organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3′,4′,5′-trimeth­­oxy­bi­phenyl-4-carboxyl­ate

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
*Correspondence e-mail: sami.nummelin@aalto.fi

(Received 22 January 2013; accepted 11 February 2013; online 16 February 2013)

In the title compound, C17H18O5, the dihedral angle between the benzene rings is 31.23 (16)°. In the crystal, the mol­ecules are packed in an anti­parallel fashion in layers along the a axis. In each layer, very weak C—H⋯O hydrogen bonds occur between the meth­oxy and methyl ester groups. Weak C—H⋯π inter­actions between the 4′- and 5′-meth­oxy groups and neighbouring benzene rings [meth­oxy-C–ring centroid distances = 4.075 and 3.486 Å, respectively] connect the layers.

Related literature

For a related structure, see: Li et al. (2012[Li, X.-M., Hou, Y.-J., Chu, W.-Y. & Sun, Z.-Z. (2012). Acta Cryst. E68, o1292.]). For the nature of hydrogen bonding, see Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); For related biphenyl structures, see: Leowanawat et al. (2011[Leowanawat, P., Zhang, N., Resmerita, A.-M., Rosen, B. M. & Percec, V. (2011). J. Org. Chem. 76, 9946-9955.]); Wilson et al. (2008[Wilson, D. A., Wilson, C. J., Rosen, B. M. & Percec, V. (2008). Org. Lett. 10, 4879-4882.]); Percec et al. (2004[Percec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447-3452.]); Suzuki (1999[Suzuki, A. (1999). Organomet. Chem. 576, 147-168.]). For details of the synthesis and amphiphilic supra­molecular biphenyl dendrimers, see: Percec et al. (2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.], 2007[Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989-4007.]). For general background to self-assembling dendrons and dendrimers, see: Rosen et al. (2009[Rosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec, V. (2009). Chem. Rev. 109, 6275-6540.]); For the use of aromatic and aliphatic ester derivatives in the synthesis of dendrimers and dendrons, see Nummelin et al. (2000[Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1-67.]); Twibanire & Grindley (2012[Twibanire, J. K. & Grindley, T. B. (2012). Polymers, 4, 794-879.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18O5

  • Mr = 302.31

  • Triclinic, [P \overline 1]

  • a = 7.9103 (5) Å

  • b = 8.6054 (7) Å

  • c = 11.8779 (7) Å

  • α = 92.834 (6)°

  • β = 92.448 (5)°

  • γ = 115.822 (7)°

  • V = 725.07 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 123 K

  • 0.49 × 0.23 × 0.10 mm

Data collection
  • Agilent SuperNova (Dual source with Cu, Atlas) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2010)[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.] Tmin = 0.827, Tmax = 0.951

  • 4547 measured reflections

  • 2731 independent reflections

  • 2524 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.05

  • 2731 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2i 0.98 2.58 3.4933 (15) 156
C18—H18C⋯O14ii 0.98 2.50 3.4453 (16) 161
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Aromatic and aliphatic ester derivatives are extensively used for the synthesis of various types of dendrimers and dendrons (Nummelin et al. 2000, Twibanire et al. 2012). In addition to arylmethyl ether-ester compounds, corresponding biphenyls are employed as building blocks for the construction of amphiphilic dendrons (Percec et al. 2006, 2007). These dendrons self-assemble into hollow and non-hollow supramolecular dendrimers that further self-organize into periodic assemblies (Rosen et al. 2009). The key step in the multi-step reaction sequence is a metal catalyzed aryl-aryl cross-coupling (Percec et al. 2004, 2006; Suzuki 1999). As a contribution to a structural study of biphenyl ether derivatives we report here the title compound methyl-(3',4',5'-trimethoxybiphenyl)-4-carboxylate (I).

Compound (I) crystallizes in triclinic space group P-1 (No. 2) without any solvent molecule in an asymmetric unit (Fig. 1). The intramolecular dihedral angle between the phenyl moieties is 31.23 (16)° [C7–C8–C11–C12]. The molecules are packed in antiparaller rows along a-axis (Fig. 2). On each layer of molecules, very weak C–H···O hydrogen bonds (Steiner 2002) are found between the methoxy and methyl ester groups d(H···A) varying from 2.5 to 2.6 Å (Fig. 3). The 4'-methoxy groups are pointing out from the otherwise planar molecules with bond and torsion angles of 121.07 (10)° and -72.99 (13)° [C13–C16–O17; C13–C16–O17–C18], respectively. In consequence of the projecting methoxy group and the 5'-methoxy group, the molecule layers are interconnected (Fig. 4.) via C–H···π interactions occurring between methoxy group H atoms and close by phenyl rings with distances of 4.075 and 3.846 Å [from methoxy(C) to phenyl ring centroid].

Related literature top

For a related structure, see: Li et al. (2012). For the nature of hydrogen bonding, see Steiner (2002); For related biphenyl structures, see: Leowanawat et al. (2011); Wilson et al. (2008); Percec et al. (2004); For details of the synthesis and amphiphilic supramolecular biphenyl dendrimers, see: Percec et al. (2006, 2007); ; Suzuki (1999). For general background to self-assembling dendrons and dendrimers, see: Rosen et al. (2009); For the use of aromatic and aliphatic ester derivatives in the synthesis of dendrimers and dendrons, see Nummelin et al. (2000); Twibanire & Grindley (2012).

Experimental top

3',4',5'-trimethoxy-biphenyl-4-carboxylic acid (21.0 g, 72.8 mmol) was dissolved in MeOH (300 ml) and conc. sulfuric acid (3 ml). The solution was stirred under reflux for 14 h and then allowed to cool down to ambient temperature. The precipitate was collected by filtration, washed with water and dried in vacuo affording the title ester (20.4 g, 93%) as a white crystalline solid. Crystals suitable for a single-crystal structure determination were obtained from a slow evaporation of ethanol solution.

Refinement top

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing labeling scheme and displacement ellipsoids with 50% probability.
[Figure 2] Fig. 2. Molecular packing along a-axis. Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. View of C–H···O contact network on a single molecule layer.
[Figure 4] Fig. 4. View along (1 - 2 2) plane showing weak C–H···π interactions between the layers of molecules.
Methyl 3',4',5'-trimethoxybiphenyl-4-carboxylate top
Crystal data top
C17H18O5Z = 2
Mr = 302.31F(000) = 320
Triclinic, P1Dx = 1.385 Mg m3
a = 7.9103 (5) ÅCu Kα radiation, λ = 1.5418 Å
b = 8.6054 (7) ÅCell parameters from 3244 reflections
c = 11.8779 (7) Åθ = 3.7–76.2°
α = 92.834 (6)°µ = 0.84 mm1
β = 92.448 (5)°T = 123 K
γ = 115.822 (7)°Plate, colourless
V = 725.07 (9) Å30.49 × 0.23 × 0.10 mm
Data collection top
Agilent SuperNova (Dual source with Cu, Atlas)
diffractometer
2731 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2524 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.016
Detector resolution: 10.3953 pixels mm-1θmax = 70.0°, θmin = 3.7°
ω scansh = 69
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
k = 1010
Tmin = 0.827, Tmax = 0.951l = 1414
4547 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.167P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2731 reflectionsΔρmax = 0.26 e Å3
204 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (13)
Crystal data top
C17H18O5γ = 115.822 (7)°
Mr = 302.31V = 725.07 (9) Å3
Triclinic, P1Z = 2
a = 7.9103 (5) ÅCu Kα radiation
b = 8.6054 (7) ŵ = 0.84 mm1
c = 11.8779 (7) ÅT = 123 K
α = 92.834 (6)°0.49 × 0.23 × 0.10 mm
β = 92.448 (5)°
Data collection top
Agilent SuperNova (Dual source with Cu, Atlas)
diffractometer
2731 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2010)
2524 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.951Rint = 0.016
4547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2731 reflectionsΔρmin = 0.25 e Å3
204 parameters
Special details top

Experimental. (CrysAlisPro; Agilent 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O200.15945 (10)0.37481 (10)0.32775 (6)0.0189 (2)
O170.09397 (11)0.16999 (10)0.13913 (7)0.0215 (2)
O21.52912 (10)1.04374 (10)0.31139 (7)0.0209 (2)
O140.37423 (11)0.19633 (11)0.00966 (7)0.0228 (2)
O41.43214 (11)1.16372 (11)0.45157 (7)0.0249 (2)
C190.31151 (15)0.40188 (14)0.26702 (9)0.0164 (2)
C220.49386 (15)0.52658 (14)0.29919 (9)0.0164 (2)
H220.51770.60020.36610.020*
C160.27386 (15)0.29495 (14)0.16769 (9)0.0174 (2)
C61.17401 (15)0.76841 (15)0.27483 (9)0.0185 (2)
H61.27800.74730.25590.022*
C70.99186 (15)0.64548 (14)0.24261 (9)0.0183 (2)
H70.97240.53980.20300.022*
C110.64163 (15)0.54313 (14)0.23285 (9)0.0166 (2)
C101.05099 (15)0.95224 (14)0.36160 (9)0.0191 (2)
H101.07071.05660.40320.023*
C51.20468 (15)0.92276 (14)0.33487 (9)0.0168 (2)
C80.83642 (15)0.67484 (14)0.26762 (9)0.0164 (2)
C180.00490 (16)0.20396 (16)0.04195 (11)0.0254 (3)
H18A0.08340.21960.02210.038*
H18B0.01090.30940.05860.038*
H18C0.11870.10610.02300.038*
C90.86947 (15)0.83046 (14)0.32792 (10)0.0190 (2)
H90.76600.85290.34600.023*
C31.39732 (15)1.05633 (14)0.37365 (9)0.0180 (2)
C130.42300 (16)0.31014 (14)0.10261 (9)0.0183 (2)
C150.51955 (16)0.20895 (16)0.06177 (10)0.0235 (3)
H15A0.46560.12280.12630.035*
H15B0.61510.18760.01900.035*
H15C0.57780.32520.08900.035*
C120.60543 (15)0.43431 (14)0.13456 (9)0.0181 (2)
H120.70570.44510.08940.022*
C210.19948 (16)0.44995 (16)0.44155 (9)0.0225 (3)
H21A0.25200.57620.44130.034*
H21B0.29080.41860.48040.034*
H21C0.08310.40650.48090.034*
C11.72008 (15)1.17042 (15)0.34262 (11)0.0229 (3)
H1A1.80431.15740.28880.034*
H1B1.75801.15290.41880.034*
H1C1.72751.28700.34150.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O200.0124 (4)0.0220 (4)0.0179 (4)0.0041 (3)0.0012 (3)0.0038 (3)
O170.0139 (4)0.0212 (4)0.0202 (4)0.0003 (3)0.0014 (3)0.0019 (3)
O20.0114 (4)0.0209 (4)0.0239 (4)0.0017 (3)0.0009 (3)0.0050 (3)
O140.0173 (4)0.0238 (4)0.0196 (4)0.0029 (3)0.0015 (3)0.0086 (3)
O40.0183 (4)0.0222 (4)0.0269 (4)0.0034 (3)0.0004 (3)0.0090 (3)
C190.0137 (5)0.0174 (5)0.0174 (5)0.0061 (4)0.0014 (4)0.0017 (4)
C220.0148 (5)0.0159 (5)0.0158 (5)0.0048 (4)0.0011 (4)0.0018 (4)
C160.0125 (5)0.0158 (5)0.0185 (5)0.0016 (4)0.0017 (4)0.0010 (4)
C60.0139 (5)0.0210 (5)0.0191 (5)0.0067 (4)0.0015 (4)0.0018 (4)
C70.0160 (5)0.0177 (5)0.0180 (5)0.0052 (4)0.0000 (4)0.0045 (4)
C110.0141 (5)0.0157 (5)0.0179 (5)0.0048 (4)0.0008 (4)0.0007 (4)
C100.0173 (5)0.0162 (5)0.0211 (5)0.0052 (4)0.0023 (4)0.0022 (4)
C50.0141 (5)0.0174 (5)0.0150 (5)0.0035 (4)0.0004 (4)0.0004 (4)
C80.0148 (5)0.0167 (5)0.0146 (5)0.0040 (4)0.0005 (4)0.0005 (4)
C180.0174 (5)0.0251 (6)0.0294 (6)0.0066 (5)0.0066 (5)0.0042 (5)
C90.0144 (5)0.0183 (5)0.0227 (6)0.0058 (4)0.0021 (4)0.0011 (4)
C30.0160 (5)0.0175 (5)0.0184 (5)0.0056 (4)0.0011 (4)0.0004 (4)
C130.0185 (5)0.0178 (5)0.0158 (5)0.0059 (4)0.0006 (4)0.0019 (4)
C150.0214 (6)0.0264 (6)0.0200 (6)0.0084 (5)0.0031 (4)0.0054 (5)
C120.0143 (5)0.0193 (5)0.0183 (5)0.0055 (4)0.0013 (4)0.0006 (4)
C210.0173 (5)0.0282 (6)0.0176 (6)0.0063 (5)0.0027 (4)0.0032 (4)
C10.0120 (5)0.0201 (6)0.0298 (6)0.0012 (4)0.0000 (4)0.0011 (5)
Geometric parameters (Å, º) top
O20—C191.3667 (13)C10—H100.9500
O20—C211.4298 (13)C10—C51.3916 (15)
O17—C161.3733 (13)C10—C91.3851 (16)
O17—C181.4345 (14)C5—C31.4891 (15)
O2—C31.3424 (13)C8—C91.3997 (15)
O2—C11.4442 (13)C18—H18A0.9800
O14—C131.3618 (13)C18—H18B0.9800
O14—C151.4271 (13)C18—H18C0.9800
O4—C31.2076 (14)C9—H90.9500
C19—C221.3937 (15)C13—C121.3921 (15)
C19—C161.3969 (15)C15—H15A0.9800
C22—H220.9500C15—H15B0.9800
C22—C111.3972 (15)C15—H15C0.9800
C16—C131.4000 (16)C12—H120.9500
C6—H60.9500C21—H21A0.9800
C6—C71.3881 (15)C21—H21B0.9800
C6—C51.3937 (15)C21—H21C0.9800
C7—H70.9500C1—H1A0.9800
C7—C81.3994 (15)C1—H1B0.9800
C11—C81.4857 (14)C1—H1C0.9800
C11—C121.3971 (15)
C19—O20—C21116.33 (8)H18A—C18—H18B109.5
C16—O17—C18113.77 (9)H18A—C18—H18C109.5
C3—O2—C1115.40 (8)H18B—C18—H18C109.5
C13—O14—C15117.61 (9)C10—C9—C8120.93 (10)
O20—C19—C22123.79 (10)C10—C9—H9119.5
O20—C19—C16115.53 (9)C8—C9—H9119.5
C22—C19—C16120.67 (10)O2—C3—C5111.90 (9)
C19—C22—H22120.1O4—C3—O2123.63 (10)
C19—C22—C11119.89 (10)O4—C3—C5124.47 (10)
C11—C22—H22120.1O14—C13—C16115.08 (10)
O17—C16—C19119.67 (10)O14—C13—C12124.58 (10)
O17—C16—C13121.07 (10)C12—C13—C16120.34 (10)
C19—C16—C13119.14 (10)O14—C15—H15A109.5
C7—C6—H6119.9O14—C15—H15B109.5
C7—C6—C5120.16 (10)O14—C15—H15C109.5
C5—C6—H6119.9H15A—C15—H15B109.5
C6—C7—H7119.5H15A—C15—H15C109.5
C6—C7—C8121.03 (10)H15B—C15—H15C109.5
C8—C7—H7119.5C11—C12—H12119.9
C22—C11—C8119.97 (10)C13—C12—C11120.23 (10)
C12—C11—C22119.69 (10)C13—C12—H12119.9
C12—C11—C8120.34 (10)O20—C21—H21A109.5
C5—C10—H10119.8O20—C21—H21B109.5
C9—C10—H10119.8O20—C21—H21C109.5
C9—C10—C5120.44 (10)H21A—C21—H21B109.5
C6—C5—C3122.00 (10)H21A—C21—H21C109.5
C10—C5—C6119.29 (10)H21B—C21—H21C109.5
C10—C5—C3118.69 (10)O2—C1—H1A109.5
C7—C8—C11120.91 (10)O2—C1—H1B109.5
C7—C8—C9118.14 (10)O2—C1—H1C109.5
C9—C8—C11120.95 (10)H1A—C1—H1B109.5
O17—C18—H18A109.5H1A—C1—H1C109.5
O17—C18—H18B109.5H1B—C1—H1C109.5
O17—C18—H18C109.5
O20—C19—C22—C11178.85 (10)C7—C6—C5—C100.25 (17)
O20—C19—C16—O171.73 (15)C7—C6—C5—C3178.45 (10)
O20—C19—C16—C13177.75 (10)C7—C8—C9—C100.19 (17)
O17—C16—C13—O141.62 (16)C11—C8—C9—C10179.15 (10)
O17—C16—C13—C12178.14 (10)C10—C5—C3—O2157.96 (10)
O14—C13—C12—C11178.77 (10)C10—C5—C3—O421.96 (17)
C19—C22—C11—C8179.40 (9)C5—C6—C7—C81.18 (17)
C19—C22—C11—C120.02 (16)C5—C10—C9—C80.72 (17)
C19—C16—C13—O14177.58 (10)C8—C11—C12—C13179.52 (10)
C19—C16—C13—C122.18 (17)C18—O17—C16—C19111.07 (11)
C22—C19—C16—O17178.33 (9)C18—O17—C16—C1372.99 (13)
C22—C19—C16—C132.31 (17)C9—C10—C5—C60.70 (17)
C22—C11—C8—C7148.15 (11)C9—C10—C5—C3179.43 (10)
C22—C11—C8—C930.78 (15)C15—O14—C13—C16178.23 (10)
C22—C11—C12—C130.14 (16)C15—O14—C13—C122.02 (16)
C16—C19—C22—C111.23 (16)C12—C11—C8—C731.23 (16)
C16—C13—C12—C110.97 (17)C12—C11—C8—C9149.84 (11)
C6—C7—C8—C11179.90 (10)C21—O20—C19—C2215.21 (15)
C6—C7—C8—C91.14 (16)C21—O20—C19—C16164.86 (10)
C6—C5—C3—O223.34 (15)C1—O2—C3—O40.72 (16)
C6—C5—C3—O4156.74 (12)C1—O2—C3—C5179.20 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.982.583.4933 (15)156
C18—H18C···O14ii0.982.503.4453 (16)161
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC17H18O5
Mr302.31
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.9103 (5), 8.6054 (7), 11.8779 (7)
α, β, γ (°)92.834 (6), 92.448 (5), 115.822 (7)
V3)725.07 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.49 × 0.23 × 0.10
Data collection
DiffractometerAgilent SuperNova (Dual source with Cu, Atlas)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.827, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
4547, 2731, 2524
Rint0.016
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.05
No. of reflections2731
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O2i0.982.583.4933 (15)156
C18—H18C···O14ii0.982.503.4453 (16)161
Symmetry codes: (i) x+2, y+1, z; (ii) x, y, z.
 

Acknowledgements

SN acknowledges the Academy of Finland for financial support (No. 138850).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLeowanawat, P., Zhang, N., Resmerita, A.-M., Rosen, B. M. & Percec, V. (2011). J. Org. Chem. 76, 9946–9955.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X.-M., Hou, Y.-J., Chu, W.-Y. & Sun, Z.-Z. (2012). Acta Cryst. E68, o1292.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPercec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447–3452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec, V. (2009). Chem. Rev. 109, 6275–6540.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationSuzuki, A. (1999). Organomet. Chem. 576, 147–168.  CrossRef CAS Google Scholar
First citationTwibanire, J. K. & Grindley, T. B. (2012). Polymers, 4, 794–879.  Web of Science CrossRef Google Scholar
First citationWilson, D. A., Wilson, C. J., Rosen, B. M. & Percec, V. (2008). Org. Lett. 10, 4879–4882.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds