organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Meth­­oxy­benzo­yl)-6-nitro­coumarin

aDepartment of Organic Chemistry, University of Santiago de Compostela, Santiago de Compostela, A Coruna, Spain
*Correspondence e-mail: svre77@gmail.com

(Received 21 January 2013; accepted 29 January 2013; online 6 February 2013)

In the title coumarin derivative (also known as 2H-chromen-2-one or 2H-1-benzopyran-2-one), C17H11NO6, the coumarin ring system is nearly planar, with a dihedral angle of 3.35 (9)° between the pyrone and the benzene rings. The dihedral angle between the planes formed by the coumarin ring system and the benzene substituent is 54.60 (7)°, clearly showing the non-coplanarity of the whole aromatic system. The crystal studied was a non-merohedral twin; the minor component refined to approximately 0.44.

Related literature

For the synthesis of the title compound, see: Raju et al. (2010[Raju, B. C., Tiwari, A. K., Kumar, J. A., Ali, A. Z., Agawane, S. B., Saidachary, G. & Madhusudana, K. (2010). Bioorg. Med. Chem. 18, 358-365.]). For examples of the biological activity of coumarin derivatives, see: Borges et al. (2009[Borges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23-85.]), Matos et al. (2011a[Matos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011a). J. Med. Chem. 54, 7127-7137.],b[Matos, M. J., Vazquez-Rodriguez, S., Santan, L., Uriarte, E. & Viña, D. (2011b). Bioorg. Med. Chem. Lett. 21, 4224-4227.],c[Matos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011c). Bioorg. Med. Chem. Lett. 21, 3342-3345.]), Viña et al. (2012a[Viña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012a). Med. Chem. Commun. 3, 213-218.],b[Viña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012b). Chem. Med. Chem. 7, 464-470.]); Vazquez-Rodriguez et al. (2013[Vazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K.-N. (2013). J. Pharm. Pharmacol. DOI: 10.1111/jphp.12028.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11NO6

  • Mr = 325.27

  • Monoclinic, P 21 /n

  • a = 8.875 (3) Å

  • b = 17.266 (5) Å

  • c = 9.174 (3) Å

  • β = 95.401 (15)°

  • V = 1399.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.67 × 0.14 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.604, Tmax = 0.745

  • 30736 measured reflections

  • 2864 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 0.91

  • 2864 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Coumarin derivative compounds present a great interest in the medicinal chemistry field due to the displayed biological properties that they present (Borges et al. 2009, Matos et al. 2011a, Matos et al. 2011b, Matos et al. 2011c, Vazquez-Rodriguez et al. 2013, Viña et al. 2012a and Viña et al. 2012b). The title structure is a 3-substituted coumarin derivative containing a 4-methoxybenzoyl ring at the mentioned position and a nitro group at position 6 of the coumarin scaffold. Therefore, the X-ray analysis of this compound (figure 1) aims to contribute to the elucidation of structural requirements needed to understand the partial planarity of the compound (coumarin nucleus) and the torsion of the 3-benzoyl moiety regarding to this nucleus. From the single-crystal diffraction measurements one can conclude that both the pyrone and benzene rings in the coumarin motif are essentially planar, presenting dihedral angle of 3.35 (9)°. The planarity of the coumarin moiety is also evident by the torsion angle value between their carbons C3—C2—C7—C8 (-175.89 (18)°).

In addition, the torsion angles of the carbonyl group versus the coumarin moiety and the phenyl ring are C10—C9—C15—O16 (43.2 (2)°) and O16—C15—C17—C18 (-152.9 (2)°) respectively. These values are typical of the torsion permitted by the rotation present at position 3. Presence of the carbonyl group at position 3 provokes a non coplanarity of the benzoyl moiety regarding to the coumarin scaffold. This fact is evident taking into account the dihedral angles formed by the planes of the coumarin, the carbonyl and the phenyl groups. Dihedral angle between the coumarin moiety and the carbonyl group is 38.66 (9)°; between the carbonyl and the phenyl group is 25.76 (10)° and between the coumarin scaffold and the phenyl group is 54.60 (7)°.

Related literature top

For the synthesis of the title compound, see: Raju et al. (2010). For examples of the biological activity of coumarin derivatives, see: Borges et al. (2009), Matos et al. (2011a,b,c), Viña et al. (2012a,b); Vazquez-Rodriguez et al. (2013).

Experimental top

3-(4-Methoxybenzoyl)-6-nitrocoumarin was prepared according to the following protocol: to a solution of 2-hydroxy-5-nitrobenzaldehyde (1 mmol) and ethyl 4-methoxybenzoylacetate (1 mmol) in ethanol (4 ml), a catalytic amount of piperidine (5%) was added dropwise and the reaction was stirred at refluxed for 4 h. The precipitated was filtered and the solid obtained was recrystallized in dichlomethane/methanol in a 73% yield. Mp 257–259 °C.

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.95Å with Uiso = 1.2Ueq(C), C—H(methyl) = 0.98Å, with Uiso = 1.5Ueq(C). The positions of methyl hydrogens were checked on a final difference map. The structure was refined as a two-component non-merohedral twin with a BASF parameter of 0.4374.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title structure viewed along the b axis.
3-(4-Methoxybenzoyl)-6-nitrocoumarin top
Crystal data top
C17H11NO6F(000) = 672
Mr = 325.27Dx = 1.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 8.875 (3) ÅCell parameters from 1848 reflections
b = 17.266 (5) Åθ = 2.4–26.2°
c = 9.174 (3) ŵ = 0.12 mm1
β = 95.401 (15)°T = 100 K
V = 1399.6 (7) Å3Prism, colourless
Z = 40.67 × 0.14 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω and phi scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.604, Tmax = 0.745k = 021
30736 measured reflectionsl = 011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.3903P]
where P = (Fo2 + 2Fc2)/3
2864 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C17H11NO6V = 1399.6 (7) Å3
Mr = 325.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.875 (3) ŵ = 0.12 mm1
b = 17.266 (5) ÅT = 100 K
c = 9.174 (3) Å0.67 × 0.14 × 0.03 mm
β = 95.401 (15)°
Data collection top
Bruker APEXII CCD
diffractometer
2864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2200 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.745Rint = 0.054
30736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.91Δρmax = 0.39 e Å3
2864 reflectionsΔρmin = 0.26 e Å3
219 parameters
Special details top

Experimental. 1H NMR (250 MHz, DMSO-d6) δ p.p.m. 8.29 (d, J = 3.2 Hz, 1H, H-4), 7.75 (dd, J = 9.8, 3.1 Hz, 1H, H-7), 7.69–7.56 (m, 3H, H-5, o-H-2, o-H-6), 7.04 (d, J = 8.3 Hz, 2H, m-H-3, m-H5), 6.08 (d, J = 9.6 Hz, 1H, H-8), 3.83 (s, 3H, –OMe); 13C NMR (63 MHz, DMSO-d6) δ p.p.m. 192.91, 177.98, 166.65, 162.34, 138.75, 131.40, 130.83, 130.47, 129.32, 128.05, 127.28, 121.24, 120.67, 113.84, 55.61; MS EI m/z (%): 326 ([M+1]+, 25), 325 ([M]+, 93), 190 (34), 135 (100), 92 (27), 77 (37); Elem. Anal. Calcd. for C17H11NO6: C, C, 62.77; H, 3.41; Found: C, 62.72; H, 3.32.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.0307 (2)0.13803 (12)0.5978 (2)0.0137 (4)
C30.0864 (2)0.16362 (12)0.6744 (2)0.0153 (5)
H30.12560.21450.65950.018*
C40.1455 (2)0.11473 (12)0.7723 (2)0.0164 (5)
H40.22650.13100.82570.020*
C50.0842 (2)0.04053 (13)0.7918 (2)0.0156 (5)
C60.0352 (2)0.01480 (13)0.7193 (2)0.0147 (5)
H60.07510.03580.73640.018*
C70.0969 (2)0.06452 (12)0.6200 (2)0.0131 (4)
C80.2244 (2)0.04597 (12)0.5416 (2)0.0135 (4)
H80.27010.00360.55440.016*
C90.2809 (2)0.09697 (11)0.4506 (2)0.0131 (4)
C100.2034 (2)0.17126 (12)0.4186 (2)0.0149 (5)
C150.4152 (2)0.07478 (12)0.3707 (2)0.0146 (5)
C170.5336 (2)0.13255 (12)0.3473 (2)0.0147 (5)
C180.5631 (2)0.19667 (12)0.4378 (2)0.0144 (5)
H180.50550.20410.51890.017*
C190.6746 (2)0.24980 (13)0.4121 (2)0.0154 (5)
H190.69410.29280.47560.018*
C200.7579 (2)0.23946 (12)0.2922 (2)0.0154 (5)
C210.7319 (2)0.17463 (12)0.2022 (2)0.0171 (5)
H210.79010.16710.12160.021*
C220.6222 (2)0.12166 (12)0.2302 (2)0.0146 (5)
H220.60640.07730.16940.018*
C240.9071 (3)0.35368 (12)0.3471 (2)0.0205 (5)
H24A0.95280.33310.44060.031*
H24B0.81800.38470.36410.031*
H24C0.98090.38620.30270.031*
N110.1513 (2)0.01184 (11)0.89252 (19)0.0186 (4)
O10.08130 (16)0.18773 (8)0.49739 (15)0.0152 (3)
O120.11434 (19)0.08064 (9)0.89156 (18)0.0273 (4)
O130.24056 (19)0.01484 (9)0.97419 (17)0.0248 (4)
O140.23187 (18)0.21826 (9)0.32929 (17)0.0224 (4)
O160.42438 (17)0.00770 (9)0.32955 (17)0.0196 (4)
O230.86233 (17)0.29040 (8)0.24994 (16)0.0185 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0131 (10)0.0141 (10)0.0138 (10)0.0044 (9)0.0010 (8)0.0002 (8)
C30.0147 (11)0.0139 (11)0.0172 (11)0.0022 (9)0.0008 (9)0.0025 (8)
C40.0141 (11)0.0192 (11)0.0163 (11)0.0001 (9)0.0030 (9)0.0046 (9)
C50.0140 (10)0.0202 (11)0.0127 (10)0.0056 (9)0.0020 (8)0.0014 (9)
C60.0145 (11)0.0150 (11)0.0143 (11)0.0009 (9)0.0004 (9)0.0011 (8)
C70.0102 (10)0.0157 (10)0.0132 (10)0.0015 (9)0.0003 (8)0.0033 (8)
C80.0139 (10)0.0110 (10)0.0154 (10)0.0009 (9)0.0006 (8)0.0031 (8)
C90.0120 (10)0.0137 (11)0.0140 (10)0.0018 (9)0.0023 (8)0.0032 (8)
C100.0112 (11)0.0165 (11)0.0172 (11)0.0016 (9)0.0034 (9)0.0018 (9)
C150.0134 (11)0.0176 (12)0.0130 (10)0.0009 (9)0.0017 (8)0.0011 (8)
C170.0132 (11)0.0170 (12)0.0143 (10)0.0037 (9)0.0038 (8)0.0031 (8)
C180.0120 (11)0.0180 (12)0.0136 (10)0.0028 (9)0.0037 (8)0.0011 (8)
C190.0155 (11)0.0161 (10)0.0145 (11)0.0022 (9)0.0014 (8)0.0008 (9)
C200.0112 (10)0.0180 (12)0.0171 (11)0.0019 (9)0.0020 (8)0.0054 (9)
C210.0154 (11)0.0212 (12)0.0155 (11)0.0034 (9)0.0063 (8)0.0008 (9)
C220.0163 (11)0.0129 (11)0.0149 (10)0.0034 (9)0.0020 (8)0.0015 (8)
C240.0198 (12)0.0183 (11)0.0232 (12)0.0040 (10)0.0013 (9)0.0031 (9)
N110.0188 (10)0.0222 (11)0.0151 (10)0.0038 (8)0.0033 (8)0.0001 (8)
O10.0138 (8)0.0141 (7)0.0183 (8)0.0015 (6)0.0047 (6)0.0019 (6)
O120.0319 (10)0.0213 (9)0.0304 (10)0.0009 (7)0.0119 (7)0.0048 (7)
O130.0268 (9)0.0303 (9)0.0195 (8)0.0015 (8)0.0134 (7)0.0017 (7)
O140.0203 (9)0.0209 (8)0.0271 (9)0.0003 (7)0.0076 (7)0.0086 (7)
O160.0204 (8)0.0160 (8)0.0234 (9)0.0007 (7)0.0070 (7)0.0037 (6)
O230.0174 (8)0.0188 (8)0.0200 (8)0.0043 (7)0.0060 (6)0.0018 (6)
Geometric parameters (Å, º) top
C2—O11.365 (2)C15—C171.479 (3)
C2—C31.381 (3)C17—C181.394 (3)
C2—C71.405 (3)C17—C221.403 (3)
C3—C41.372 (3)C18—C191.386 (3)
C3—H30.9500C18—H180.9500
C4—C51.397 (3)C19—C201.393 (3)
C4—H40.9500C19—H190.9500
C5—C61.377 (3)C20—O231.361 (3)
C5—N111.459 (3)C20—C211.397 (3)
C6—C71.400 (3)C21—C221.377 (3)
C6—H60.9500C21—H210.9500
C7—C81.433 (3)C22—H220.9500
C8—C91.343 (3)C24—O231.442 (3)
C8—H80.9500C24—H24A0.9800
C9—C101.472 (3)C24—H24B0.9800
C9—C151.506 (3)C24—H24C0.9800
C10—O141.197 (3)N11—O131.230 (2)
C10—O11.387 (3)N11—O121.233 (2)
C15—O161.223 (3)
O1—C2—C3116.95 (18)C18—C17—C22118.4 (2)
O1—C2—C7120.40 (19)C18—C17—C15123.04 (19)
C3—C2—C7122.65 (19)C22—C17—C15118.55 (19)
C4—C3—C2119.25 (19)C19—C18—C17121.4 (2)
C4—C3—H3120.4C19—C18—H18119.3
C2—C3—H3120.4C17—C18—H18119.3
C3—C4—C5118.7 (2)C18—C19—C20119.3 (2)
C3—C4—H4120.7C18—C19—H19120.3
C5—C4—H4120.7C20—C19—H19120.3
C6—C5—C4122.8 (2)O23—C20—C19124.6 (2)
C6—C5—N11118.98 (19)O23—C20—C21115.35 (19)
C4—C5—N11118.18 (19)C19—C20—C21120.0 (2)
C5—C6—C7118.8 (2)C22—C21—C20120.1 (2)
C5—C6—H6120.6C22—C21—H21119.9
C7—C6—H6120.6C20—C21—H21119.9
C6—C7—C2117.68 (19)C21—C22—C17120.7 (2)
C6—C7—C8124.40 (19)C21—C22—H22119.6
C2—C7—C8117.91 (19)C17—C22—H22119.6
C9—C8—C7121.61 (19)O23—C24—H24A109.5
C9—C8—H8119.2O23—C24—H24B109.5
C7—C8—H8119.2H24A—C24—H24B109.5
C8—C9—C10120.03 (19)O23—C24—H24C109.5
C8—C9—C15119.64 (18)H24A—C24—H24C109.5
C10—C9—C15120.09 (18)H24B—C24—H24C109.5
O14—C10—O1116.33 (19)O13—N11—O12123.53 (18)
O14—C10—C9127.0 (2)O13—N11—C5118.57 (18)
O1—C10—C9116.64 (18)O12—N11—C5117.90 (18)
O16—C15—C17121.65 (19)C2—O1—C10123.03 (16)
O16—C15—C9118.01 (19)C20—O23—C24117.96 (17)
C17—C15—C9120.31 (18)
O1—C2—C3—C4177.38 (18)O16—C15—C17—C18152.9 (2)
C7—C2—C3—C42.6 (3)C9—C15—C17—C1825.3 (3)
C2—C3—C4—C50.4 (3)O16—C15—C17—C2225.9 (3)
C3—C4—C5—C61.4 (3)C9—C15—C17—C22155.83 (19)
C3—C4—C5—N11177.98 (19)C22—C17—C18—C191.4 (3)
C4—C5—C6—C71.0 (3)C15—C17—C18—C19179.72 (19)
N11—C5—C6—C7178.44 (18)C17—C18—C19—C200.8 (3)
C5—C6—C7—C21.2 (3)C18—C19—C20—O23175.13 (19)
C5—C6—C7—C8177.66 (19)C18—C19—C20—C212.1 (3)
O1—C2—C7—C6176.97 (17)O23—C20—C21—C22176.26 (18)
C3—C2—C7—C63.1 (3)C19—C20—C21—C221.2 (3)
O1—C2—C7—C84.1 (3)C20—C21—C22—C171.0 (3)
C3—C2—C7—C8175.89 (19)C18—C17—C22—C212.3 (3)
C6—C7—C8—C9178.2 (2)C15—C17—C22—C21178.75 (19)
C2—C7—C8—C90.6 (3)C6—C5—N11—O13168.4 (2)
C7—C8—C9—C105.7 (3)C4—C5—N11—O1312.2 (3)
C7—C8—C9—C15179.94 (18)C6—C5—N11—O1211.2 (3)
C8—C9—C10—O14171.9 (2)C4—C5—N11—O12168.27 (19)
C15—C9—C10—O142.5 (3)C3—C2—O1—C10176.38 (18)
C8—C9—C10—O16.1 (3)C7—C2—O1—C103.6 (3)
C15—C9—C10—O1179.58 (17)O14—C10—O1—C2176.75 (18)
C8—C9—C15—O1635.9 (3)C9—C10—O1—C21.4 (3)
C10—C9—C15—O16138.5 (2)C19—C20—O23—C249.7 (3)
C8—C9—C15—C17142.4 (2)C21—C20—O23—C24172.89 (18)
C10—C9—C15—C1743.2 (3)

Experimental details

Crystal data
Chemical formulaC17H11NO6
Mr325.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.875 (3), 17.266 (5), 9.174 (3)
β (°) 95.401 (15)
V3)1399.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.67 × 0.14 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.604, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
30736, 2864, 2200
Rint0.054
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 0.91
No. of reflections2864
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was partially supported by the funds of the Xunta da Galicia (09CSA030203PR) and the Ministerio de Sanidad y Consumo (PS09/00501). SVR thanks the FPU program for her PhD grant AP2008–04263.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Uriarte, E. & Santana, L. (2009). Front. Med. Chem. 4, 23–85.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatos, M. J., Santana, L., Uriarte, E., Delogu, G., Corda, M., Fadda, M. B., Era, B. & Fais, A. (2011c). Bioorg. Med. Chem. Lett. 21, 3342–3345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. & Viña, D. (2011a). J. Med. Chem. 54, 7127–7137.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatos, M. J., Vazquez-Rodriguez, S., Santan, L., Uriarte, E. & Viña, D. (2011b). Bioorg. Med. Chem. Lett. 21, 4224–4227.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaju, B. C., Tiwari, A. K., Kumar, J. A., Ali, A. Z., Agawane, S. B., Saidachary, G. & Madhusudana, K. (2010). Bioorg. Med. Chem. 18, 358–365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVazquez-Rodriguez, S., Matos, M. J., Santana, L., Uriarte, E., Borges, F., Kachler, S. & Klotz, K.-N. (2013). J. Pharm. Pharmacol. DOI: 10.1111/jphp.12028.  Google Scholar
First citationViña, D., Matos, M. J., Ferino, G., Cadoni, E., Laguna, R., Borges, F., Uriarte, E. & Santana, L. (2012b). Chem. Med. Chem. 7, 464–470.  Web of Science PubMed Google Scholar
First citationViña, D., Matos, M. J., Yáñez, M., Santana, L. & Uriarte, E. (2012a). Med. Chem. Commun. 3, 213–218.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds