organic compounds
anti-2,2,3,3,6,6,7,7,10,10,11,11,14,14,15,15-Hexadecamethyl-2,3,6,7,10,11,14,15-octasilapentacyclo[10.4.2.24,9.05,8.013,16]icosa-1(17),4,8,12(18),13(16),19-hexaene
aDepartment of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
*Correspondence e-mail: kyushin@gunma-u.ac.jp
The title compound, C28H52Si8, was synthesized by condensation of two molecules of 1,2,3,4-tetrakis(chlorodimethylsilyl)benzene with lithium. The 3,4-disila-1,2-benzocyclobutene rings in the centrosymmetric molecule are bridged by 1,1,2,2-tetramethyldisilanylene chains with an anti conformation. The benzene rings are deformed by fusion with a 3,4-disilacyclobutene ring resulting in a slight boat conformation. Two Si—C bonds are bent to reduce the steric repulsion between the methyl groups on the two Si atoms and the methyl groups on another two Si atoms.
Related literature
For structures of cyclophanes bridged by tetramethyldisilanylene chains, see: Sakurai et al. (1986); Sekiguchi et al. (1989).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2003); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and Yadokari-XG 2009 (Kabuto et al., 2009).
Supporting information
10.1107/S1600536813002584/ds2224sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002584/ds2224Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002584/ds2224Isup3.cml
All operations except for Kugelrohr distillation were carried out in a glovebox. A mixture of 1,2,3,4-tetrakis(chlorodimethylsilyl)benzene (0.200 g, 0.446 mmol) and lithium (13.0 mg, 1.87 mmol) in THF (25 ml) was stirred at room temperature for 14 h. After removal of the solvent, the residue was dissolved in toluene, and insoluble materials were filtered off. The solvent was removed under reduced pressure. Kugelrohr distillation (300 °C/0.9 mm Hg) of the residue gave a colorless solid. The solid was recrystallized from hexane to give 1 (3 mg, 2%) as colorless crystals. Single crystals were obtained from hexane by slow evaporation.
M.p.: 328–330 °C. 1H NMR (600 MHz, C6D6): δ 0.42 (s, 12H), 0.51 (s, 12H), 0.60 (s, 12H), 0.67 (s, 12H), 6.66 (s, 4H). 13C NMR (151 MHz, C6D6): δ -2.6, -1.3, -0.9, 136.0, 143.2, 160.2. 29Si NMR (119 MHz, C6D6): δ -18.1, -3.7. IR (KBr): 2960, 2930, 2900, 2850, 1260, 1250, 1100, 1080, 1020, 800, 750 cm-1. MS (EI, 70 eV): m/z 612 (M+, 29), 539 (23), 465 (18), 291 (15), 73 (100).
All hydrogen atoms were generated at calculated positions and refined as riding atoms with C—H = 0.95 (phenyl) or 0.98 (methyl) Å and Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C).
Data collection: CrystalClear (Rigaku, 2003); cell
CrystalClear (Rigaku, 2003); data reduction: CrystalClear (Rigaku, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).Fig. 1. Synthesis of 1. Fig. 2. The molecular structure of 1, showing 50% probability displacement ellipsoids. [Symmetry code: (i) –x + 1, –y, –z + 1.] Fig. 3. Comparison of the structures of 1 and 2. Fig. 4. Top view of 1, showing 50% probability displacement ellipsoids. [Symmetry code: (i) –x + 1, –y, –z + 1.] |
C28H52Si8 | F(000) = 664 |
Mr = 613.42 | Dx = 1.104 Mg m−3 |
Monoclinic, P21/n | Melting point = 328–330 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9801 (8) Å | Cell parameters from 11187 reflections |
b = 18.9087 (14) Å | θ = 1.7–28.3° |
c = 12.6222 (10) Å | µ = 0.31 mm−1 |
β = 104.2788 (9)° | T = 203 K |
V = 1845.8 (3) Å3 | Prism, colourless |
Z = 2 | 0.25 × 0.25 × 0.25 mm |
Rigaku R-AXIS IV imaging plate diffractometer | 3096 independent reflections |
Radiation source: rotating anode | 3076 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −22→19 |
Tmin = 0.927, Tmax = 0.927 | l = −15→15 |
9672 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0349P)2 + 0.7873P] where P = (Fo2 + 2Fc2)/3 |
3096 reflections | (Δ/σ)max = 0.021 |
171 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C28H52Si8 | V = 1845.8 (3) Å3 |
Mr = 613.42 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.9801 (8) Å | µ = 0.31 mm−1 |
b = 18.9087 (14) Å | T = 203 K |
c = 12.6222 (10) Å | 0.25 × 0.25 × 0.25 mm |
β = 104.2788 (9)° |
Rigaku R-AXIS IV imaging plate diffractometer | 3096 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 3076 reflections with I > 2σ(I) |
Tmin = 0.927, Tmax = 0.927 | Rint = 0.016 |
9672 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.25 e Å−3 |
3096 reflections | Δρmin = −0.25 e Å−3 |
171 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.18531 (5) | 0.13135 (2) | 0.45683 (3) | 0.02369 (12) | |
Si2 | 0.43507 (5) | 0.17209 (2) | 0.40399 (3) | 0.02186 (12) | |
Si3 | 0.50467 (6) | −0.03139 (2) | 0.81537 (3) | 0.02614 (12) | |
Si4 | 0.36313 (6) | 0.07548 (2) | 0.76574 (3) | 0.02856 (13) | |
C1 | 0.24730 (19) | 0.04152 (8) | 0.52049 (12) | 0.0218 (3) | |
C2 | 0.58255 (18) | 0.09258 (7) | 0.41846 (11) | 0.0202 (3) | |
C3 | 0.58234 (19) | 0.03950 (7) | 0.33902 (11) | 0.0209 (3) | |
C4 | 0.33293 (19) | 0.02681 (7) | 0.63061 (12) | 0.0212 (3) | |
C5 | 0.2347 (2) | −0.01465 (8) | 0.44684 (12) | 0.0245 (3) | |
C6 | 0.6830 (2) | 0.07907 (8) | 0.52380 (12) | 0.0238 (3) | |
C7 | 0.1117 (3) | 0.19586 (9) | 0.54917 (15) | 0.0412 (4) | |
C8 | 0.0026 (2) | 0.12151 (10) | 0.33167 (14) | 0.0354 (4) | |
C9 | 0.5452 (2) | 0.24491 (9) | 0.49722 (15) | 0.0384 (4) | |
C10 | 0.3789 (2) | 0.21016 (9) | 0.26238 (13) | 0.0361 (4) | |
C11 | 0.4144 (3) | −0.09537 (10) | 0.90036 (13) | 0.0402 (4) | |
C12 | 0.7449 (2) | −0.02692 (11) | 0.86886 (15) | 0.0452 (5) | |
C13 | 0.1573 (3) | 0.09331 (11) | 0.80715 (16) | 0.0498 (5) | |
C14 | 0.5025 (3) | 0.15680 (10) | 0.78452 (15) | 0.0530 (6) | |
H1 | 0.1681 | −0.0086 | 0.3748 | 0.029* | |
H2 | 0.6955 | 0.1149 | 0.5768 | 0.029* | |
H3 | 0.0801 | 0.2402 | 0.5107 | 0.062* | |
H4 | 0.2048 | 0.2041 | 0.6137 | 0.062* | |
H5 | 0.0124 | 0.1767 | 0.5707 | 0.062* | |
H6 | −0.0946 | 0.0988 | 0.3512 | 0.053* | |
H7 | 0.0401 | 0.0928 | 0.2781 | 0.053* | |
H8 | −0.0322 | 0.1678 | 0.3010 | 0.053* | |
H9 | 0.6534 | 0.2570 | 0.4796 | 0.058* | |
H10 | 0.5682 | 0.2291 | 0.5725 | 0.058* | |
H11 | 0.4709 | 0.2862 | 0.4876 | 0.058* | |
H12 | 0.3141 | 0.2536 | 0.2619 | 0.054* | |
H13 | 0.3093 | 0.1765 | 0.2123 | 0.054* | |
H14 | 0.4842 | 0.2201 | 0.2398 | 0.054* | |
H15 | 0.4727 | −0.1406 | 0.9023 | 0.060* | |
H16 | 0.2916 | −0.1016 | 0.8686 | 0.060* | |
H17 | 0.4323 | −0.0771 | 0.9741 | 0.060* | |
H18 | 0.7727 | −0.0130 | 0.9452 | 0.068* | |
H19 | 0.7919 | 0.0076 | 0.8271 | 0.068* | |
H20 | 0.7947 | −0.0730 | 0.8620 | 0.068* | |
H21 | 0.1841 | 0.1104 | 0.8819 | 0.075* | |
H22 | 0.0906 | 0.0500 | 0.8019 | 0.075* | |
H23 | 0.0906 | 0.1287 | 0.7591 | 0.075* | |
H24 | 0.4378 | 0.1958 | 0.7440 | 0.079* | |
H25 | 0.6045 | 0.1478 | 0.7578 | 0.079* | |
H26 | 0.5373 | 0.1689 | 0.8615 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0281 (2) | 0.0210 (2) | 0.0237 (2) | 0.00390 (15) | 0.00974 (17) | 0.00293 (15) |
Si2 | 0.0282 (2) | 0.0175 (2) | 0.0200 (2) | −0.00024 (15) | 0.00618 (17) | 0.00197 (14) |
Si3 | 0.0354 (3) | 0.0275 (2) | 0.0153 (2) | −0.00299 (17) | 0.00606 (18) | −0.00042 (15) |
Si4 | 0.0461 (3) | 0.0221 (2) | 0.0199 (2) | −0.00391 (18) | 0.01276 (19) | −0.00352 (16) |
C1 | 0.0220 (8) | 0.0228 (7) | 0.0226 (7) | −0.0009 (5) | 0.0093 (6) | 0.0020 (6) |
C2 | 0.0225 (8) | 0.0200 (7) | 0.0201 (7) | −0.0035 (5) | 0.0088 (6) | 0.0019 (5) |
C3 | 0.0235 (8) | 0.0218 (7) | 0.0186 (7) | −0.0048 (5) | 0.0075 (6) | 0.0015 (5) |
C4 | 0.0262 (8) | 0.0200 (7) | 0.0197 (7) | −0.0041 (5) | 0.0100 (6) | −0.0012 (5) |
C5 | 0.0278 (8) | 0.0277 (8) | 0.0170 (7) | 0.0010 (6) | 0.0036 (6) | 0.0019 (6) |
C6 | 0.0298 (9) | 0.0226 (8) | 0.0193 (7) | −0.0012 (6) | 0.0067 (6) | −0.0031 (5) |
C7 | 0.0567 (12) | 0.0318 (9) | 0.0415 (10) | 0.0143 (8) | 0.0239 (9) | 0.0031 (8) |
C8 | 0.0297 (9) | 0.0378 (10) | 0.0374 (9) | 0.0032 (7) | 0.0056 (7) | 0.0081 (7) |
C9 | 0.0510 (11) | 0.0228 (8) | 0.0390 (9) | −0.0052 (7) | 0.0062 (8) | −0.0034 (7) |
C10 | 0.0478 (11) | 0.0330 (9) | 0.0282 (9) | 0.0084 (7) | 0.0108 (8) | 0.0100 (7) |
C11 | 0.0630 (13) | 0.0371 (10) | 0.0242 (8) | −0.0023 (8) | 0.0181 (8) | 0.0047 (7) |
C12 | 0.0414 (11) | 0.0606 (13) | 0.0306 (9) | −0.0043 (9) | 0.0030 (8) | −0.0091 (8) |
C13 | 0.0696 (14) | 0.0514 (12) | 0.0374 (10) | 0.0154 (10) | 0.0303 (10) | 0.0010 (9) |
C14 | 0.0894 (17) | 0.0341 (10) | 0.0328 (10) | −0.0244 (10) | 0.0104 (10) | −0.0051 (8) |
Si1—Si2 | 2.3805 (6) | C7—H4 | 0.9700 |
Si1—C1 | 1.8919 (15) | C7—H5 | 0.9700 |
Si1—C7 | 1.8785 (17) | C8—H6 | 0.9700 |
Si1—C8 | 1.8762 (18) | C8—H7 | 0.9700 |
Si2—C2 | 1.8902 (15) | C8—H8 | 0.9700 |
Si2—C9 | 1.8824 (17) | C9—H9 | 0.9700 |
Si2—C10 | 1.8758 (16) | C9—H10 | 0.9700 |
Si3—Si4 | 2.3245 (7) | C9—H11 | 0.9700 |
Si3—C11 | 1.8746 (17) | C10—H12 | 0.9700 |
Si3—C12 | 1.871 (2) | C10—H13 | 0.9700 |
Si3—C3i | 1.9067 (15) | C10—H14 | 0.9700 |
Si4—C4 | 1.9004 (15) | C11—H15 | 0.9700 |
Si4—C13 | 1.873 (2) | C11—H16 | 0.9700 |
Si4—C14 | 1.8781 (19) | C11—H17 | 0.9700 |
C1—C4 | 1.417 (2) | C12—H18 | 0.9700 |
C1—C5 | 1.399 (2) | C12—H19 | 0.9700 |
C2—C3 | 1.418 (2) | C12—H20 | 0.9700 |
C2—C6 | 1.396 (2) | C13—H21 | 0.9700 |
C3—C4i | 1.431 (2) | C13—H22 | 0.9700 |
C5—C6i | 1.390 (2) | C13—H23 | 0.9700 |
C5—H1 | 0.9400 | C14—H24 | 0.9700 |
C6—H2 | 0.9400 | C14—H25 | 0.9700 |
C7—H3 | 0.9700 | C14—H26 | 0.9700 |
Si2—Si1—C1 | 105.08 (5) | H3—C7—H4 | 109.5 |
Si2—Si1—C7 | 112.03 (7) | H3—C7—H5 | 109.5 |
Si2—Si1—C8 | 109.07 (6) | H4—C7—H5 | 109.5 |
C1—Si1—C7 | 114.11 (7) | Si1—C8—H6 | 109.5 |
C1—Si1—C8 | 109.64 (7) | Si1—C8—H7 | 109.5 |
C7—Si1—C8 | 106.85 (9) | Si1—C8—H8 | 109.5 |
Si1—Si2—C2 | 105.07 (5) | H6—C8—H7 | 109.5 |
Si1—Si2—C9 | 110.84 (6) | H6—C8—H8 | 109.5 |
Si1—Si2—C10 | 111.80 (6) | H7—C8—H8 | 109.5 |
C2—Si2—C9 | 109.74 (8) | Si2—C9—H9 | 109.5 |
C2—Si2—C10 | 113.21 (7) | Si2—C9—H10 | 109.5 |
C9—Si2—C10 | 106.26 (8) | Si2—C9—H11 | 109.5 |
Si4—Si3—C11 | 119.05 (7) | H9—C9—H10 | 109.5 |
Si4—Si3—C12 | 116.39 (7) | H9—C9—H11 | 109.5 |
Si4—Si3—C3i | 76.36 (5) | H10—C9—H11 | 109.5 |
C11—Si3—C12 | 109.08 (9) | Si2—C10—H12 | 109.5 |
C11—Si3—C3i | 116.01 (7) | Si2—C10—H13 | 109.5 |
C12—Si3—C3i | 117.06 (7) | Si2—C10—H14 | 109.5 |
Si3—Si4—C4 | 76.50 (5) | H12—C10—H13 | 109.5 |
Si3—Si4—C13 | 118.85 (7) | H12—C10—H14 | 109.5 |
Si3—Si4—C14 | 116.39 (8) | H13—C10—H14 | 109.5 |
C4—Si4—C13 | 114.32 (8) | Si3—C11—H15 | 109.5 |
C4—Si4—C14 | 116.73 (8) | Si3—C11—H16 | 109.5 |
C13—Si4—C14 | 110.50 (11) | Si3—C11—H17 | 109.5 |
Si1—C1—C4 | 127.24 (11) | H15—C11—H16 | 109.5 |
Si1—C1—C5 | 115.53 (11) | H15—C11—H17 | 109.5 |
C4—C1—C5 | 116.18 (13) | H16—C11—H17 | 109.5 |
Si2—C2—C3 | 127.03 (11) | Si3—C12—H18 | 109.5 |
Si2—C2—C6 | 115.79 (11) | Si3—C12—H19 | 109.5 |
C3—C2—C6 | 116.36 (13) | Si3—C12—H20 | 109.5 |
Si3i—C3—C2 | 135.73 (11) | H18—C12—H19 | 109.5 |
Si3i—C3—C4i | 103.43 (10) | H18—C12—H20 | 109.5 |
C2—C3—C4i | 120.82 (13) | H19—C12—H20 | 109.5 |
Si4—C4—C1 | 135.16 (11) | Si4—C13—H21 | 109.5 |
Si4—C4—C3i | 103.70 (10) | Si4—C13—H22 | 109.5 |
C1—C4—C3i | 121.09 (13) | Si4—C13—H23 | 109.5 |
C1—C5—C6i | 122.44 (14) | H21—C13—H22 | 109.5 |
C1—C5—H1 | 118.8 | H21—C13—H23 | 109.5 |
C6i—C5—H1 | 118.8 | H22—C13—H23 | 109.5 |
C2—C6—C5i | 122.46 (13) | Si4—C14—H24 | 109.5 |
C2—C6—H2 | 118.8 | Si4—C14—H25 | 109.5 |
C5i—C6—H2 | 118.8 | Si4—C14—H26 | 109.5 |
Si1—C7—H3 | 109.5 | H24—C14—H25 | 109.5 |
Si1—C7—H4 | 109.5 | H24—C14—H26 | 109.5 |
Si1—C7—H5 | 109.5 | H25—C14—H26 | 109.5 |
C1—Si1—Si2—C2 | 11.34 (7) | C12—Si3—Si4—C4 | 113.08 (8) |
C1—Si1—Si2—C9 | −107.13 (8) | C12—Si3—Si4—C13 | −136.36 (10) |
C1—Si1—Si2—C10 | 134.52 (8) | C12—Si3—Si4—C14 | −0.33 (10) |
C7—Si1—Si2—C2 | 135.78 (8) | C3i—Si3—Si4—C4 | −0.64 (6) |
C7—Si1—Si2—C9 | 17.31 (9) | C3i—Si3—Si4—C13 | 109.93 (9) |
C7—Si1—Si2—C10 | −101.04 (9) | C3i—Si3—Si4—C14 | −114.04 (8) |
C8—Si1—Si2—C2 | −106.14 (8) | Si3—Si4—C4—C1 | 178.26 (16) |
C8—Si1—Si2—C9 | 135.39 (9) | Si3—Si4—C4—C3i | 0.85 (8) |
C8—Si1—Si2—C10 | 17.04 (9) | C13—Si4—C4—C1 | 62.41 (17) |
Si2—Si1—C1—C4 | 85.99 (13) | C13—Si4—C4—C3i | −115.00 (11) |
Si2—Si1—C1—C5 | −81.76 (11) | C14—Si4—C4—C1 | −68.73 (18) |
C7—Si1—C1—C4 | −37.12 (16) | C14—Si4—C4—C3i | 113.86 (12) |
C7—Si1—C1—C5 | 155.13 (12) | Si1—C1—C4—Si4 | 21.9 (2) |
C8—Si1—C1—C4 | −156.92 (13) | Si1—C1—C4—C3i | −160.99 (11) |
C8—Si1—C1—C5 | 35.33 (13) | C5—C1—C4—Si4 | −170.37 (12) |
Si1—Si2—C2—C3 | 86.84 (12) | C5—C1—C4—C3i | 6.7 (2) |
Si1—Si2—C2—C6 | −82.38 (11) | Si1—C1—C5—C6i | 162.33 (12) |
C9—Si2—C2—C3 | −153.95 (13) | C4—C1—C5—C6i | −6.8 (2) |
C9—Si2—C2—C6 | 36.83 (13) | Si2—C2—C3—Si3i | 18.9 (2) |
C10—Si2—C2—C3 | −35.43 (15) | Si2—C2—C3—C4i | −163.08 (11) |
C10—Si2—C2—C6 | 155.35 (11) | C6—C2—C3—Si3i | −171.94 (12) |
C11—Si3—Si4—C4 | −113.06 (8) | C6—C2—C3—C4i | 6.1 (2) |
C11—Si3—Si4—C13 | −2.49 (11) | Si2—C2—C6—C5i | 164.24 (12) |
C11—Si3—Si4—C14 | 133.53 (10) | C3—C2—C6—C5i | −6.2 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C28H52Si8 |
Mr | 613.42 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 203 |
a, b, c (Å) | 7.9801 (8), 18.9087 (14), 12.6222 (10) |
β (°) | 104.2788 (9) |
V (Å3) | 1845.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.25 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Rigaku R-AXIS IV imaging plate diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.927, 0.927 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9672, 3096, 3076 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.076, 1.11 |
No. of reflections | 3096 |
No. of parameters | 171 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.25 |
Computer programs: CrystalClear (Rigaku, 2003), SIR2004 (Burla et al., 2005), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).
Acknowledgements
This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan and the Japan Society for the Promotion of Science. This work was also supported by the Element Innovation Project of Gunma University.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sakurai, H., Hoshi, S., Kamiya, A., Hosomi, A. & Kabuto, C. (1986). Chem. Lett. pp. 1781–1784. CrossRef Web of Science Google Scholar
Sekiguchi, A., Yatabe, T., Kabuto, C. & Sakurai, H. (1989). Angew. Chem. Int. Ed. Engl. 28, 757–758. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclophanes have been studied from the viewpoints of unique structures and interaction among aromatic rings. Some examples of cyclophanes bridged by silicon chains have so far been reported. [2.2]paracyclophane bridged by two 1,1,2,2-tetramethyldisilanylene chains has been synthesized, and its electronic properties have been reported (Sakurai et al., 1986). Also, [2.2.2](1,3,5)cyclophane bridged by three 1,1,2,2-tetramethyldisilanylene chains has been synthesized (Sekiguchi et al., 1989). Although cyclophanes bridged by silicon chains are attractive compounds, their studies have not further developed because of difficulty of synthesis. We report herein synthesis of a silicon-bridged [2.2]paracyclophane, in which two benzene rings are fused with 3,4-disilacyclobutene rings, and discuss the structural features of this compound.
The condensation of two molecules of 1,2,3,4-tetrakis(chlorodimethylsilyl)benzene with lithium in THF gave 1 in 2% yield (Fig. 1). The structure of 1 was determined by X-ray crystallography (Fig. 2). The molecule lies on an inversion center, and one half of the molecule corresponds to the asymmetric unit. Two 3,4-disila-1,2-benzocyclobutene rings are bridged by 1,1,2,2-tetramethyldisilanylene chains with an anti structure. The anti structure is favorable to avoid the steric hindrance among methyl groups on the 3,4-disilacyclobutene rings.
The benzene rings have a deformed structure due to fusion with a 3,4-disilacyclobutene ring (Fig. 3). The C—C bond is elongated in the order of C5—C6i (1.390 (2) Å), C1—C5 (1.399 (2) Å) (or C2i—C6i (1.396 (2) Å)), C1—C4 (1.417 (2) Å) (or C2i—C3i (1.418 (2) Å)) and C4—C3i (1.431 (2) Å). The Si1—C1—C4 and Si2i—C2i—C3i bond angles are large (127.24 (11) and 127.03 (11)°, respectively), and the Si1—C1—C5 and Si2i—C2i—C6i bond angles are small (115.53 (11) and 115.79 (11)°, respectively). As a result, two benzene rings are partially overlapped as shown in Fig. 4. This deformation of the bond angles is caused by the steric repulsion between the methyl groups on the Si1 and Si2i atoms and the methyl groups on the Si3 and Si4 atoms. This steric repulsion also makes the Si3—Si4 bond short (2.3245 (7) Å) compared with the standard Si—Si bond (2.34 Å).
The benzene rings are also deformed by the cyclophane structure (Fig. 3). The benzene rings are not planar but have a slight boat conformation. The dihedral angle between the C4—C5—C6i—C3i plane and the C1—C4—C5 (or C2i—C3i—C6i) plane is 5.8° (or 5.2°). The Si1—C1 and Si2i—C2i bonds are further tilted from the C4—C5—C6i—C3i plane with the angles of 16.8 and 15.4°. The distance between the C4—C5—C6i—C3i and C3—C6—C5i—C4i planes is 3.473 Å, and the distance between the C1 and C2 atoms is 3.383 Å. These structural features are similar to those of 1,1,2,2,9,9,10,10-octamethyl-1,2,9,10-tetrasila[2.2]paracyclophane (2) (Sakurai et al., 1986) as shown in Fig. 3.