organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3′,5′-dimeth­­oxy­bi­phenyl-4-carboxyl­ate

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 JY, Finland, bVTT Technical Research Centre of Finland, Tampere, FIN-33101, Finland, and cMolecular Materials, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
*Correspondence e-mail: sami.nummelin@aalto.fi

(Received 12 February 2013; accepted 24 February 2013; online 28 February 2013)

In the title compound, C16H16O4, the dihedral angle between the benzene rings is 28.9 (2)°. In the crystal, mol­ecules are packed in layers parallel to the b axis in which they are connected via weak inter­molecular C—H⋯O contacts. Face-to-face ππ inter­actions also exist between the benzene rings of adjacent mol­ecules, with centroid–centroid and plane-to-plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively.

Related literature

For related structures, see: Lahtinen et al. (2013[Lahtinen, M., Nättinen, K. & Nummelin, S. (2013). Acta Cryst. E69, o383.]); Van Eerdenbrugh et al. (2010[Van Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, o2609.]). For the nature of hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For synthesis details and related supra­molecular structures based on biphenyls, see: Percec et al. (2006[Percec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216-6241.], 2007[Percec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989-4007.]). For related synthetic biphenyl structures, see: Rosen et al. (2008[Rosen, B. M., Huang, C. & Percec, V. (2008). Org. Lett. 12, 2597-2600.]); Percec et al. (2004[Percec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447-3452.]); Wolfe et al. (1999[Wolfe, J. P., Singer, R. A., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 9550-9561.]). For polyester functionalized dendrons and dendrimers, see: Nummelin et al. (2000[Nummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1-67.]). For a general review on self-assembling dendrons and dendrimers, see: Rosen et al. (2009[Rosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec, V. (2009). Chem. Rev. 109, 6275-6540.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O4

  • Mr = 272.29

  • Triclinic, [P \overline 1]

  • a = 6.0990 (9) Å

  • b = 7.1622 (16) Å

  • c = 16.2408 (18) Å

  • α = 96.589 (14)°

  • β = 91.472 (11)°

  • γ = 112.493 (18)°

  • V = 649.27 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 123 K

  • 0.29 × 0.19 × 0.04 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: analytical CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.924, Tmax = 0.983

  • 3989 measured reflections

  • 2395 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.05

  • 2395 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.89 3.7702 (19) 154
C7—H7⋯O4ii 0.95 2.85 3.4607 (19) 123
C12—H12⋯O4ii 0.95 2.71 3.644 (2) 170
C16—H16⋯O14iii 0.95 2.65 3.514 (2) 151
C1—H1A⋯O4iv 0.98 2.73 3.665 (2) 159
C19—H19A⋯O18v 0.98 2.65 3.538 (2) 151
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+1, -z+1; (iv) x+1, y, z; (v) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Biphenyls represent a new class of arylmethyl ethers and esters that serve as building blocks for the construction of amphiphilic dendrons. These dendrons, synthesized in a multi-step reaction sequence, self-assemble into hollow and non-hollow supramolecular dendrimers that further self-organize into periodic assemblies (Percec et al. 2006, 2007). The key synthetic step is the C—C bond formation between the aromatic rings. This is accomplished with metal catalyzed cross-coupling reaction (Percec et al. 2004, 2006; Rosen et al. 2008, Wolfe et al. 1999). As a contribution to a structural study of biphenyl ester derivatives we report here the title compound methyl-(3',5'-dimethoxy-biphenyl)-4-carboxylate (I).

Compound (I) crystallizes in triclinic space group P-1 (No. 2) without any solvent molecules, and having a single molecule in an asymmetric unit (Fig. 1). The intramolecular dihedral angle between the phenyl rings is 28.9 (2)°, similar to that of reported for analogous methyl 3',4',5'-trimethoxybiphenyl-4- carboxylate (Lahtinen et al. 2013). The molecules are packed in antiparallel arrangement (Fig. 2). Weak intermolecular π-π interactions (face-to-face) exist between adjacent aromatic rings having centroid-centroid and plane to plane shift distances of 3.8597 (14) and 1.843 (2) Å, respectively. Whereas weak CH-π interaction occurs between a methoxy group and nearby phenyl ring with a d(D···centroid) of 3.8303 (19) Å. Additionally, weak intermolecular CH···O hydrogen bonds occur between aromatic H atoms and neighboring methoxy O atoms with d(D···A) varying between 3.4607 (19), and 3.7702 (19) Å. Moreover, weak hydrogen bond exist between the carbonyl oxygen and aromatic ring hydrogen (C12—H12···O4) with d(D···A) of 3.644 (2) Å. The methyl ester and the two methoxy groups show characteristic geometries, typical bond distances and angles for these groups (see Tables) and are in planar orientation towards their host rings.

Related literature top

For related structures, see: Lahtinen et al. (2013); Van Eerdenbrugh et al. (2010). For the nature of hydrogen bonding, see: Steiner (2002). For synthesis details and related supramolecular structures based on biphenyls, see: Percec et al. (2006, 2007). For related synthetic biphenyl structures, see: Rosen et al. (2008); Percec et al. (2004); Wolfe et al. (1999). For polyester functionalized dendrons and dendrimers, see: Nummelin et al. (2000). For a general review on self-assembling dendrons and dendrimers, see: Rosen et al. (2009) .

Experimental top

3',5'-dimethoxy-biphenyl-4-carboxylic acid (15.50 g, 60.00 mmol) was dissolved in methanol (300 ml) and sulfuric acid (3 ml). The solution was stirred under reflux for 16 h and then allowed to cool down to room temperature. Water (600 ml) was added, the resulting precipitate was collected by suction filtration. The solid was washed with water, dried in vacuo affording the title compound as a white crystalline solid (15.69 g, 96%). Single-crystals were obtained from a slow evaporation of ethanol.

Refinement top

Hydrogen atoms were calculated to their positions as riding atoms (C host) using isotropic displacement parameters that were fixed to be 1.2 or 1.5 times larger than those of the attached non-hydrogen atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure and labelling of the title compound. The displacement ellipsoids are drawn with 50% probability.
[Figure 2] Fig. 2. Packing scheme along a-axis.
[Figure 3] Fig. 3. Weak CH···O (blue lines), CH···π and π···π interactions occurring in the structure.
Methyl 3',5'-dimethoxybiphenyl-4-carboxylate top
Crystal data top
C16H16O4Z = 2
Mr = 272.29F(000) = 288
Triclinic, P1Dx = 1.393 Mg m3
a = 6.0990 (9) ÅCu Kα radiation, λ = 1.5418 Å
b = 7.1622 (16) ÅCell parameters from 2092 reflections
c = 16.2408 (18) Åθ = 5.5–76.0°
α = 96.589 (14)°µ = 0.82 mm1
β = 91.472 (11)°T = 123 K
γ = 112.493 (18)°Plate, colourless
V = 649.27 (19) Å30.29 × 0.19 × 0.04 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2395 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2025 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3953 pixels mm-1θmax = 69.0°, θmin = 5.5°
ω scansh = 57
Absorption correction: analytical
CrysAlis PRO; Agilent, 2010)
k = 88
Tmin = 0.924, Tmax = 0.983l = 1919
3989 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.1033P]
where P = (Fo2 + 2Fc2)/3
2395 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H16O4γ = 112.493 (18)°
Mr = 272.29V = 649.27 (19) Å3
Triclinic, P1Z = 2
a = 6.0990 (9) ÅCu Kα radiation
b = 7.1622 (16) ŵ = 0.82 mm1
c = 16.2408 (18) ÅT = 123 K
α = 96.589 (14)°0.29 × 0.19 × 0.04 mm
β = 91.472 (11)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2395 independent reflections
Absorption correction: analytical
CrysAlis PRO; Agilent, 2010)
2025 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.983Rint = 0.025
3989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2395 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.72065 (19)0.88715 (17)1.15112 (6)0.0256 (3)
O21.01438 (18)0.78669 (16)1.11239 (6)0.0245 (3)
O180.46733 (19)0.23876 (16)0.56673 (6)0.0256 (3)
O140.1145 (2)0.71333 (18)0.59191 (7)0.0301 (3)
C30.8129 (3)0.8161 (2)1.09788 (9)0.0205 (3)
C60.5135 (3)0.7715 (2)0.98314 (9)0.0210 (3)
H60.42810.82021.02230.025*
C170.4269 (3)0.3845 (2)0.61901 (9)0.0213 (3)
C130.2432 (3)0.6276 (2)0.63282 (9)0.0220 (3)
C70.4295 (3)0.7185 (2)0.89982 (9)0.0212 (3)
H70.28770.73350.88270.025*
C110.4573 (2)0.5869 (2)0.75182 (9)0.0201 (3)
C50.7225 (3)0.7530 (2)1.00911 (9)0.0202 (3)
C120.3244 (3)0.6839 (2)0.71684 (9)0.0214 (3)
H120.28990.78650.74970.026*
C160.2934 (3)0.4787 (2)0.58389 (9)0.0226 (3)
H160.23700.44170.52690.027*
C80.5486 (2)0.6439 (2)0.84072 (9)0.0196 (3)
C90.7577 (3)0.6253 (2)0.86810 (9)0.0223 (3)
H90.84270.57530.82920.027*
C200.5067 (3)0.4362 (2)0.70285 (9)0.0211 (3)
H200.59480.36890.72680.025*
C100.8431 (3)0.6785 (2)0.95095 (9)0.0222 (3)
H100.98510.66390.96820.027*
C11.1197 (3)0.8460 (2)1.19672 (9)0.0255 (3)
H1A1.27850.84191.19870.038*
H1B1.01940.75181.23250.038*
H1C1.13280.98481.21630.038*
C190.6415 (3)0.1676 (3)0.59536 (10)0.0271 (3)
H19A0.67420.08280.54950.041*
H19B0.58100.08660.64060.041*
H19C0.78840.28450.61560.041*
C150.0299 (3)0.8481 (3)0.64007 (10)0.0279 (4)
H15A0.06380.89430.60350.042*
H15B0.16560.96620.66780.042*
H15C0.07000.77640.68200.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0290 (6)0.0305 (6)0.0189 (5)0.0141 (5)0.0027 (4)0.0002 (4)
O20.0254 (6)0.0301 (6)0.0191 (5)0.0135 (5)0.0029 (4)0.0018 (4)
O180.0309 (6)0.0269 (6)0.0208 (5)0.0150 (5)0.0011 (4)0.0025 (4)
O140.0377 (6)0.0365 (6)0.0232 (6)0.0235 (5)0.0032 (5)0.0010 (5)
C30.0208 (7)0.0181 (7)0.0214 (7)0.0059 (6)0.0011 (6)0.0039 (6)
C60.0231 (7)0.0198 (7)0.0201 (7)0.0084 (6)0.0038 (6)0.0012 (6)
C170.0219 (7)0.0198 (7)0.0201 (7)0.0064 (6)0.0033 (6)0.0008 (6)
C130.0217 (7)0.0231 (8)0.0218 (7)0.0087 (6)0.0004 (6)0.0051 (6)
C70.0213 (7)0.0232 (8)0.0199 (7)0.0094 (6)0.0013 (6)0.0036 (6)
C110.0181 (7)0.0202 (7)0.0194 (7)0.0044 (6)0.0026 (6)0.0034 (6)
C50.0221 (7)0.0182 (7)0.0187 (7)0.0060 (6)0.0019 (6)0.0029 (5)
C120.0211 (7)0.0221 (8)0.0202 (7)0.0079 (6)0.0013 (6)0.0015 (6)
C160.0246 (8)0.0237 (8)0.0180 (7)0.0081 (6)0.0006 (6)0.0017 (6)
C80.0202 (7)0.0169 (7)0.0199 (7)0.0050 (6)0.0021 (6)0.0029 (5)
C90.0223 (7)0.0254 (8)0.0192 (7)0.0099 (6)0.0033 (6)0.0006 (6)
C200.0208 (7)0.0211 (7)0.0210 (7)0.0077 (6)0.0007 (6)0.0031 (6)
C100.0195 (7)0.0242 (8)0.0229 (8)0.0091 (6)0.0011 (6)0.0019 (6)
C10.0276 (8)0.0288 (8)0.0190 (7)0.0107 (7)0.0046 (6)0.0008 (6)
C190.0272 (8)0.0302 (8)0.0258 (8)0.0147 (7)0.0010 (6)0.0017 (6)
C150.0299 (8)0.0294 (8)0.0284 (8)0.0164 (7)0.0004 (6)0.0021 (6)
Geometric parameters (Å, º) top
O4—C31.2107 (18)C11—C201.397 (2)
O2—C31.3436 (17)C5—C101.392 (2)
O2—C11.4427 (17)C12—H120.9500
O18—C171.3694 (17)C16—H160.9500
O18—C191.4308 (18)C8—C91.399 (2)
O14—C131.3676 (18)C9—H90.9500
O14—C151.4278 (18)C9—C101.386 (2)
C3—C51.485 (2)C20—H200.9500
C6—H60.9500C10—H100.9500
C6—C71.391 (2)C1—H1A0.9800
C6—C51.391 (2)C1—H1B0.9800
C17—C161.389 (2)C1—H1C0.9800
C17—C201.393 (2)C19—H19A0.9800
C13—C121.399 (2)C19—H19B0.9800
C13—C161.389 (2)C19—H19C0.9800
C7—H70.9500C15—H15A0.9800
C7—C81.396 (2)C15—H15B0.9800
C11—C121.400 (2)C15—H15C0.9800
C11—C81.487 (2)
C3—O2—C1115.97 (11)C7—C8—C11121.35 (13)
C17—O18—C19117.27 (11)C7—C8—C9117.57 (13)
C13—O14—C15117.93 (12)C9—C8—C11121.09 (13)
O4—C3—O2123.42 (13)C8—C9—H9119.4
O4—C3—C5125.19 (13)C10—C9—C8121.19 (13)
O2—C3—C5111.38 (12)C10—C9—H9119.4
C7—C6—H6120.0C17—C20—C11120.10 (13)
C5—C6—H6120.0C17—C20—H20119.9
C5—C6—C7119.98 (13)C11—C20—H20119.9
O18—C17—C16115.76 (13)C5—C10—H10119.7
O18—C17—C20123.83 (13)C9—C10—C5120.53 (14)
C16—C17—C20120.40 (13)C9—C10—H10119.7
O14—C13—C12124.10 (13)O2—C1—H1A109.5
O14—C13—C16114.75 (13)O2—C1—H1B109.5
C16—C13—C12121.14 (13)O2—C1—H1C109.5
C6—C7—H7119.2H1A—C1—H1B109.5
C6—C7—C8121.62 (13)H1A—C1—H1C109.5
C8—C7—H7119.2H1B—C1—H1C109.5
C12—C11—C8120.57 (13)O18—C19—H19A109.5
C20—C11—C12119.93 (14)O18—C19—H19B109.5
C20—C11—C8119.50 (13)O18—C19—H19C109.5
C6—C5—C3119.12 (13)H19A—C19—H19B109.5
C6—C5—C10119.11 (14)H19A—C19—H19C109.5
C10—C5—C3121.77 (13)H19B—C19—H19C109.5
C13—C12—C11119.01 (13)O14—C15—H15A109.5
C13—C12—H12120.5O14—C15—H15B109.5
C11—C12—H12120.5O14—C15—H15C109.5
C17—C16—C13119.41 (14)H15A—C15—H15B109.5
C17—C16—H16120.3H15A—C15—H15C109.5
C13—C16—H16120.3H15B—C15—H15C109.5
O4—C3—C5—C61.2 (2)C12—C11—C8—C728.9 (2)
O4—C3—C5—C10177.90 (14)C12—C11—C8—C9150.86 (14)
O2—C3—C5—C6179.48 (13)C12—C11—C20—C170.9 (2)
O2—C3—C5—C101.4 (2)C16—C17—C20—C111.4 (2)
O18—C17—C16—C13179.66 (13)C16—C13—C12—C110.4 (2)
O18—C17—C20—C11179.97 (13)C8—C11—C12—C13179.45 (13)
O14—C13—C12—C11179.23 (13)C8—C11—C20—C17178.56 (13)
O14—C13—C16—C17178.85 (13)C8—C9—C10—C50.3 (2)
C3—C5—C10—C9178.42 (14)C20—C17—C16—C131.0 (2)
C6—C7—C8—C11179.75 (13)C20—C11—C12—C130.0 (2)
C6—C7—C8—C90.4 (2)C20—C11—C8—C7151.58 (14)
C6—C5—C10—C90.7 (2)C20—C11—C8—C928.6 (2)
C7—C6—C5—C3178.20 (13)C1—O2—C3—O40.2 (2)
C7—C6—C5—C100.9 (2)C1—O2—C3—C5179.10 (12)
C7—C8—C9—C100.2 (2)C19—O18—C17—C16167.89 (13)
C11—C8—C9—C10179.99 (13)C19—O18—C17—C2013.5 (2)
C5—C6—C7—C80.8 (2)C15—O14—C13—C129.0 (2)
C12—C13—C16—C170.1 (2)C15—O14—C13—C16172.12 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.893.7702 (19)154
C7—H7···O4ii0.952.853.4607 (19)123
C12—H12···O4ii0.952.713.644 (2)170
C16—H16···O14iii0.952.653.514 (2)151
C1—H1A···O4iv0.982.733.665 (2)159
C19—H19A···O18v0.982.653.538 (2)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H16O4
Mr272.29
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.0990 (9), 7.1622 (16), 16.2408 (18)
α, β, γ (°)96.589 (14), 91.472 (11), 112.493 (18)
V3)649.27 (19)
Z2
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.29 × 0.19 × 0.04
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionAnalytical
CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.924, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
3989, 2395, 2025
Rint0.025
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.05
No. of reflections2395
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.893.7702 (19)154
C7—H7···O4ii0.952.853.4607 (19)123
C12—H12···O4ii0.952.713.644 (2)170
C16—H16···O14iii0.952.653.514 (2)151
C1—H1A···O4iv0.982.733.665 (2)159
C19—H19A···O18v0.982.653.538 (2)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

SN acknowledges the Academy of Finland for financial support (No. 138850).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLahtinen, M., Nättinen, K. & Nummelin, S. (2013). Acta Cryst. E69, o383.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNummelin, S., Skrifvars, M. & Rissanen, K. (2000). Top. Curr. Chem. 210, 1–67.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPercec, V., Golding, G. M., Smidrkal, J. & Weichold, O. (2004). J. Org. Chem. 69, 3447–3452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Holerca, M. N., Nummelin, S., Morrison, J. J., Glodde, M., Smidrkal, J., Peterca, M., Uchida, S., Balagurusamy, V. S. K., Sienkowska, M. J. & Heiney, P. A. (2006). Chem. Eur. J. 12, 6216–6241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPercec, V., Smidrkal, J., Peterca, M., Mitchell, C. M., Nummelin, S., Dulcey, A. E., Sienkowska, M. J. & Heiney, P. A. (2007). Chem. Eur. J. 13, 3989–4007.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRosen, B. M., Huang, C. & Percec, V. (2008). Org. Lett. 12, 2597–2600.  Web of Science CrossRef Google Scholar
First citationRosen, B. M., Wilson, C. J., Wilson, D. A., Peterca, M., Imam, M. R. & Percec, V. (2009). Chem. Rev. 109, 6275–6540.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationVan Eerdenbrugh, B., Fanwick, P. E. & Taylor, L. S. (2010). Acta Cryst. E66, o2609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWolfe, J. P., Singer, R. A., Yang, B. H. & Buchwald, S. L. (1999). J. Am. Chem. Soc. 121, 9550–9561.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds