organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o328-o329

The halogen-bonded adduct 1,4-bis­(pyri­din-4-yl)buta-1,3-diyne–1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexa­deca­fluoro-1,8-di­iodo­octane (1/1)

aNFMLab, Department of Chemistry, Materials and Chemical Engineering, "G. Natta", Politecnico di Milano, Via Mancinelli, 7, I-20131 Milano, Italy, and bChemessentia Srl, via Bovio 6, I-28100 Novara, Italy
*Correspondence e-mail: giancarlo.terraneo@polimi.it

(Received 23 November 2012; accepted 18 January 2013; online 2 February 2013)

In the crystal structure of the title compound, C8F16I2·C14H8N2, the mol­ecules form infinite chains parallel to [2-11] through two symmetry-independent C—I⋯N halogen bonds (XBs). As commonly found, the perfluoro­alkyl mol­ecules segregate from the hydro­carbon ones, forming a layered structure. Apart from the XBs, the only contact below the sum of van der Waals radii is a weak H⋯F contact. The topology of the network is a nice example of the paradigm of the expansion of ditopic starting modules; the XB leads to the construction of infinite supramolecular chains along [2-11] formed by alternating XB donors and acceptors.

Related literature

For the use of bis-(4-pyrid­yl)buta-1,3-diine in crystal engeneering based on hydrogen bonding and transition metal binding, see: Nakamura et al. (2003[Nakamura, A., Sato, T. & Kuroda, R. (2003). CrystEngComm, 5, 318-325.]); Curtis et al. (2005[Curtis, S. M., Le, N., Fowler, F. W. & Lauher, J. W. (2005). Cryst. Growth Des. 5, 2313-2321.]); Maekawa et al. (2000[Maekawa, M., Konaka, H., Suenaga, Y., Takayoshi Kuroda-Sowa, T. & Munakata, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4160-4166.]); Badruz Zaman et al. (2001[Badruz Zaman, M. D., Smith, M. D. & Zur Loye, H.-C. (2001). Chem. Mater. 13, 3534-3541.]); Allan et al. (1988[Allan, J. R., Barrow, M. J., Beaumont, P. C., Macindoe, L. A., Milburn, G. H. W. & Werninck, A. R. (1988). Inorg. Chim. Acta, 148, 85-90.]). For N⋯I halogen bonds based on α,ω-diiodo­per­fluoro­carbons, see: Neukirch et al. (2005[Neukirch, H., Guido, E., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2005). Chem. Commun. pp. 1534-1536.]); Navarrini et al. (2000[Navarrini, W., Metrangolo, P., Pilati, T. & Resnati, G. (2000). New J. Chem. 24, 777-780.]); Liantonio et al. (2003[Liantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des. 3, 799-803.]); Bertani et al. (2002[Bertani, R., Metrangolo, P., Moiana, A., Perez, E., Pilati, T., Resnati, G., Rico-Lattes, I. & Sassi, A. (2002). Adv. Mater. 14, 1197-1201.]); Metrangolo et al. (2004[Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2004). Chem. Commun. pp. 1492-1493.], 2008[Metrangolo, P., Meyer, F., Pilati, T. & Resnati, G. (2008). Chem. Commun. pp. 1635-1637.]); Fox et al. (2004[Fox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271-281.]); Dey et al. (2009[Dey, A., Metrangolo, P., Pilati, T., Resnati, G., Terraneo, G. & Wlassics, I. (2009). J. Fluorine Chem. 130, 816-823.]). For segregation of perfluoro­alkyl chains, see: Fox et al. (2008[Fox, D., Metrangolo, P., Pasini, D., Pilati, T., Resnati, G. & Terraneo, G. (2008). CrystEngComm, 10, 1132-1136.]). For chirality and order/disorder of long perfluoro­alkyl chains, see: Monde et al. (2006[Monde, K., Miura, N., Hashimoto, M., Taniguchi, T. & Inabe, T. (2006). J. Am. Chem. Soc. 128, 6000-6001.]). For the synthesis of bis-(4-pyrid­yl)buta-1,3-diine, see: Della Ciana & Haim (1984[Della Ciana, L. & Haim, A. (1984). J. Heterocycl. Chem. 21, 607-608.]).

[Scheme 1]

Experimental

Crystal data
  • C8F16I2·C14H8N2

  • Mr = 858.10

  • Triclinic, [P \overline 1]

  • a = 5.4849 (11) Å

  • b = 14.302 (2) Å

  • c = 18.354 (3) Å

  • α = 111.40 (2)°

  • β = 90.35 (2)°

  • γ = 94.03 (2)°

  • V = 1336.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 295 K

  • 0.36 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 1.000

  • 15067 measured reflections

  • 6100 independent reflections

  • 4600 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.02

  • 6100 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Halogen and hydrogen-bonding contacts (Å, °)

C—XY XY C—XY
C1—I1⋯N1 2.863 (4) 177.93 (16)
C8—I2⋯N2i 2.887 (4) 175.39 (16)
C1—F1⋯H9ii 2.60 145.3
Symmetry codes: (i) = −2 + x, 1 + y, −1 + z; (ii) = −x, 1 − y, 1 − z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Bis-(4-pyridyl)buta-1,3-diine (1) (Allan et al., 1988) has been used as ditopic hydrogen bonding (HB) acceptor in crystal engineering (Nakamura et al., 2003; Curtis et al., 2005) and in transition metals complexes (Badruz Zaman et al., 2001; Maekawa et al., 2000), but it has never been used in halogen bonding (XB) adducts formation. Our group has shown that α,ω-diiodoperfluorocarbons are very good ditopic XB donors, both towards neutral (Fox et al., 2004) and ionic (Metrangolo et al., 2008) electron-donors. As expected, when solutions of (1) and 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane (2), are mixed, the (1)···(2) adduct quickly precipitates (Fig. 1). It forms an infinite one-dimensional and non-covalent polymer through short XBs (Table 1). In our experience, this kind of nearly linear adduct has normally Z' = 1/2, that is, both molecules lie on crystallographic elements of symmetry, more frequently Ci, but also C2 (see Table 2). Here instead, both molecules are in general position and Z' is 1. The cause of the molecular symmetry breaking is an F···H contact, the only interaction shorter than the sum of the van der Waals radii beside the I···N XBs. (Table 1). As happens in most structures containing perfluorocarbons and hydrocarbons moieties (see for example Fox et al., 2008), the two components segregate and a layered structure is formed (Fig. 2).

Related literature top

For the use of bis-(4-pyridyl)buta-1,3-diine in crystal engeneering based on hydrogen bonding and transition metal binding, see: Nakamura et al. (2003); Curtis et al. (2005); Maekawa et al. (2000); Badruz Zaman et al. (2001); Allan et al. (1988). For N···I halogen bonds based on α,ω-diiodoperfluorocarbons, see: Neukirch et al. (2005); Navarrini et al. (2000); Liantonio et al. (2003); Bertani et al. (2002); Metrangolo et al. (2004, 2008); Fox et al. (2004); Dey et al. (2009). For segregation of perfluoroalkyl chains, see: Fox et al. (2008). For chirality and order/disorder of long perfluoroalkyl chains, see: Monde et al. (2006). For the synthesis of bis-(4-pyridyl)buta-1,3-diine, see: Della Ciana & Haim (1984).

Experimental top

(1) was synthetized according to Della Ciana & Haim (1984); (2) was from Aldrich. The adduct was obtained by slow evaporation from a 1:1 solution of the two components in chloroform.

Refinement top

The lowest energy conformation of long perfluoroalkanes is chiral in due to the sterically hindered F···F contacts between 1,3 positioned CF2 groups (Monde et al., 2006). Their crystals frequently show a superposition, in the same crystallographic site, of the two more common conformers: all-trans+ and all-trans- (see, for example, Dey <i1,4-bis(pyridin-4-yl)buta-1,3-diyne–1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane (1/1)> et al., 2009), which in some cases have unequal occupancy factors. This is particularly visible for –CF3 terminated chains, that is, for α,ω-dihaloperfluorocarbons, which have the two endings strongly interacting with any electron-donor site. This type of disorder is difficult to observe, at least at room temperature, because it is masked by the large ADPs of perfluoroalkyl chains. This is due to the very weak interactions that their chains give with any environment. In the present study, splitting of some fluorine atoms was suggested by SHELXL but did not give good results. In spite of the use of a lot of restraints and constraints, at the price of a large increase of refined parameters, the final R1, wR2 and Δρ did not change significantly. The correlations between couples of parameters involving split atoms were very high, many of them being in the range 0.95–0.99. For these reasons we decided to use the ordered model of refinement. All H atoms were placed in geometrically calculated positions with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis, showing the alternating perfluorocarbon/hydrocarbon layers.
1,4-Bis(pyridin-4-yl)buta-1,3-diyne–1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluoro-1,8-diiodooctane (1/1) top
Crystal data top
C8F16I2·C14H8N2Z = 2
Mr = 858.10F(000) = 808
Triclinic, P1Dx = 2.132 Mg m3
a = 5.4849 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.302 (2) ÅCell parameters from 981 reflections
c = 18.354 (3) Åθ = 2.4–27.4°
α = 111.40 (2)°µ = 2.48 mm1
β = 90.35 (2)°T = 295 K
γ = 94.03 (2)°Elongated prism, colourless
V = 1336.4 (4) Å30.36 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
4600 reflections with I > 2σ(I)
ω and ϕ scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.734, Tmax = 1.000h = 77
15067 measured reflectionsk = 1818
6100 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.5679P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6100 reflectionsΔρmax = 0.90 e Å3
379 parametersΔρmin = 0.57 e Å3
Crystal data top
C8F16I2·C14H8N2γ = 94.03 (2)°
Mr = 858.10V = 1336.4 (4) Å3
Triclinic, P1Z = 2
a = 5.4849 (11) ÅMo Kα radiation
b = 14.302 (2) ŵ = 2.48 mm1
c = 18.354 (3) ÅT = 295 K
α = 111.40 (2)°0.36 × 0.12 × 0.10 mm
β = 90.35 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
6100 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
4600 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 1.000Rint = 0.026
15067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.90 e Å3
6100 reflectionsΔρmin = 0.57 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.11335 (6)0.46492 (2)0.32421 (2)0.06421 (11)
C10.0850 (8)0.5404 (4)0.2631 (3)0.0616 (10)
F10.1957 (7)0.6162 (3)0.3136 (2)0.1019 (12)
F20.2603 (6)0.4751 (3)0.2165 (2)0.0938 (10)
C20.0789 (7)0.5809 (3)0.2117 (2)0.0525 (9)
F30.2403 (6)0.6512 (3)0.25989 (19)0.0936 (10)
F40.1996 (6)0.5068 (2)0.16550 (18)0.0852 (9)
C30.0565 (8)0.6289 (3)0.1613 (2)0.0598 (10)
F50.1913 (8)0.6966 (3)0.2048 (2)0.1254 (16)
F60.2101 (6)0.5560 (3)0.1115 (2)0.1027 (12)
C40.1092 (8)0.6720 (3)0.1114 (2)0.0558 (9)
F70.2517 (11)0.7470 (4)0.1598 (3)0.170 (3)
F80.2464 (7)0.6031 (4)0.0697 (3)0.1272 (17)
C50.0268 (8)0.7128 (3)0.0561 (2)0.0569 (10)
F90.1635 (10)0.7821 (4)0.0985 (2)0.152 (2)
F100.1735 (7)0.6388 (3)0.0088 (2)0.1142 (14)
C60.1400 (8)0.7555 (3)0.0062 (2)0.0546 (9)
F110.2902 (7)0.8298 (3)0.0525 (2)0.1111 (13)
F120.2741 (6)0.6821 (3)0.0373 (2)0.0963 (11)
C70.0006 (7)0.7947 (3)0.0502 (2)0.0519 (9)
F130.1322 (6)0.8675 (2)0.00739 (17)0.0850 (9)
F140.1497 (6)0.7197 (2)0.09729 (17)0.0826 (9)
C80.1623 (9)0.8356 (4)0.1016 (3)0.0651 (11)
F150.3155 (6)0.9102 (3)0.0564 (2)0.1065 (12)
F160.2988 (7)0.7622 (3)0.1455 (2)0.1068 (13)
I20.04797 (6)0.88682 (2)0.17707 (2)0.06339 (11)
C90.4885 (9)0.3202 (4)0.5119 (3)0.0669 (12)
H1B0.46450.32840.56390.080*
C100.3452 (9)0.3656 (4)0.4747 (3)0.0758 (13)
H100.22360.40410.50310.091*
N10.3700 (8)0.3578 (3)0.4013 (3)0.0730 (11)
C110.5425 (10)0.3021 (5)0.3621 (3)0.0775 (14)
H110.56070.29520.31010.093*
C120.6971 (9)0.2536 (4)0.3932 (3)0.0689 (12)
H120.81750.21600.36340.083*
C130.6682 (7)0.2623 (3)0.4706 (2)0.0553 (9)
C140.8229 (8)0.2136 (4)0.5068 (3)0.0616 (10)
C150.9543 (9)0.1761 (4)0.5378 (3)0.0651 (11)
C161.1066 (9)0.1343 (4)0.5753 (3)0.0646 (11)
C171.2428 (9)0.0982 (4)0.6076 (3)0.0654 (11)
C181.3964 (8)0.0545 (3)0.6481 (2)0.0565 (10)
C191.3530 (9)0.0648 (4)0.7250 (3)0.0678 (11)
H191.22380.09980.75140.081*
C201.5051 (9)0.0220 (4)0.7606 (3)0.0674 (11)
H201.47540.02910.81210.081*
N21.6933 (7)0.0291 (3)0.7268 (2)0.0699 (10)
C211.7289 (9)0.0398 (4)0.6527 (3)0.0743 (13)
H211.85670.07690.62740.089*
C221.5882 (9)0.0006 (4)0.6113 (3)0.0706 (13)
H221.62140.00820.55970.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.06808 (19)0.0752 (2)0.06554 (19)0.00504 (14)0.00501 (13)0.04518 (15)
C10.065 (3)0.071 (3)0.062 (2)0.017 (2)0.009 (2)0.037 (2)
F10.132 (3)0.111 (2)0.094 (2)0.070 (2)0.056 (2)0.0628 (19)
F20.0727 (18)0.119 (3)0.116 (3)0.0210 (18)0.0270 (17)0.079 (2)
C20.054 (2)0.057 (2)0.052 (2)0.0110 (18)0.0002 (17)0.0243 (18)
F30.108 (2)0.100 (2)0.084 (2)0.0334 (19)0.0355 (18)0.0554 (18)
F40.103 (2)0.101 (2)0.0805 (18)0.0584 (18)0.0315 (16)0.0569 (16)
C30.068 (3)0.067 (2)0.056 (2)0.021 (2)0.006 (2)0.034 (2)
F50.171 (4)0.146 (3)0.112 (3)0.114 (3)0.073 (3)0.091 (2)
F60.091 (2)0.135 (3)0.110 (3)0.040 (2)0.0437 (19)0.087 (2)
C40.061 (2)0.058 (2)0.060 (2)0.0006 (19)0.0104 (18)0.0354 (19)
F70.238 (5)0.165 (4)0.139 (3)0.132 (4)0.127 (4)0.120 (3)
F80.122 (3)0.180 (4)0.158 (3)0.098 (3)0.080 (3)0.138 (3)
C50.067 (2)0.060 (2)0.049 (2)0.021 (2)0.0048 (18)0.0245 (18)
F90.222 (5)0.187 (4)0.122 (3)0.158 (4)0.109 (3)0.118 (3)
F100.107 (3)0.161 (3)0.101 (2)0.058 (2)0.046 (2)0.092 (3)
C60.061 (2)0.057 (2)0.053 (2)0.0073 (18)0.0054 (18)0.0279 (18)
F110.130 (3)0.118 (3)0.105 (2)0.055 (2)0.068 (2)0.077 (2)
F120.101 (2)0.128 (3)0.102 (2)0.069 (2)0.0459 (18)0.081 (2)
C70.057 (2)0.054 (2)0.050 (2)0.0100 (17)0.0028 (17)0.0253 (17)
F130.105 (2)0.098 (2)0.0755 (17)0.0553 (18)0.0257 (16)0.0516 (16)
F140.095 (2)0.0869 (19)0.0769 (18)0.0257 (16)0.0342 (16)0.0497 (15)
C80.062 (3)0.079 (3)0.070 (3)0.009 (2)0.001 (2)0.045 (2)
F150.093 (2)0.131 (3)0.123 (3)0.044 (2)0.047 (2)0.089 (2)
F160.110 (2)0.147 (3)0.109 (2)0.073 (2)0.051 (2)0.090 (2)
I20.07009 (19)0.0747 (2)0.06057 (18)0.00691 (14)0.00418 (13)0.04264 (15)
C90.061 (2)0.090 (3)0.062 (3)0.006 (2)0.000 (2)0.042 (2)
C100.066 (3)0.093 (3)0.088 (3)0.026 (3)0.008 (2)0.052 (3)
N10.064 (2)0.091 (3)0.086 (3)0.011 (2)0.005 (2)0.058 (2)
C110.078 (3)0.110 (4)0.066 (3)0.006 (3)0.002 (2)0.057 (3)
C120.068 (3)0.087 (3)0.063 (3)0.017 (2)0.004 (2)0.038 (2)
C130.050 (2)0.064 (2)0.060 (2)0.0001 (18)0.0102 (17)0.034 (2)
C140.062 (2)0.073 (3)0.062 (2)0.003 (2)0.0062 (19)0.039 (2)
C150.067 (3)0.069 (3)0.070 (3)0.010 (2)0.009 (2)0.038 (2)
C160.067 (3)0.071 (3)0.067 (3)0.008 (2)0.006 (2)0.038 (2)
C170.066 (3)0.071 (3)0.069 (3)0.010 (2)0.008 (2)0.038 (2)
C180.061 (2)0.057 (2)0.062 (2)0.0009 (18)0.0117 (19)0.0348 (19)
C190.070 (3)0.076 (3)0.057 (2)0.012 (2)0.007 (2)0.023 (2)
C200.075 (3)0.080 (3)0.055 (2)0.002 (2)0.010 (2)0.036 (2)
N20.064 (2)0.086 (3)0.077 (3)0.001 (2)0.0163 (19)0.051 (2)
C210.066 (3)0.091 (3)0.081 (3)0.020 (3)0.002 (2)0.047 (3)
C220.064 (3)0.104 (4)0.062 (3)0.016 (3)0.000 (2)0.051 (3)
Geometric parameters (Å, º) top
I1—C12.154 (4)C9—C101.376 (6)
C1—F11.330 (5)C9—C131.377 (7)
C1—F21.345 (6)C9—H1B0.9300
C1—C21.540 (6)C10—N11.320 (7)
C2—F41.316 (5)C10—H100.9300
C2—F31.338 (5)N1—C111.321 (7)
C2—C31.552 (5)C11—C121.376 (7)
C3—F51.290 (5)C11—H110.9300
C3—F61.344 (6)C12—C131.390 (6)
C3—C41.545 (6)C12—H120.9300
C4—F81.298 (6)C13—C141.436 (6)
C4—F71.315 (5)C14—C151.185 (6)
C4—C51.552 (6)C15—C161.375 (6)
C5—F91.303 (5)C16—C171.204 (6)
C5—F101.312 (6)C17—C181.434 (6)
C5—C61.546 (6)C18—C221.378 (7)
C6—F111.319 (5)C18—C191.389 (6)
C6—F121.336 (5)C19—C201.362 (6)
C6—C71.563 (5)C19—H190.9300
C7—F131.322 (5)C20—N21.330 (7)
C7—F141.330 (5)C20—H200.9300
C7—C81.536 (6)N2—C211.329 (6)
C8—F151.324 (6)C21—C221.372 (6)
C8—F161.346 (6)C21—H210.9300
C8—I22.151 (4)C22—H220.9300
F1—C1—F2107.3 (4)F15—C8—F16107.0 (4)
F1—C1—C2109.0 (4)F15—C8—C7109.4 (4)
F2—C1—C2108.1 (4)F16—C8—C7108.8 (4)
F1—C1—I1110.5 (3)F15—C8—I2109.8 (3)
F2—C1—I1108.9 (3)F16—C8—I2109.3 (3)
C2—C1—I1112.9 (3)C7—C8—I2112.5 (3)
F4—C2—F3108.4 (4)C10—C9—C13118.7 (4)
F4—C2—C1108.5 (3)C10—C9—H1B120.6
F3—C2—C1107.0 (3)C13—C9—H1B120.6
F4—C2—C3109.1 (3)N1—C10—C9123.9 (5)
F3—C2—C3108.2 (3)N1—C10—H10118.1
C1—C2—C3115.4 (3)C9—C10—H10118.1
F5—C3—F6106.3 (4)C10—N1—C11117.0 (4)
F5—C3—C4110.6 (4)N1—C11—C12124.2 (5)
F6—C3—C4107.1 (3)N1—C11—H11117.9
F5—C3—C2110.1 (4)C12—C11—H11117.9
F6—C3—C2107.0 (4)C11—C12—C13118.1 (5)
C4—C3—C2115.2 (3)C11—C12—H12120.9
F8—C4—F7108.2 (5)C13—C12—H12120.9
F8—C4—C3109.2 (3)C9—C13—C12118.1 (4)
F7—C4—C3107.6 (4)C9—C13—C14120.8 (4)
F8—C4—C5108.6 (4)C12—C13—C14121.1 (4)
F7—C4—C5107.7 (4)C15—C14—C13178.1 (5)
C3—C4—C5115.4 (4)C14—C15—C16178.8 (6)
F9—C5—F10107.2 (5)C17—C16—C15179.1 (6)
F9—C5—C6109.6 (4)C16—C17—C18177.5 (5)
F10—C5—C6108.5 (3)C22—C18—C19118.6 (4)
F9—C5—C4108.2 (4)C22—C18—C17120.8 (4)
F10—C5—C4107.9 (4)C19—C18—C17120.6 (4)
C6—C5—C4115.2 (4)C20—C19—C18118.1 (5)
F11—C6—F12108.1 (4)C20—C19—H19121.0
F11—C6—C5109.6 (4)C18—C19—H19121.0
F12—C6—C5107.9 (3)N2—C20—C19124.4 (4)
F11—C6—C7108.4 (3)N2—C20—H20117.8
F12—C6—C7108.0 (3)C19—C20—H20117.8
C5—C6—C7114.7 (3)C21—N2—C20116.6 (4)
F13—C7—F14108.4 (4)N2—C21—C22123.8 (5)
F13—C7—C8108.1 (3)N2—C21—H21118.1
F14—C7—C8107.8 (3)C22—C21—H21118.1
F13—C7—C6108.2 (3)C21—C22—C18118.4 (4)
F14—C7—C6108.5 (3)C21—C22—H22120.8
C8—C7—C6115.6 (3)C18—C22—H22120.8
F1—C1—C2—F4176.0 (4)F10—C5—C6—F1262.3 (5)
F2—C1—C2—F467.7 (4)C4—C5—C6—F1258.8 (5)
I1—C1—C2—F452.8 (4)F9—C5—C6—C758.7 (5)
F1—C1—C2—F359.2 (5)F10—C5—C6—C758.1 (5)
F2—C1—C2—F3175.5 (4)C4—C5—C6—C7179.1 (3)
I1—C1—C2—F364.0 (4)F11—C6—C7—F1363.1 (5)
F1—C1—C2—C361.3 (5)F12—C6—C7—F13179.9 (4)
F2—C1—C2—C355.0 (5)C5—C6—C7—F1359.8 (5)
I1—C1—C2—C3175.5 (3)F11—C6—C7—F14179.6 (4)
F4—C2—C3—F5175.0 (4)F12—C6—C7—F1462.7 (5)
F3—C2—C3—F567.2 (5)C5—C6—C7—F1457.6 (5)
C1—C2—C3—F552.6 (6)F11—C6—C7—C858.3 (5)
F4—C2—C3—F659.9 (5)F12—C6—C7—C858.5 (5)
F3—C2—C3—F6177.6 (4)C5—C6—C7—C8178.8 (4)
C1—C2—C3—F662.6 (5)F13—C7—C8—F1563.4 (5)
F4—C2—C3—C459.1 (5)F14—C7—C8—F15179.7 (4)
F3—C2—C3—C458.7 (5)C6—C7—C8—F1558.0 (5)
C1—C2—C3—C4178.5 (4)F13—C7—C8—F16180.0 (4)
F5—C3—C4—F8178.5 (4)F14—C7—C8—F1663.1 (4)
F6—C3—C4—F866.0 (5)C6—C7—C8—F1658.5 (5)
C2—C3—C4—F852.9 (5)F13—C7—C8—I258.8 (4)
F5—C3—C4—F761.3 (6)F14—C7—C8—I258.1 (4)
F6—C3—C4—F7176.8 (4)C6—C7—C8—I2179.7 (3)
C2—C3—C4—F764.3 (5)C13—C9—C10—N10.5 (8)
F5—C3—C4—C558.9 (5)C9—C10—N1—C110.6 (8)
F6—C3—C4—C556.6 (5)C10—N1—C11—C120.8 (8)
C2—C3—C4—C5175.5 (4)N1—C11—C12—C131.0 (9)
F8—C4—C5—F9179.8 (4)C10—C9—C13—C120.6 (7)
F7—C4—C5—F962.9 (6)C10—C9—C13—C14179.8 (5)
C3—C4—C5—F957.2 (6)C11—C12—C13—C90.8 (7)
F8—C4—C5—F1064.5 (5)C11—C12—C13—C14179.9 (5)
F7—C4—C5—F10178.6 (4)C22—C18—C19—C200.9 (7)
C3—C4—C5—F1058.5 (5)C17—C18—C19—C20179.8 (5)
F8—C4—C5—C656.9 (5)C18—C19—C20—N20.0 (8)
F7—C4—C5—C660.1 (6)C19—C20—N2—C211.3 (8)
C3—C4—C5—C6179.8 (3)C20—N2—C21—C221.7 (8)
F9—C5—C6—F1163.5 (5)N2—C21—C22—C180.8 (9)
F10—C5—C6—F11179.7 (4)C19—C18—C22—C210.5 (7)
C4—C5—C6—F1158.7 (5)C17—C18—C22—C21179.8 (5)
F9—C5—C6—F12179.0 (4)

Experimental details

Crystal data
Chemical formulaC8F16I2·C14H8N2
Mr858.10
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)5.4849 (11), 14.302 (2), 18.354 (3)
α, β, γ (°)111.40 (2), 90.35 (2), 94.03 (2)
V3)1336.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.36 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.734, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15067, 6100, 4600
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.02
No. of reflections6100
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.57

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004).

Halogen and hydrogen-bonding contacts (Å, °). top
C—X···YX···YC—X···Y
C1—I1···N12.863 (4)177.93 (16)
C8—I2···N2i2.887 (4)175.39 (16)
C1—F1···H9ii2.60145.3
Symmetry codes: (i) = -2+x, 1+y, -1+z; (ii) = -x, 1-y, 1-z.
Crystallographic symmetry site of single molecules in one-dimensional adducts between some molecules containg two basic N atoms and α,ω-diiodoperfluoroalkanes previously studied by our group. top
Molecule AMolecul BA siteB site
C14H8N2aI-(CF2)8-IC1C1
C10H16N2bI-(CF2)8-IcC1C1
C12H26N2O2dI-(CF2)8-ICiC2
C10H16N2eBr-(CF2)8-BrC2Ci
C13H14N2fI-(CF2)8-ICiCi
CN-(CH2)4-CNgI-(CF2)2-ICiCi
CN-(CH2)4-CNgI-(CF2)4-ICiCi
CN-(CH2)6-CNgI-(CF2)4-ICiCi
CN-(CH2)4-CNgI-(CF2)6-ICiCi
CN-(CH2)6-CNgI-(CF2)6-ICiCi
CN-(CH2)4-CNgI-(CF2)8-ICiCi
CN-(CH2)6-CNgI-(CF2)8-ICiCi
C10H8N4hI-(CF2)8-IC1Ci
C10H8N4iI-(CF2)4-IC1Ci
(a) This work. (b) N,N,N',N'-tetramethyl-p-phenylenediamine (Neukirch et al., 2005). (c) Unusually, the conformation of I-(CF2)8-I is ttgtt. (d) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Navarrini et al., 2000). (e) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Liantonio et al., 2003). (f) 1,3-di-(4-pyridyl)propane (Bertani et al., 2002). (g) Metrangolo et al. (2004). (h) 4,4'-azobispyridine (Fox et al., 2004). (i) 1,7,10,16-tetraoxa-4,13-diazacyclo-octadecane (Dey et al., 2009).
 

Acknowledgements

GC, PM and GT acknowledge the Fondazione Cariplo (projects 2009–2550 and 2010–1351) for financial support.

References

First citationAllan, J. R., Barrow, M. J., Beaumont, P. C., Macindoe, L. A., Milburn, G. H. W. & Werninck, A. R. (1988). Inorg. Chim. Acta, 148, 85–90.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBadruz Zaman, M. D., Smith, M. D. & Zur Loye, H.-C. (2001). Chem. Mater. 13, 3534–3541.  Google Scholar
First citationBertani, R., Metrangolo, P., Moiana, A., Perez, E., Pilati, T., Resnati, G., Rico-Lattes, I. & Sassi, A. (2002). Adv. Mater. 14, 1197–1201.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCurtis, S. M., Le, N., Fowler, F. W. & Lauher, J. W. (2005). Cryst. Growth Des. 5, 2313–2321.  Web of Science CSD CrossRef CAS Google Scholar
First citationDella Ciana, L. & Haim, A. (1984). J. Heterocycl. Chem. 21, 607–608.  CAS Google Scholar
First citationDey, A., Metrangolo, P., Pilati, T., Resnati, G., Terraneo, G. & Wlassics, I. (2009). J. Fluorine Chem. 130, 816–823.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFox, D. B., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2004). J. Fluorine Chem. 125, 271–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationFox, D., Metrangolo, P., Pasini, D., Pilati, T., Resnati, G. & Terraneo, G. (2008). CrystEngComm, 10, 1132–1136.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiantonio, R., Metrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2003). Cryst. Growth Des. 3, 799–803.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaekawa, M., Konaka, H., Suenaga, Y., Takayoshi Kuroda-Sowa, T. & Munakata, M. (2000). J. Chem. Soc. Dalton Trans. pp. 4160–4166.  Web of Science CSD CrossRef Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T. & Resnati, G. (2008). Chem. Commun. pp. 1635–1637.  Web of Science CSD CrossRef Google Scholar
First citationMetrangolo, P., Pilati, T., Resnati, G. & Stevenazzi, A. (2004). Chem. Commun. pp. 1492–1493.  Web of Science CSD CrossRef Google Scholar
First citationMonde, K., Miura, N., Hashimoto, M., Taniguchi, T. & Inabe, T. (2006). J. Am. Chem. Soc. 128, 6000–6001.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakamura, A., Sato, T. & Kuroda, R. (2003). CrystEngComm, 5, 318–325.  Web of Science CSD CrossRef CAS Google Scholar
First citationNavarrini, W., Metrangolo, P., Pilati, T. & Resnati, G. (2000). New J. Chem. 24, 777–780.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeukirch, H., Guido, E., Liantonio, R., Metrangolo, P., Pilati, T. & Resnati, G. (2005). Chem. Commun. pp. 1534–1536.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o328-o329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds