15)0.78325 (18)0.00284 (11)0.0528 (4)
H200.38070.82100.00220.063*
C210.56360 (18)0.6267 (2)0.06552 (14)0.0758 (6)
H21A0.60060.66390.11050.114*
H21B0.54760.53810.07720.114*
H21C0.61000.63270.01640.114*
C220.37124 (18)0.6668 (2)0.11346 (14)0.0765 (7)
H22A0.30790.71700.10110.115*
H22B0.35330.57710.11070.115*
H22C0.39310.68730.16770.115*
Cl10.13909 (4)0.93494 (4)0.02823 (2)0.05378 (15)
Cl20.80400 (4)0.83930 (5)0.17864 (3)0.05637 (15)
N10.14301 (11)0.69544 (12)0.02584 (8)0.0394 (3)
N20.14649 (11)0.40346 (12)0.05304 (8)0.0425 (3)
N30.63250 (11)0.79025 (14)0.07737 (8)0.0470 (3)
N40.46144 (13)0.69555 (17)0.05409 (10)0.0597 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0570 (10)0.0325 (8)0.0444 (9)0.0018 (7)0.0031 (7)0.0002 (6)
C20.0598 (11)0.0440 (9)0.0418 (9)0.0026 (8)0.0044 (8)0.0093 (7)
C30.0534 (10)0.0532 (10)0.0322 (8)0.0002 (8)0.0028 (7)0.0016 (7)
C40.0485 (9)0.0403 (8)0.0351 (8)0.0013 (7)0.0000 (7)0.0056 (6)
C50.0352 (8)0.0344 (7)0.0356 (8)0.0012 (6)0.0001 (6)0.0017 (6)
C60.0387 (8)0.0338 (7)0.0353 (8)0.0008 (6)0.0011 (6)0.0020 (6)
C70.0461 (9)0.0338 (8)0.0339 (8)0.0001 (6)0.0020 (6)0.0053 (6)
C80.0426 (8)0.0330 (7)0.0330 (7)0.0004 (6)0.0005 (6)0.0029 (6)
C90.0422 (8)0.0359 (8)0.0363 (8)0.0003 (6)0.0007 (6)0.0032 (6)
C100.0635 (11)0.0305 (8)0.0678 (12)0.0005 (8)0.0006 (9)0.0020 (8)
C110.0700 (12)0.0432 (9)0.0431 (9)0.0055 (8)0.0020 (8)0.0062 (7)
C120.0610 (11)0.0499 (10)0.0507 (10)0.0000 (8)0.0022 (8)0.0042 (8)
C130.0795 (14)0.0571 (12)0.0621 (12)0.0092 (10)0.0101 (10)0.0101 (9)
C140.0653 (13)0.0690 (13)0.0794 (15)0.0198 (10)0.0122 (11)0.0055 (11)
C150.0512 (11)0.0667 (12)0.0692 (12)0.0101 (9)0.0008 (9)0.0007 (10)
C160.0481 (9)0.0486 (9)0.0468 (9)0.0005 (7)0.0038 (7)0.0047 (7)
C170.0501 (9)0.0416 (9)0.0429 (9)0.0018 (7)0.0047 (7)0.0043 (7)
C180.0429 (9)0.0456 (9)0.0415 (9)0.0034 (7)0.0004 (7)0.0006 (7)
C190.0431 (9)0.0531 (10)0.0450 (9)0.0012 (7)0.0005 (7)0.0016 (7)
C200.0452 (10)0.0637 (11)0.0493 (10)0.0022 (8)0.0007 (8)0.0013 (9)
C210.0614 (13)0.0909 (16)0.0746 (14)0.0004 (11)0.0014 (11)0.0300 (13)
C220.0618 (13)0.1050 (19)0.0612 (13)0.0195 (12)0.0116 (10)0.0111 (12)
Cl10.0843 (3)0.0378 (2)0.0396 (2)0.00008 (19)0.0071 (2)0.01022 (16)
Cl20.0481 (3)0.0647 (3)0.0553 (3)0.0043 (2)0.00815 (19)0.0132 (2)
N10.0484 (7)0.0355 (7)0.0342 (7)0.0003 (6)0.0030 (6)0.0010 (5)
N20.0530 (8)0.0308 (6)0.0436 (7)0.0030 (6)0.0001 (6)0.0003 (6)
N30.0453 (8)0.0512 (8)0.0445 (8)0.0018 (6)0.0009 (6)0.0026 (6)
N40.0486 (9)0.0767 (11)0.0533 (9)0.0088 (8)0.0045 (7)0.0110 (8)
Geometric parameters (Å, º) top
C1—C21.376 (2)C12—C131.376 (3)
C1—C61.394 (2)C12—C171.394 (2)
C1—H10.9300C12—H120.9300
C2—C31.397 (2)C13—C141.392 (3)
C2—H20.9300C13—H130.9300
C3—C41.374 (2)C14—C151.368 (3)
C3—H30.9300C14—H140.9300
C4—C51.402 (2)C15—C161.405 (3)
C4—H40.9300C15—H150.9300
C5—C61.406 (2)C16—C171.408 (2)
C5—C81.446 (2)C16—C191.436 (2)
C6—C71.428 (2)C17—C181.428 (2)
C7—N11.2977 (19)C18—N31.301 (2)
C7—Cl11.7303 (14)C18—Cl21.7328 (16)
C8—C91.380 (2)C19—C201.383 (2)
C8—N11.4021 (19)C19—N31.403 (2)
C9—N21.325 (2)C20—N41.314 (2)
C9—H90.9300C20—H200.9300
C10—N21.456 (2)C21—N41.454 (3)
C10—H10A0.9600C21—H21A0.9600
C10—H10B0.9600C21—H21B0.9600
C10—H10C0.9600C21—H21C0.9600
C11—N21.454 (2)C22—N41.460 (2)
C11—H11A0.9600C22—H22A0.9600
C11—H11B0.9600C22—H22B0.9600
C11—H11C0.9600C22—H22C0.9600
C2—C1—C6118.01 (14)C12—C13—H13119.8
C2—C1—H1121.0C14—C13—H13119.8
C6—C1—H1121.0C15—C14—C13122.32 (19)
C1—C2—C3120.69 (15)C15—C14—H14118.8
C1—C2—H2119.7C13—C14—H14118.8
C3—C2—H2119.7C14—C15—C16118.53 (19)
C4—C3—C2121.82 (15)C14—C15—H15120.7
C4—C3—H3119.1C16—C15—H15120.7
C2—C3—H3119.1C15—C16—C17118.84 (17)
C3—C4—C5118.54 (14)C15—C16—C19134.76 (17)
C3—C4—H4120.7C17—C16—C19106.39 (15)
C5—C4—H4120.7C12—C17—C16121.75 (16)
C4—C5—C6119.17 (14)C12—C17—C18134.65 (17)
C4—C5—C8134.94 (14)C16—C17—C18103.60 (14)
C6—C5—C8105.89 (13)N3—C18—C17115.17 (15)
C1—C6—C5121.76 (14)N3—C18—Cl2120.90 (13)
C1—C6—C7134.18 (14)C17—C18—Cl2123.93 (13)
C5—C6—C7104.06 (13)C20—C19—N3125.80 (16)
N1—C7—C6115.03 (13)C20—C19—C16124.55 (16)
N1—C7—Cl1121.00 (12)N3—C19—C16109.65 (14)
C6—C7—Cl1123.95 (11)N4—C20—C19131.49 (18)
C9—C8—N1125.96 (14)N4—C20—H20114.3
C9—C8—C5124.43 (13)C19—C20—H20114.3
N1—C8—C5109.56 (12)N4—C21—H21A109.5
N2—C9—C8130.78 (14)N4—C21—H21B109.5
N2—C9—H9114.6H21A—C21—H21B109.5
C8—C9—H9114.6N4—C21—H21C109.5
N2—C10—H10A109.5H21A—C21—H21C109.5
N2—C10—H10B109.5H21B—C21—H21C109.5
H10A—C10—H10B109.5N4—C22—H22A109.5
N2—C10—H10C109.5N4—C22—H22B109.5
H10A—C10—H10C109.5H22A—C22—H22B109.5
H10B—C10—H10C109.5N4—C22—H22C109.5
N2—C11—H11A109.5H22A—C22—H22C109.5
N2—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C7—N1—C8105.46 (12)
N2—C11—H11C109.5C9—N2—C11123.90 (13)
H11A—C11—H11C109.5C9—N2—C10120.76 (14)
H11B—C11—H11C109.5C11—N2—C10115.21 (13)
C13—C12—C17118.16 (18)C18—N3—C19105.19 (14)
C13—C12—H12120.9C20—N4—C21123.54 (16)
C17—C12—H12120.9C20—N4—C22120.70 (18)
C12—C13—C14120.38 (19)C21—N4—C22115.68 (17)
C6—C1—C2—C30.4 (3)C13—C12—C17—C18178.64 (19)
C1—C2—C3—C40.5 (3)C15—C16—C17—C120.9 (3)
C2—C3—C4—C50.7 (3)C19—C16—C17—C12179.98 (15)
C3—C4—C5—C60.2 (2)C15—C16—C17—C18178.96 (16)
C3—C4—C5—C8179.67 (17)C19—C16—C17—C180.17 (17)
C2—C1—C6—C51.0 (2)C12—C17—C18—N3180.00 (18)
C2—C1—C6—C7178.50 (17)C16—C17—C18—N30.18 (19)
C4—C5—C6—C10.7 (2)C12—C17—C18—Cl20.3 (3)
C8—C5—C6—C1179.44 (14)C16—C17—C18—Cl2179.51 (12)
C4—C5—C6—C7178.93 (14)C15—C16—C19—C201.2 (3)
C8—C5—C6—C70.97 (16)C17—C16—C19—C20179.85 (17)
C1—C6—C7—N1179.57 (17)C15—C16—C19—N3178.8 (2)
C5—C6—C7—N10.91 (19)C17—C16—C19—N30.13 (19)
C1—C6—C7—Cl12.2 (3)N3—C19—C20—N40.8 (3)
C5—C6—C7—Cl1177.28 (12)C16—C19—C20—N4179.20 (19)
C4—C5—C8—C93.3 (3)C6—C7—N1—C80.42 (19)
C6—C5—C8—C9176.81 (15)Cl1—C7—N1—C8177.84 (11)
C4—C5—C8—N1179.07 (16)C9—C8—N1—C7177.31 (16)
C6—C5—C8—N10.80 (17)C5—C8—N1—C70.25 (17)
N1—C8—C9—N22.0 (3)C8—C9—N2—C112.3 (3)
C5—C8—C9—N2175.21 (15)C8—C9—N2—C10178.06 (16)
C17—C12—C13—C140.1 (3)C17—C18—N3—C190.11 (19)
C12—C13—C14—C151.2 (4)Cl2—C18—N3—C19179.60 (12)
C13—C14—C15—C161.4 (3)C20—C19—N3—C18179.96 (17)
C14—C15—C16—C170.4 (3)C16—C19—N3—C180.02 (19)
C14—C15—C16—C19178.4 (2)C19—C20—N4—C211.5 (3)
C13—C12—C17—C161.2 (3)C19—C20—N4—C22178.1 (2)

Experimental details

Crystal data
Chemical formulaC11H11ClN2
Mr206.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1588 (9), 10.4087 (8), 16.3165 (12)
β (°) 92.720 (1)
V3)2062.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.908, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
14393, 3628, 3175
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.02
No. of reflections3628
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Research Culture Funds of Anhui Normal University (grant No. 160–721137).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoheneck, H. von, Reinhard, H., Deuhel, H. & Wolkenstein, D. (1969). Chem. Ber. 102, 1357–1362.  Google Scholar
First citationJiao, L. J., Yu, C. J., Liu, M. M., Wu, Y. C., Cong, K. B., Meng, T., Wang, Y. Q. & Hao, E. H. (2010). J. Org. Chem. 75, 6035–6038.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUno, H., Masuda, G., Tukiji, M., Nishioka, Y. & Iida, T. (2007). Tetrahedron Lett. 48, 7512–7515.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds