organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A polymorph of 2,4-di­nitro­phenyl­hydrazine

aDepartment of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
*Correspondence e-mail: kamimo@hiroshima-u.ac.jp

(Received 25 January 2013; accepted 15 February 2013; online 23 February 2013)

The crystal structure of a previously unreported polymorph (form II) of 2,4-dinitro­phenyl­hydrazine (DNPH), C6H6N4O4, was determined at 90 K. The first polymorph (form I) is described in the monoclinic space group P21/c [Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). Acta Cryst. C49, 1678–1680; Wardell et al. (2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318-o320.]). Acta Cryst. C62, o318–320], whereas form II is in the monoclinic space group Cc. The mol­ecular structures in forms I and II are closely similar, with the nitro groups at the 2- and 4-positions being almost coplanar with the benzene ring [dihedral angles of 3.54 (1) and 3.38 (1)°, respectively in II]. However, their packing arrangements are completely different. Form I exhibits a herringbone packing motif, whereas form II displays a coplanar chain structure. Each chain in form II is connected to adjacent chains by the inter­molecular inter­action between hydrazine NH2 and 2-nitro groups, forming a sheet normal to (101). The sheet is stabilized by N—H⋯π inter­actions.

Related literature

For the use of DNPH for the identification of a carbonyl group, see: Brady & Elsmie (1926[Brady, O. L. & Elsmie, G. V. (1926). Analyst, 51, 77-78.]); Williamson et al. (2006[Williamson, K. L., Minard, R. & Masters, K. M. (2006). Macroscale and Microscale Organic Experiments, 5th ed., ch. 29, pp. 436-450. Boston: Houghton Mifflin.]). For the crystal structure of the first polymorph of DNPH, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Wardell et al. (2006[Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318-o320.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N4O4

  • Mr = 198.15

  • Monoclinic, C c

  • a = 12.697 (5) Å

  • b = 9.179 (5) Å

  • c = 7.662 (5) Å

  • β = 123.315 (5)°

  • V = 746.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 90 K

  • 0.3 × 0.2 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 1878 measured reflections

  • 1433 independent reflections

  • 1424 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.06

  • 1433 reflections

  • 151 parameters

  • 2 restraints

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O4i 0.81 (3) 2.47 (3) 2.919 (3) 116 (2)
N4—H4NA⋯O1ii 0.90 (3) 2.43 (3) 3.215 (3) 145.1 (17)
N4—H4NA⋯O3iii 0.90 (3) 2.35 (3) 3.052 (3) 135.0 (15)
N4—H4NB⋯O4i 1.01 (3) 2.31 (3) 2.981 (3) 123 (2)
N4—H4NB⋯O2iv 1.01 (3) 2.34 (3) 3.163 (3) 138 (3)
N4—H4NBCgv 1.01 (3) 2.91 (4) 3.306 (3) 104 (2)
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (v) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The nature and reactivity of carbonyl group is one of the most important topics in organic chemistry. 2,4-Dinitrophenylhydrazine (DNPH) is often used as qualitative test for carbonyl groups in the field of chemical education (Brady & Elsmie 1926; Williamson et al., 2006). DNPH also produces the 2,4-dinitrophenylhydrazone derivatives, which offer a variety of functional organic dye crystals. The crystal structure (I) of DNPH at room temperature and 120 K were reported (Okabe et al. 1993; Wardell et al., 2006). In the course of our studies on the development of teaching materials for organic chemistry and novel crystalline materials of organic dyes, we have found the new polymorph (II) of DNPH. The molecular structure in II is almost the same to that in I. The molecular structure in II adapts the planar conformation: the dihedral angles of nitro groups at the 2- and 4-positions to the benzene ring are 3.54 (1)° and 3.38 (1)°, respectively. In both I and II, there is an intermolecular interaction between hydrazine NH2 and 4-nitro group, forming a chain structure. The distinguished difference between I and II originates their molecular arrangements in the chain structure. In I a benzene ring is inclined at 54.86 ° to the adjacent one, forming a herringbone packing motif. On the other hand, all benzene rings on a chain structure in II lie on the same plane. The interatomic distances in II between hydrazine moiety and 4-nitro group are N(3)—O(4) = 2.919 (3) Å and N(4)—O(4) = 2.981 (3) Å, respectively. Each chain is connected to adjacent ones in the same direction by the additional interaction between hydrazine NH2 and 2-nitro group, forming a 2-D sheet normal to [1 0 1] plane [N(4)—O(2) = 3.163 (3) Å]. And the 2-D sheets are built up by the offset stacking. The face-to-face stacking of 3.306 (3) Å between centroid of benzene rings and hydrazine N(4) indicates the existence of π–NH2 interaction between electron-deficient aromatic ring connected to electron-withdrawing nitro group and electron-donating hydrazine moiety.

Related literature top

For the use of DNPH for the identification of a carbonyl group, see: Brady & Elsmie (1926); Williamson et al. (2006). For the crystal structure of the first polymorph of DNPH, see: Okabe et al. (1993); Wardell et al. (2006).

Experimental top

Crystals of title polymorph II were obtained by slow evaporation with commercially available DNPH using 1,4-dioxane as solvent.

Refinement top

All hydrogen atoms were found in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title polymorph II, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title polymorph II showing the 2-D sheet arrangement.
2,4-Dinitrophenylhydrazine top
Crystal data top
C6H6N4O4F(000) = 408
Mr = 198.15Dx = 1.764 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71069 Å
Hall symbol: C -2ycCell parameters from 1986 reflections
a = 12.697 (5) Åθ = 2.9–28.8°
b = 9.179 (5) ŵ = 0.15 mm1
c = 7.662 (5) ÅT = 90 K
β = 123.315 (5)°Block, red
V = 746.2 (7) Å30.3 × 0.2 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1424 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.9°, θmin = 2.9°
Detector resolution: 8.333 pixels mm-1h = 1710
phi and ω scank = 1011
1878 measured reflectionsl = 99
1433 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1782P]
where P = (Fo2 + 2Fc2)/3
1433 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H6N4O4V = 746.2 (7) Å3
Mr = 198.15Z = 4
Monoclinic, CcMo Kα radiation
a = 12.697 (5) ŵ = 0.15 mm1
b = 9.179 (5) ÅT = 90 K
c = 7.662 (5) Å0.3 × 0.2 × 0.15 mm
β = 123.315 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1424 reflections with I > 2σ(I)
1878 measured reflectionsRint = 0.019
1433 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0272 restraints
wR(F2) = 0.072All H-atom parameters refined
S = 1.06Δρmax = 0.25 e Å3
1433 reflectionsΔρmin = 0.17 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22967 (12)0.03156 (15)0.6894 (2)0.0099 (3)
C20.33423 (13)0.08580 (17)0.8822 (2)0.0111 (3)
C30.35605 (13)0.23444 (16)0.9232 (2)0.0113 (3)
C40.27641 (14)0.33162 (17)0.7701 (2)0.0121 (3)
C50.17463 (14)0.28510 (15)0.5739 (2)0.0126 (3)
C60.15142 (14)0.13877 (16)0.5363 (2)0.0126 (3)
N10.42299 (11)0.00982 (14)1.04810 (18)0.0107 (2)
N20.30055 (12)0.48633 (14)0.8159 (2)0.0127 (3)
N30.20280 (12)0.11032 (13)0.6487 (2)0.0125 (2)
N40.09528 (12)0.15491 (14)0.4547 (2)0.0145 (3)
O10.41196 (11)0.14375 (11)1.01911 (17)0.0148 (2)
O20.50714 (11)0.04357 (13)1.21641 (18)0.0167 (2)
O30.38720 (12)0.52367 (12)0.99101 (19)0.0191 (3)
O40.23265 (12)0.57352 (12)0.67622 (19)0.0212 (3)
H30.431 (2)0.268 (2)1.060 (3)0.008 (4)*
H3N0.252 (3)0.162 (3)0.746 (4)0.019 (5)*
H50.118 (2)0.350 (2)0.464 (4)0.020 (5)*
H4NA0.033 (2)0.171 (2)0.476 (4)0.028 (5)*
H4NB0.116 (3)0.253 (3)0.422 (5)0.037 (7)*
H60.082 (2)0.110 (3)0.414 (4)0.020 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0112 (7)0.0085 (7)0.0118 (7)0.0013 (4)0.0074 (6)0.0009 (5)
C20.0126 (7)0.0085 (7)0.0138 (6)0.0015 (5)0.0082 (6)0.0013 (5)
C30.0122 (7)0.0096 (6)0.0133 (7)0.0002 (5)0.0078 (6)0.0002 (5)
C40.0144 (8)0.0070 (7)0.0169 (7)0.0009 (5)0.0100 (6)0.0011 (5)
C50.0147 (7)0.0090 (6)0.0149 (7)0.0041 (5)0.0087 (6)0.0045 (5)
C60.0139 (7)0.0103 (7)0.0147 (6)0.0005 (5)0.0085 (6)0.0005 (5)
N10.0114 (6)0.0086 (5)0.0111 (6)0.0013 (4)0.0057 (5)0.0016 (4)
N20.0137 (6)0.0072 (5)0.0178 (6)0.0008 (5)0.0089 (5)0.0008 (5)
N30.0138 (6)0.0086 (5)0.0134 (6)0.0000 (5)0.0064 (5)0.0005 (5)
N40.0137 (6)0.0108 (5)0.0141 (6)0.0013 (4)0.0047 (5)0.0028 (4)
O10.0171 (5)0.0067 (4)0.0201 (6)0.0020 (4)0.0099 (5)0.0019 (4)
O20.0174 (5)0.0111 (5)0.0149 (5)0.0001 (4)0.0046 (4)0.0012 (4)
O30.0208 (6)0.0101 (6)0.0228 (7)0.0019 (4)0.0098 (5)0.0013 (4)
O40.0255 (7)0.0078 (5)0.0233 (7)0.0026 (4)0.0089 (6)0.0033 (4)
Geometric parameters (Å, º) top
C1—N31.3389 (18)C5—H50.96 (2)
C1—C21.428 (2)C6—H60.90 (2)
C1—C61.4320 (19)N1—O21.2374 (17)
C2—C31.393 (2)N1—O11.2434 (17)
C2—N11.4430 (19)N2—O31.2273 (19)
C3—C41.3753 (19)N2—O41.2312 (18)
C3—H31.01 (2)N3—N41.4181 (18)
C4—C51.407 (2)N3—H3N0.81 (3)
C4—N21.4545 (18)N4—H4NA0.91 (2)
C5—C61.371 (2)N4—H4NB1.01 (3)
N3—C1—C2123.59 (13)C5—C6—C1121.93 (14)
N3—C1—C6120.28 (13)C5—C6—H6118.7 (15)
C2—C1—C6116.12 (13)C1—C6—H6119.3 (15)
C3—C2—C1122.10 (13)O2—N1—O1121.72 (12)
C3—C2—N1115.77 (13)O2—N1—C2119.11 (13)
C1—C2—N1122.12 (13)O1—N1—C2119.16 (12)
C4—C3—C2118.74 (14)O3—N2—O4123.23 (13)
C4—C3—H3121.4 (12)O3—N2—C4118.69 (11)
C2—C3—H3119.8 (12)O4—N2—C4118.08 (12)
C3—C4—C5121.90 (14)C1—N3—N4120.02 (12)
C3—C4—N2117.94 (13)C1—N3—H3N113.0 (17)
C5—C4—N2120.16 (12)N4—N3—H3N126.9 (17)
C6—C5—C4119.14 (13)N3—N4—H4NA106.8 (15)
C6—C5—H5117.0 (14)N3—N4—H4NB106.4 (17)
C4—C5—H5123.8 (14)H4NA—N4—H4NB106 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4i0.81 (3)2.47 (3)2.919 (3)116 (2)
N4—H4NA···O1ii0.90 (3)2.43 (3)3.215 (3)145.1 (17)
N4—H4NA···O3iii0.90 (3)2.35 (3)3.052 (3)135.0 (15)
N4—H4NB···O4i1.01 (3)2.31 (3)2.981 (3)123 (2)
N4—H4NB···O2iv1.01 (3)2.34 (3)3.163 (3)138 (3)
N4—H4NB···Cgv1.01 (3)2.91 (4)3.306 (3)104 (2)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N4O4
Mr198.15
Crystal system, space groupMonoclinic, Cc
Temperature (K)90
a, b, c (Å)12.697 (5), 9.179 (5), 7.662 (5)
β (°) 123.315 (5)
V3)746.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.3 × 0.2 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1878, 1433, 1424
Rint0.019
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.06
No. of reflections1433
No. of parameters151
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O4i0.81 (3)2.47 (3)2.919 (3)116 (2)
N4—H4NA···O1ii0.90 (3)2.43 (3)3.215 (3)145.1 (17)
N4—H4NA···O3iii0.90 (3)2.35 (3)3.052 (3)135.0 (15)
N4—H4NB···O4i1.01 (3)2.31 (3)2.981 (3)123 (2)
N4—H4NB···O2iv1.01 (3)2.34 (3)3.163 (3)138 (3)
N4—H4NB···Cgv1.01 (3)2.91 (4)3.306 (3)104 (2)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z1; (v) x, y, z+1/2.
 

Acknowledgements

This work was partially supported by a Grant-in-Aid for Young Scientists (B) (23700956) and a Grant-in-Aid for Scientific Research (C) (22300272) from the Japan Society for the Promotion of Science (JSPS). The data collection was performed at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrady, O. L. & Elsmie, G. V. (1926). Analyst, 51, 77–78.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o318–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliamson, K. L., Minard, R. & Masters, K. M. (2006). Macroscale and Microscale Organic Experiments, 5th ed., ch. 29, pp. 436–450. Boston: Houghton Mifflin.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds