organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o373-o374

Methyl 4-(4-fluoro­anilino)-1,2,6-tris­­(4-fluoro­phen­yl)-1,2,5,6-tetra­hydro­pyri­dine-3-carboxyl­ate

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 24 January 2013; accepted 6 February 2013; online 9 February 2013)

In the title mol­ecule, C31H24F4N2O2, the tetra­hydro­pyridine ring adopts a distorted boat conformation. An intra­molecular N—H⋯O hydrogen bond is formed by the amino group and ccarboxyl C=O atom. The crystal structure features weak C—H⋯F and C—H⋯O inter­actions.

Related literature

For biological activity of functionalized piperidine derivatives, see: Zhou et al. (2007[Zhou, Y., Gregor, V. E., Ayida, B. K., Winters, G. C., Sun, Z., Murphy, D., Haley, G., Bailey, D., Froelich, J. M., Fish, S., Webber, S. E., Hermann, T. & Wall, D. (2007). Bioorg. Med. Chem. Lett. 17, 1206-1210.]); Misra et al. (2009[Misra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625-633.]); Bin et al. (2001[Bin, H., Crider, A. M. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265-286.]); Agrawal & Somani (2009[Agrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638-652.]); Jaen et al. (1988[Jaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A. & Meltzer, L. T. (1988). J. Med. Chem. 31, 1621-1625.]). For general background to functionalized piperidines, see: Kamei et al. (2005[Kamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990-2993.]). For related structures, see: Sambyal et al. (2011[Sambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868-873.]); Brahmachari & Das (2012[Brahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479-1484.]); Khan et al. (2010[Khan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762-7772.]); Anthal et al. (2013[Anthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299-o300.]). For asymmetry parameters, see: Duax et al. (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C31H24F4N2O2

  • Mr = 532.52

  • Triclinic, [P \overline 1]

  • a = 9.7990 (2) Å

  • b = 10.7316 (4) Å

  • c = 13.7395 (4) Å

  • α = 110.797 (3)°

  • β = 100.338 (2)°

  • γ = 96.323 (2)°

  • V = 1304.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.899, Tmax = 1.000

  • 42990 measured reflections

  • 5413 independent reflections

  • 3730 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.05

  • 5413 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1 0.86 2.05 2.695 (2) 131
C20—H20⋯F2i 0.93 2.54 3.384 (2) 152
C32—H32⋯O1ii 0.93 2.47 3.311 (3) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x, -y, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Functionalized piperidines, very particularly 1,4-disubstituted piperidine scaffolds, are found to be useful in designing a variety of medicinal entities exhibiting a broad spectrum of pharmacological activities that include antibacterial (Zhou et al., 2007), antimalarial (Misra et al., 2009), anti-hypertensive, anticonvulsant, anti-inflammatory (Bin et al., 2001), and enzyme inhibitory activity (Agrawal & Somani, 2009; Jaen et al., 1988). Moreover, a large number of compounds bearing piperidine scaffold have already entered into preclinical and clinical trials over the last few years (Kamei et al., 2005). Hence, investigation of the structural features of biologically relevant piperidine derivatives is demanding. In continuation of our structural studies of densely functionalized piperidines (Sambyal et al., 2011; Brahmachari & Das, 2012) we present here the crystal structure of the title compound. The molecular structure of the title compound is illustrated in Fig.1. The bond lengths and angles of the title compound are normal and correspond to those observed in related structures (Khan et al., 2010; Anthal et al., 2013). In the title molecule, tetrahydropyridine ring adopts a distorted boat conformation with asymmetry parameters [ΔCs(C2)=10.10] and [ΔCs(C3-C4)=15.48] (Duax et al., 1975). In the crystal, an intramolecular hydrogen bond N9-H9···O1 is found. This intramolecular interaction leads to the formation of a pseudo-six membered ring comprising atoms O1, C7, C3, C4, N9 and H9. The molecular structure is stablized by N—H···O intramolecular interaction and crystal packing is stablized by C—H···F and C—H···O intermolecular interactions (Table 1). Molecules are linked via C—H···F and C—H···O hydrogen bonds to form chains along [010](Fig. 2).

Related literature top

For biological activity of functionalized piperidine derivatives, see: Zhou et al. (2007); Misra et al. (2009); Bin et al. (2001); Agrawal & Somani (2009); Jaen et al. (1988). For general background to functionalized piperidines, see: Kamei et al. (2005). For related structures, see: Sambyal et al. (2011); Brahmachari & Das, (2012); Khan et al. (2010); Anthal et al. (2013). For asymmetry parameters, see: Duax et al. (1975).

Experimental top

An oven-dried screw cap reaction tube was charged with a magnetic stir bar, 4-fluoroaniline (2 mmol), methyl acetoacetate (1 mmol) and Bi(NO3)3.5H2O (10 mol%) in 4 ml ethanol; the mixture was stirred at room temperature for 20 min, and then 4-fluorobenzaldehyde (2 mmol) was added to the reaction mixture and stirring was continued up to 12 h to complete the reaction (monitored by TLC). On completion of the reaction, a thick white precipitate was obtained. The solid residue was filtered off and washed with cold ethanol–water. The solid mass was dissolved in hot ethyl acetate–ethanol mixture and filtered off when bismuth salt separated out; the filtrate on standing afforded white crystals of the title compound, characterized by elemental analyses and spectral studies including FT—IR, 1H-NMR, and 13C-NMR. For X-ray study, single crystals were prepared by further recrystallization by slow evaporation from ethanol-ethyl acetate-water solution. Methyl 1,2,6-tris(4-fluorophenyl)-4-((4-fluorophenyl)amino)-1,2,5,6- tetrahydropyridine-3-carboxylate : white crystals; mp 452–454 K. Anal. Calcd for C31H24F4N2O2: C 69.92, H 4.54, N 5.26; found: C 69.95, H 4.52, N 5.28.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C/N atoms, with C—H distances of 0.93–0.98 Å and N—H distance of 0.86 Å and with Uiso(H) = 1.2Ueq(C/N), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the a axis. Short contacts are shown with dashed lines.
Methyl 4-(4-fluoroanilino)-1,2,6-tris(4-fluorophenyl)-1,2,5,6-tetrahydropyridine-3-carboxylate top
Crystal data top
C31H24F4N2O2Z = 2
Mr = 532.52F(000) = 552
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7990 (2) ÅCell parameters from 14371 reflections
b = 10.7316 (4) Åθ = 3.5–29.0°
c = 13.7395 (4) ŵ = 0.10 mm1
α = 110.797 (3)°T = 293 K
β = 100.338 (2)°Block, white
γ = 96.323 (2)°0.30 × 0.20 × 0.20 mm
V = 1304.81 (7) Å3
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5413 independent reflections
Radiation source: fine-focus sealed tube3730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.1049 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.899, Tmax = 1.000l = 1717
42990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
5413 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C31H24F4N2O2γ = 96.323 (2)°
Mr = 532.52V = 1304.81 (7) Å3
Triclinic, P1Z = 2
a = 9.7990 (2) ÅMo Kα radiation
b = 10.7316 (4) ŵ = 0.10 mm1
c = 13.7395 (4) ÅT = 293 K
α = 110.797 (3)°0.30 × 0.20 × 0.20 mm
β = 100.338 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5413 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3730 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 1.000Rint = 0.044
42990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
5413 reflectionsΔρmin = 0.20 e Å3
353 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3): δH 2.62 (dd, J = 2.4, 15.2 Hz, 1H), 2.78 (dd, J = 5.2, 15 Hz, 1H), 3.91 (s, 3H), 5.04 (br d, 1H), 6.27 (br s, 1H), 6.33–6.39(m, 4H), 6.78 (t, J = 8.8 Hz, 2H), 6.84 (t, J = 8.8 Hz, 2H), 6.93–6.99 (m, 4H), 7.07–7.11 (m, 2H), 7.19–7.25 (m, 2H), 10.17 (br s, 1H). 13C NMR (100 MHz, CDCl3): δC 33.71, 51.19, 55.19, 57.45, 97.64, 113.88, 113.95, 114.98, 115.2, 115.30, 115.51, 115.73, 115.96, 127.88, 127.96, 128.12, 128.20, 133.62, 133.64, 138.05, 138.99, 143.06, 154.10, 156.03, 156.44, 159.67, 160.37, 160.83, 162.12, 162.80, 163.27, 168.38. IR νmax (KBr): 3240, 3065, 2945, 2838, 1653, 1591, 1506, 1450, 1371, 1269, 1229, 1076, 812, 771, 685 cm-1. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05599 (13)0.35453 (13)0.02481 (9)0.0522 (3)
O20.25451 (13)0.51103 (13)0.02833 (9)0.0553 (3)
N10.38897 (13)0.47214 (13)0.29805 (10)0.0384 (3)
F10.16292 (17)1.01431 (15)0.51876 (13)0.1073 (5)
F20.97011 (11)0.61739 (14)0.44660 (11)0.0792 (4)
F30.36636 (18)0.16496 (14)0.06807 (15)0.1252 (6)
F40.31258 (16)0.11300 (15)0.23046 (12)0.1002 (5)
C20.30643 (16)0.54303 (16)0.24088 (12)0.0360 (4)
H20.36790.57550.20250.043*
C30.18153 (16)0.44415 (16)0.15708 (12)0.0367 (4)
C40.10236 (16)0.35791 (16)0.18759 (12)0.0372 (4)
C50.15506 (16)0.36802 (17)0.30004 (12)0.0395 (4)
H5A0.10360.29340.31100.047*
H5B0.14030.45250.35040.047*
C60.31341 (16)0.36283 (16)0.31870 (12)0.0361 (4)
H60.34840.37850.39430.043*
C70.15522 (17)0.43097 (17)0.04696 (13)0.0401 (4)
C80.2415 (3)0.4972 (2)0.08105 (16)0.0754 (7)
H8A0.25060.40700.12350.113*
H8B0.31440.56180.08460.113*
H8C0.15070.51350.10810.113*
N90.01024 (14)0.26238 (15)0.12273 (11)0.0476 (4)
H90.03790.25970.05890.057*
C100.26522 (16)0.66857 (16)0.31793 (12)0.0365 (4)
C110.15179 (18)0.72134 (18)0.28316 (14)0.0467 (4)
H110.09840.67820.21310.056*
C120.1167 (2)0.8370 (2)0.35088 (17)0.0586 (5)
H120.03960.87090.32710.070*
C130.1962 (2)0.9001 (2)0.45242 (17)0.0618 (5)
C140.3100 (2)0.8534 (2)0.49011 (16)0.0650 (6)
H140.36400.89900.55980.078*
C150.3432 (2)0.73677 (19)0.42233 (13)0.0514 (5)
H150.41970.70330.44750.062*
C160.53521 (16)0.50829 (16)0.33293 (12)0.0358 (4)
C170.61195 (17)0.62124 (18)0.32556 (14)0.0461 (4)
H170.56430.67330.29470.055*
C180.75664 (18)0.65696 (19)0.36303 (15)0.0520 (5)
H180.80590.73240.35750.062*
C190.82704 (17)0.5806 (2)0.40835 (14)0.0495 (4)
C200.75808 (17)0.46901 (18)0.41701 (13)0.0446 (4)
H200.80790.41790.44760.053*
C210.61273 (17)0.43295 (17)0.37959 (12)0.0395 (4)
H210.56530.35700.38550.047*
C220.33464 (16)0.22233 (16)0.25164 (13)0.0376 (4)
C230.35639 (18)0.19043 (19)0.14950 (13)0.0484 (4)
H230.36500.25810.12230.058*
C240.3656 (2)0.0598 (2)0.08718 (16)0.0664 (6)
H240.37810.03860.01800.080*
C250.3560 (2)0.0368 (2)0.1291 (2)0.0742 (7)
C260.3379 (2)0.0102 (2)0.2300 (2)0.0761 (7)
H260.33340.07810.25720.091*
C270.3264 (2)0.12074 (19)0.29126 (17)0.0576 (5)
H270.31280.14040.36010.069*
C280.08772 (17)0.16492 (17)0.15122 (13)0.0412 (4)
C290.20066 (19)0.19542 (19)0.19642 (14)0.0507 (4)
H290.22600.27970.20860.061*
C300.2760 (2)0.1026 (2)0.22363 (16)0.0609 (5)
H300.35180.12320.25470.073*
C310.2376 (2)0.0200 (2)0.20425 (16)0.0609 (5)
C320.1273 (2)0.0550 (2)0.15877 (16)0.0639 (6)
H320.10420.14030.14570.077*
C330.0510 (2)0.0396 (2)0.13272 (15)0.0544 (5)
H330.02540.01870.10260.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0623 (8)0.0492 (8)0.0333 (6)0.0029 (6)0.0044 (6)0.0117 (6)
O20.0675 (8)0.0600 (8)0.0367 (7)0.0003 (7)0.0078 (6)0.0224 (6)
N10.0352 (7)0.0357 (8)0.0428 (8)0.0036 (6)0.0012 (6)0.0178 (6)
F10.1155 (11)0.0732 (9)0.1012 (11)0.0462 (8)0.0230 (9)0.0112 (8)
F20.0355 (6)0.0991 (10)0.1020 (10)0.0026 (6)0.0006 (6)0.0478 (8)
F30.1320 (14)0.0455 (8)0.1517 (15)0.0252 (8)0.0197 (11)0.0127 (9)
F40.1154 (11)0.0859 (10)0.1022 (11)0.0199 (8)0.0182 (9)0.0544 (9)
C20.0386 (8)0.0365 (9)0.0317 (8)0.0047 (7)0.0035 (6)0.0146 (7)
C30.0381 (8)0.0356 (9)0.0314 (8)0.0067 (7)0.0031 (6)0.0095 (7)
C40.0344 (8)0.0385 (9)0.0332 (8)0.0084 (7)0.0038 (6)0.0088 (7)
C50.0388 (9)0.0425 (10)0.0326 (8)0.0039 (7)0.0067 (7)0.0109 (7)
C60.0394 (9)0.0383 (9)0.0282 (8)0.0049 (7)0.0036 (6)0.0128 (7)
C70.0483 (10)0.0349 (9)0.0352 (9)0.0116 (8)0.0060 (7)0.0119 (7)
C80.1054 (18)0.0825 (16)0.0432 (11)0.0043 (13)0.0191 (11)0.0329 (11)
N90.0469 (8)0.0512 (9)0.0350 (7)0.0055 (7)0.0031 (6)0.0154 (7)
C100.0396 (9)0.0344 (9)0.0349 (8)0.0029 (7)0.0052 (7)0.0156 (7)
C110.0471 (10)0.0413 (10)0.0466 (10)0.0063 (8)0.0006 (8)0.0165 (8)
C120.0543 (11)0.0463 (11)0.0735 (14)0.0167 (9)0.0100 (10)0.0214 (10)
C130.0688 (13)0.0451 (12)0.0626 (13)0.0172 (10)0.0195 (11)0.0062 (10)
C140.0734 (14)0.0617 (13)0.0410 (11)0.0175 (11)0.0030 (9)0.0010 (10)
C150.0565 (11)0.0529 (11)0.0383 (10)0.0170 (9)0.0025 (8)0.0118 (9)
C160.0376 (9)0.0346 (9)0.0290 (8)0.0054 (7)0.0034 (6)0.0075 (7)
C170.0432 (10)0.0448 (10)0.0502 (10)0.0057 (8)0.0044 (8)0.0221 (9)
C180.0446 (10)0.0494 (11)0.0591 (12)0.0024 (8)0.0094 (8)0.0221 (9)
C190.0317 (9)0.0610 (12)0.0478 (10)0.0051 (8)0.0030 (7)0.0155 (9)
C200.0433 (10)0.0489 (11)0.0362 (9)0.0138 (8)0.0034 (7)0.0115 (8)
C210.0425 (9)0.0366 (9)0.0344 (8)0.0052 (7)0.0035 (7)0.0111 (7)
C220.0336 (8)0.0351 (9)0.0393 (9)0.0013 (7)0.0024 (7)0.0129 (7)
C230.0493 (10)0.0511 (11)0.0405 (10)0.0146 (8)0.0052 (8)0.0136 (8)
C240.0613 (13)0.0671 (15)0.0492 (12)0.0206 (11)0.0031 (9)0.0010 (11)
C250.0605 (13)0.0387 (12)0.0953 (19)0.0088 (10)0.0072 (12)0.0018 (12)
C260.0708 (15)0.0408 (12)0.124 (2)0.0070 (10)0.0310 (14)0.0373 (14)
C270.0602 (12)0.0484 (12)0.0743 (14)0.0096 (9)0.0254 (10)0.0309 (11)
C280.0390 (9)0.0409 (10)0.0343 (9)0.0006 (7)0.0009 (7)0.0094 (7)
C290.0530 (11)0.0451 (11)0.0495 (10)0.0103 (8)0.0117 (8)0.0128 (9)
C300.0555 (12)0.0673 (14)0.0609 (12)0.0068 (10)0.0203 (10)0.0239 (11)
C310.0667 (13)0.0560 (13)0.0542 (12)0.0094 (10)0.0038 (10)0.0256 (10)
C320.0830 (15)0.0419 (12)0.0604 (13)0.0123 (10)0.0023 (11)0.0188 (10)
C330.0550 (11)0.0527 (12)0.0529 (11)0.0169 (9)0.0105 (9)0.0164 (9)
Geometric parameters (Å, º) top
O1—C71.2234 (19)C14—C151.382 (2)
O2—C71.346 (2)C14—H140.9300
O2—C81.437 (2)C15—H150.9300
N1—C161.3902 (19)C16—C171.399 (2)
N1—C61.4578 (19)C16—C211.404 (2)
N1—C21.4771 (19)C17—C181.379 (2)
F1—C131.357 (2)C17—H170.9300
F2—C191.3652 (19)C18—C191.367 (3)
F3—C251.359 (2)C18—H180.9300
F4—C311.362 (2)C19—C201.363 (2)
C2—C31.513 (2)C20—C211.385 (2)
C2—C101.536 (2)C20—H200.9300
C2—H20.9800C21—H210.9300
C3—C41.367 (2)C22—C271.382 (2)
C3—C71.441 (2)C22—C231.383 (2)
C4—N91.346 (2)C23—C241.382 (3)
C4—C51.499 (2)C23—H230.9300
C5—C61.537 (2)C24—C251.355 (3)
C5—H5A0.9700C24—H240.9300
C5—H5B0.9700C25—C261.361 (3)
C6—C221.522 (2)C26—C271.387 (3)
C6—H60.9800C26—H260.9300
C8—H8A0.9600C27—H270.9300
C8—H8B0.9600C28—C291.378 (2)
C8—H8C0.9600C28—C331.378 (2)
N9—C281.430 (2)C29—C301.371 (3)
N9—H90.8600C29—H290.9300
C10—C151.384 (2)C30—C311.357 (3)
C10—C111.387 (2)C30—H300.9300
C11—C121.383 (3)C31—C321.365 (3)
C11—H110.9300C32—C331.380 (3)
C12—C131.355 (3)C32—H320.9300
C12—H120.9300C33—H330.9300
C13—C141.365 (3)
C7—O2—C8116.47 (15)C14—C15—H15119.2
C16—N1—C6119.96 (12)C10—C15—H15119.2
C16—N1—C2121.58 (13)N1—C16—C17122.49 (14)
C6—N1—C2118.45 (12)N1—C16—C21120.70 (14)
N1—C2—C3110.16 (12)C17—C16—C21116.81 (14)
N1—C2—C10112.28 (12)C18—C17—C16121.44 (16)
C3—C2—C10113.35 (13)C18—C17—H17119.3
N1—C2—H2106.9C16—C17—H17119.3
C3—C2—H2106.9C19—C18—C17119.45 (17)
C10—C2—H2106.9C19—C18—H18120.3
C4—C3—C7120.82 (14)C17—C18—H18120.3
C4—C3—C2117.19 (13)C20—C19—F2119.03 (16)
C7—C3—C2121.68 (14)C20—C19—C18121.73 (16)
N9—C4—C3124.80 (14)F2—C19—C18119.24 (17)
N9—C4—C5119.74 (14)C19—C20—C21118.97 (16)
C3—C4—C5115.31 (13)C19—C20—H20120.5
C4—C5—C6108.80 (12)C21—C20—H20120.5
C4—C5—H5A109.9C20—C21—C16121.61 (16)
C6—C5—H5A109.9C20—C21—H21119.2
C4—C5—H5B109.9C16—C21—H21119.2
C6—C5—H5B109.9C27—C22—C23118.21 (17)
H5A—C5—H5B108.3C27—C22—C6119.57 (15)
N1—C6—C22113.71 (12)C23—C22—C6122.17 (15)
N1—C6—C5109.48 (12)C22—C23—C24121.17 (19)
C22—C6—C5109.88 (12)C22—C23—H23119.4
N1—C6—H6107.9C24—C23—H23119.4
C22—C6—H6107.9C25—C24—C23118.6 (2)
C5—C6—H6107.9C25—C24—H24120.7
O1—C7—O2121.68 (15)C23—C24—H24120.7
O1—C7—C3125.38 (16)C24—C25—F3118.5 (3)
O2—C7—C3112.93 (14)C24—C25—C26122.6 (2)
O2—C8—H8A109.5F3—C25—C26118.9 (2)
O2—C8—H8B109.5C25—C26—C27118.4 (2)
H8A—C8—H8B109.5C25—C26—H26120.8
O2—C8—H8C109.5C27—C26—H26120.8
H8A—C8—H8C109.5C22—C27—C26121.0 (2)
H8B—C8—H8C109.5C22—C27—H27119.5
C4—N9—C28125.43 (14)C26—C27—H27119.5
C4—N9—H9117.3C29—C28—C33119.57 (17)
C28—N9—H9117.3C29—C28—N9120.08 (16)
C15—C10—C11117.64 (15)C33—C28—N9120.34 (16)
C15—C10—C2121.57 (14)C30—C29—C28120.60 (18)
C11—C10—C2120.71 (14)C30—C29—H29119.7
C12—C11—C10121.19 (16)C28—C29—H29119.7
C12—C11—H11119.4C31—C30—C29118.48 (19)
C10—C11—H11119.4C31—C30—H30120.8
C13—C12—C11118.93 (18)C29—C30—H30120.8
C13—C12—H12120.5C30—C31—F4118.8 (2)
C11—C12—H12120.5C30—C31—C32122.91 (19)
F1—C13—C12119.10 (19)F4—C31—C32118.3 (2)
F1—C13—C14118.73 (19)C31—C32—C33118.21 (19)
C12—C13—C14122.17 (18)C31—C32—H32120.9
C13—C14—C15118.48 (18)C33—C32—H32120.9
C13—C14—H14120.8C28—C33—C32120.22 (18)
C15—C14—H14120.8C28—C33—H33119.9
C14—C15—C10121.58 (17)C32—C33—H33119.9
C16—N1—C2—C3144.95 (14)C2—C10—C15—C14176.90 (17)
C6—N1—C2—C335.70 (18)C6—N1—C16—C17173.09 (14)
C16—N1—C2—C1087.70 (17)C2—N1—C16—C176.3 (2)
C6—N1—C2—C1091.65 (16)C6—N1—C16—C215.7 (2)
N1—C2—C3—C446.48 (19)C2—N1—C16—C21174.97 (14)
C10—C2—C3—C480.28 (17)N1—C16—C17—C18178.43 (16)
N1—C2—C3—C7127.14 (15)C21—C16—C17—C180.4 (2)
C10—C2—C3—C7106.10 (16)C16—C17—C18—C190.0 (3)
C7—C3—C4—N95.0 (2)C17—C18—C19—C200.4 (3)
C2—C3—C4—N9178.70 (14)C17—C18—C19—F2179.16 (16)
C7—C3—C4—C5170.58 (14)F2—C19—C20—C21179.08 (15)
C2—C3—C4—C53.1 (2)C18—C19—C20—C210.5 (3)
N9—C4—C5—C6126.42 (15)C19—C20—C21—C160.1 (2)
C3—C4—C5—C649.43 (19)N1—C16—C21—C20178.54 (14)
C16—N1—C6—C2271.66 (17)C17—C16—C21—C200.3 (2)
C2—N1—C6—C22108.98 (15)N1—C6—C22—C27151.32 (15)
C16—N1—C6—C5165.02 (13)C5—C6—C22—C2785.58 (18)
C2—N1—C6—C514.34 (17)N1—C6—C22—C2331.4 (2)
C4—C5—C6—N157.41 (16)C5—C6—C22—C2391.67 (17)
C4—C5—C6—C2268.15 (16)C27—C22—C23—C241.9 (3)
C8—O2—C7—O12.9 (2)C6—C22—C23—C24175.43 (16)
C8—O2—C7—C3175.84 (16)C22—C23—C24—C251.5 (3)
C4—C3—C7—O17.4 (3)C23—C24—C25—F3179.41 (17)
C2—C3—C7—O1179.21 (15)C23—C24—C25—C260.1 (3)
C4—C3—C7—O2171.29 (14)C24—C25—C26—C271.2 (3)
C2—C3—C7—O22.1 (2)F3—C25—C26—C27179.50 (19)
C3—C4—N9—C28175.11 (15)C23—C22—C27—C260.7 (3)
C5—C4—N9—C280.3 (2)C6—C22—C27—C26176.63 (17)
N1—C2—C10—C1525.0 (2)C25—C26—C27—C220.7 (3)
C3—C2—C10—C15150.68 (16)C4—N9—C28—C2989.3 (2)
N1—C2—C10—C11158.12 (14)C4—N9—C28—C3391.4 (2)
C3—C2—C10—C1132.5 (2)C33—C28—C29—C300.4 (3)
C15—C10—C11—C120.9 (3)N9—C28—C29—C30179.73 (16)
C2—C10—C11—C12177.81 (16)C28—C29—C30—C310.5 (3)
C10—C11—C12—C130.9 (3)C29—C30—C31—F4179.58 (17)
C11—C12—C13—F1179.37 (18)C29—C30—C31—C320.1 (3)
C11—C12—C13—C140.0 (3)C30—C31—C32—C330.8 (3)
F1—C13—C14—C15179.77 (19)F4—C31—C32—C33179.70 (17)
C12—C13—C14—C150.9 (3)C29—C28—C33—C320.3 (3)
C13—C14—C15—C100.9 (3)N9—C28—C33—C32179.00 (16)
C11—C10—C15—C140.0 (3)C31—C32—C33—C280.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O10.862.052.695 (2)131
C20—H20···F2i0.932.543.384 (2)152
C32—H32···O1ii0.932.473.311 (3)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC31H24F4N2O2
Mr532.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7990 (2), 10.7316 (4), 13.7395 (4)
α, β, γ (°)110.797 (3), 100.338 (2), 96.323 (2)
V3)1304.81 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.899, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42990, 5413, 3730
Rint0.044
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.05
No. of reflections5413
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O10.862.052.695 (2)131
C20—H20···F2i0.932.543.384 (2)152
C32—H32···O1ii0.932.473.311 (3)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. VKG thanks the University of Jammu for financial support.

References

First citationAgrawal, A. G. & Somani, R. R. (2009). Mini Rev. Med. Chem. 9, 638–652.  CrossRef PubMed CAS Google Scholar
First citationAnthal, S., Brahmachari, G., Das, S., Kant, R. & Gupta, V. K. (2013). Acta Cryst. E69, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationBin, H., Crider, A. M. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265–286.  Web of Science PubMed Google Scholar
First citationBrahmachari, G. & Das, S. (2012). Tetrahedron Lett. 53, 1479–1484.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJaen, J. C., Wise, L. D., Heffner, T. G., Pugsley, T. A. & Meltzer, L. T. (1988). J. Med. Chem. 31, 1621–1625.  CrossRef CAS PubMed Google Scholar
First citationKamei, K., Maeda, N., Katswagi-Ogino, R., Koyamaa, M., Nakajima, M., Tatsuoka, T., Ohno, T. & Inoue, T. (2005). Bioorg. Med. Chem. Lett. 15, 2990–2993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, T. K., Khan, Md. M. & Bannuru, K. K. R. (2010). Tetrahedron, 66, 7762–7772.  Web of Science CSD CrossRef CAS Google Scholar
First citationMisra, M., Pandey, S. K., Pandey, V. P., Pandey, J., Tripathi, R. & Tripathi, R. P. (2009). Bioorg. Med. Chem. 17, 625–633.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSambyal, A., Bamezai, R. K., Razdan, T. K. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 868–873.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y., Gregor, V. E., Ayida, B. K., Winters, G. C., Sun, Z., Murphy, D., Haley, G., Bailey, D., Froelich, J. M., Fish, S., Webber, S. E., Hermann, T. & Wall, D. (2007). Bioorg. Med. Chem. Lett. 17, 1206–1210.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o373-o374
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds