organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Tetra­zol-5-yl)benzene-1,3-diol

aDepartment of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
*Correspondence e-mail: ykim@chungbuk.ac.kr

(Received 24 January 2013; accepted 11 February 2013; online 16 February 2013)

In the title compound, C7H6N4O2, rings are almost coplanar, the dihedral angle between them being 8.45 (13)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, the mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the structure of 4-(5-tetra­zol­yl)-1,3-benzene­diol sesquihydrate, see: Gallardo et al. (1995[Gallardo, H., Meyer, E. & Vencato, I. (1995). Acta Cryst. C51, 2430-2432.]). For the synthesis, see: Meyer et al. (1998[Meyer, E., Zucco, C. & Gallardo, H. (1998). J. Mater. Chem., 8, 1351-1354.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N4O2

  • Mr = 178.16

  • Orthorhombic, P c c n

  • a = 16.109 (2) Å

  • b = 7.2931 (11) Å

  • c = 12.8708 (17) Å

  • V = 1512.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.98

  • 20096 measured reflections

  • 2452 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.168

  • S = 1.05

  • 2452 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N4i 0.82 1.94 2.759 (3) 173
O2—H2⋯N3ii 0.82 2.00 2.817 (3) 173
N1—H101⋯O1 0.89 (3) 2.22 (3) 2.701 (3) 113 (2)
N1—H101⋯O2iii 0.89 (3) 2.40 (3) 3.034 (3) 129 (2)
C3—H3⋯N2ii 0.93 2.57 3.439 (3) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+2]; (iii) [x+{\script{1\over 2}}, -y+2, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The similar structure of the title compound with two tetrazolylbenzenediol molecules per asymmetric unit together with three water molecules was reported in the literature (Gallardo et al., 1995). In this compound, the two tetrazolylbenzendiol are linked through a hydrogen-bonded network to water molecules, forming layers extending along the face of the unit cell (Gallardo et al., 1995). Herein, we report the related X-ray structure of the title compound (I) with eight tetrazolylbenzenediol molecules in unit cell and only one molecule in the asymmetric unit without any solvents. The title compound (I) could be isolated in more than 80% yield via the previously reported method (Meyer et al., 1998). Like the structure of related compound (Gallardo et al., 1995), the phenyl ring and the tetrazole ring of each molecule in the asymmetric unit are coplanar (Fig. 1), with the dihedral angle between the benzene and tetrazole rings of 8.45 (13)°. They are connected by a network of intermolecular hydrogen bonds (Fig. 2).

Related literature top

For the structure of 4-(5-tetrazolyl)-1,3-benzenediol sesquihydrate, see: Gallardo et al. (1995). For the synthesis, see: Meyer et al. (1998).

Experimental top

The title compound could be synthesized by the previously reported method (Meyer et al., 1998). Crystal of the title compound suitable for X-ray analysis were grown in ethanol by slow evaporation.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93, O—H = 0.82 and N—H = 0.89 with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O) and Uiso(H) = 1.4Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding network viewed along the b-axis.
4-(1H-Tetrazol-5-yl)benzene-1,3-diol top
Crystal data top
C7H6N4O2Dx = 1.565 Mg m3
Mr = 178.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 3776 reflections
a = 16.109 (2) Åθ = 3.1–27.9°
b = 7.2931 (11) ŵ = 0.12 mm1
c = 12.8708 (17) ÅT = 296 K
V = 1512.2 (4) Å3Block, white
Z = 80.10 × 0.10 × 0.08 mm
F(000) = 736
Data collection top
Bruker APEXII CCD
diffractometer
2452 independent reflections
Radiation source: fine-focus sealed tube1273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
phi and ω scansθmax = 31.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2323
Tmin = 0.96, Tmax = 0.98k = 109
20096 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.9684P]
where P = (Fo2 + 2Fc2)/3
2452 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C7H6N4O2V = 1512.2 (4) Å3
Mr = 178.16Z = 8
Orthorhombic, PccnMo Kα radiation
a = 16.109 (2) ŵ = 0.12 mm1
b = 7.2931 (11) ÅT = 296 K
c = 12.8708 (17) Å0.10 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2452 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1273 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.98Rint = 0.110
20096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.35 e Å3
2452 reflectionsΔρmin = 0.26 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.86210 (12)1.0811 (3)0.86101 (16)0.0332 (5)
H1010.8653 (17)1.079 (4)0.792 (2)0.047 (9)*
N20.92672 (12)1.1375 (3)0.91859 (16)0.0387 (5)
N30.90167 (12)1.1289 (3)1.01390 (16)0.0384 (5)
N40.82224 (11)1.0674 (3)1.01992 (15)0.0322 (5)
O10.74465 (11)1.0193 (3)0.71535 (12)0.0424 (5)
H10.72081.03110.65950.064*
O20.47535 (11)0.8148 (3)0.81787 (15)0.0546 (6)
H20.45210.76860.86810.082*
C10.71543 (13)0.9735 (3)0.89292 (17)0.0275 (5)
C20.66041 (14)0.9179 (4)0.97055 (18)0.0329 (6)
H2A0.67800.91781.03940.040*
C30.58072 (14)0.8633 (4)0.94770 (18)0.0350 (6)
H30.54490.82701.00050.042*
C40.55424 (14)0.8628 (4)0.84451 (19)0.0349 (6)
C50.60837 (15)0.9128 (4)0.76517 (19)0.0355 (6)
H50.59090.90910.69630.043*
C60.68889 (14)0.9686 (3)0.78936 (17)0.0292 (5)
C70.79789 (13)1.0372 (3)0.92276 (17)0.0266 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0273 (9)0.0474 (14)0.0249 (10)0.0028 (9)0.0009 (8)0.0013 (9)
N20.0284 (10)0.0561 (15)0.0318 (11)0.0080 (10)0.0014 (8)0.0014 (10)
N30.0274 (10)0.0547 (15)0.0330 (11)0.0071 (10)0.0011 (8)0.0014 (10)
N40.0229 (9)0.0453 (13)0.0284 (10)0.0029 (9)0.0009 (7)0.0006 (9)
O10.0314 (8)0.0715 (14)0.0243 (8)0.0072 (9)0.0010 (7)0.0069 (9)
O20.0359 (10)0.0896 (18)0.0382 (11)0.0275 (11)0.0102 (8)0.0150 (11)
C10.0251 (10)0.0299 (13)0.0276 (11)0.0006 (9)0.0018 (8)0.0014 (10)
C20.0319 (11)0.0427 (15)0.0242 (11)0.0024 (11)0.0030 (9)0.0018 (10)
C30.0280 (11)0.0471 (16)0.0300 (12)0.0090 (11)0.0019 (9)0.0032 (11)
C40.0279 (11)0.0407 (16)0.0359 (13)0.0057 (11)0.0046 (9)0.0027 (11)
C50.0332 (11)0.0466 (16)0.0266 (12)0.0067 (11)0.0057 (9)0.0038 (11)
C60.0270 (10)0.0339 (13)0.0268 (11)0.0003 (10)0.0004 (9)0.0031 (10)
C70.0254 (10)0.0299 (13)0.0245 (11)0.0017 (9)0.0006 (8)0.0013 (9)
Geometric parameters (Å, º) top
N1—N21.342 (3)C1—C21.396 (3)
N1—C71.343 (3)C1—C61.400 (3)
N1—H1010.89 (3)C1—C71.459 (3)
N2—N31.293 (3)C2—C31.376 (3)
N3—N41.358 (3)C2—H2A0.9300
N4—C71.329 (3)C3—C41.395 (3)
O1—C61.360 (3)C3—H30.9300
O1—H10.8200C4—C51.391 (3)
O2—C41.362 (3)C5—C61.395 (3)
O2—H20.8200C5—H50.9300
N2—N1—C7110.1 (2)C2—C3—H3120.4
N2—N1—H101120.8 (18)C4—C3—H3120.4
C7—N1—H101129.1 (18)O2—C4—C5117.9 (2)
N3—N2—N1105.49 (19)O2—C4—C3121.7 (2)
N2—N3—N4111.35 (19)C5—C4—C3120.4 (2)
C7—N4—N3106.20 (18)C4—C5—C6119.7 (2)
C6—O1—H1109.5C4—C5—H5120.2
C4—O2—H2109.5C6—C5—H5120.2
C2—C1—C6118.7 (2)O1—C6—C5122.5 (2)
C2—C1—C7118.8 (2)O1—C6—C1117.3 (2)
C6—C1—C7122.5 (2)C5—C6—C1120.3 (2)
C3—C2—C1121.6 (2)N4—C7—N1106.87 (19)
C3—C2—H2A119.2N4—C7—C1124.7 (2)
C1—C2—H2A119.2N1—C7—C1128.4 (2)
C2—C3—C4119.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.821.942.759 (3)173
O2—H2···N3ii0.822.002.817 (3)173
N1—H101···O10.89 (3)2.22 (3)2.701 (3)113 (2)
N1—H101···O2iii0.89 (3)2.40 (3)3.034 (3)129 (2)
C3—H3···N2ii0.932.573.439 (3)155
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y1/2, z+2; (iii) x+1/2, y+2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H6N4O2
Mr178.16
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)16.109 (2), 7.2931 (11), 12.8708 (17)
V3)1512.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.96, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
20096, 2452, 1273
Rint0.110
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.168, 1.05
No. of reflections2452
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N4i0.81961.94382.759 (3)172.80
O2—H2···N3ii0.81962.00122.817 (3)173.44
N1—H101···O10.89 (3)2.22 (3)2.701 (3)113 (2)
N1—H101···O2iii0.89 (3)2.40 (3)3.034 (3)129 (2)
C3—H3···N2ii0.93002.57273.439 (3)155.21
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x1/2, y1/2, z+2; (iii) x+1/2, y+2, z+3/2.
 

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010–0007092).

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallardo, H., Meyer, E. & Vencato, I. (1995). Acta Cryst. C51, 2430–2432.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeyer, E., Zucco, C. & Gallardo, H. (1998). J. Mater. Chem., 8, 1351–1354.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds