organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Acetamido­phen­­oxy)-2-methyl­propanoic acid

aFacultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col., Chamilapa, CP 62100, Cuernavaca Mor., Mexico, bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico, and cCentro de Investigaciones Químicas, Universidad A. del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, Mineral de la reforma, CP 42184, Hidalgo, Mexico
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 15 January 2013; accepted 19 February 2013; online 28 February 2013)

In the title compound, C12H15NO4, the dihedral angle between the acetamide group and the ring is 29.6 (2)(su?)°. In the crystal mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds, thereby forming corrugated sheets propagating in the ac plane. These sheets are composed of R44(28) graph-set motifs.

Related literature

For related literature on analogous structures with analgesic and anti­dyslipidemic activities, see: Kis et al. (2005[Kis, B., Snipes, J. A. & Busija, D. W. (2005). J. Pharmacol. Exp. Ther. 315, 1-7.]); Navarrete-Vázquez et al. (2008[Navarrete-Vázquez, G., Torres-Gómez, H., Hidalgo-Figueroa, S. & Tlahuext, H. (2008). Acta Cryst. E64, o2261.], 2011[Navarrete-Vázquez, G., Torres-Gomez, H., Guerrero-Alvarez, J. & Tlahuext, H. (2011). J. Chem. Crystallogr. 41, 732-736.]); Thorp & Waring (1962[Thorp, J. M. & Waring, W. S. (1962). Nature, 194, 948-949.]); Miller & Spence (1998[Miller, D. B. & Spence, J. D. (1998). Clin. Pharmacokinet. 34, 155-162.]); Forcheron et al. (2002[Forcheron, F., Cachefo, A., Thevenon, S., Pinteur, C. & Beylot, M. (2002). Diabetes, 51, 3486-3491.]). For information on hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, ch. 5. New York: Oxford University Press Inc.]); Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO4

  • Mr = 237.25

  • Monoclinic, P 21 /c

  • a = 8.3184 (4) Å

  • b = 13.1554 (6) Å

  • c = 12.0452 (5) Å

  • β = 109.959 (5)°

  • V = 1238.96 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.19 × 0.14 × 0.13 mm

Data collection
  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.982, Tmax = 0.988

  • 34747 measured reflections

  • 2179 independent reflections

  • 1738 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.04

  • 2179 reflections

  • 161 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 (2) 2.21 (2) 3.081 (2) 174 (2)
O2—H2⋯O4ii 0.82 1.76 2.572 (2) 172
C2—H2A⋯O1iii 0.93 2.63 3.536 166
C5—H5⋯O3iv 0.93 2.69 3.333 127
Symmetry codes: (i) x+1, y, z; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Crystal Impact, 2006[Crystal Impact (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Fibrates, such as bezafibrate, clofibrate and fenofibrate, which are ligands for the nuclear receptor PPAR α (Peroxisome Proliferator-Activated Receptor), are used as therapeutic agents in the treatment of dyslipidemia, heart disease and diabetic complications in humans (Forcheron et al.,2002). The fibrate pharmacophore has been of interest to medicinal chemists, and it is a widely used class of lipid-modifying agents that decrease plasma triglycerides (Thorp & Waring, 1962; Miller & Spence, 1998). On the other hand, paracetamol is broadly used as over-the-counter analgesic and antipyretic agent (Kis et al., 2005). In order to assist our knowledge about the stereo electronic requirements from these kinds of molecules to shown antihyperlipidemic activity, we have synthesized and determined the crystal structure of a closed-related nitrofibrate analogue (Navarrete-Vázquez et al., 2008), as well as the compound ethyl 2-[4-(acetylamino)phenoxy]-2-methylpropanoate, which is a bioisoster of clofibrate, with an acetamide group instead of chlorine atom (Navarrete-Vázquez et al.,2011). The last structure resembles to paracetamol, a well known analgesic and antipyretic agent. In this case, the hydrolysis product was obtained in order to find a new biologically active chemical entity.

In (I), all bond lengths and angles show normal values.

In the crystal structure, neighboring molecules are linked through N—H···O, O—H···O hydrogen bonds (Jeffrey, 1997) and weak C—H···O hydrogen bonds (Desiraju, 1996) forming a three dimensional network, Table 1. In the hydrogen-bond pattern, the N—H···O and O—H···O hydrogen bonds are forming corrugated sheets. These sheets are composed of R44(28) graph set motifs (Bernstein, et al., 1995), (Fig. 2, Table 1). Neighboring sheets are further linked by weak C—H···O hydrogen bonds, generating the three dimensional network.

Related literature top

For related literature on analogous structures with analgesic and antidyslipidemic activities, see: Kis et al. (2005); Navarrete-Vázquez et al. (2011); Thorp & Waring (1962); Miller & Spence (1998); Forcheron et al. (2002); Navarrete-Vázquez et al. (2008). For information on hydrogen bonding, see: Bernstein et al. (1995); Jeffrey (1997); Desiraju (1996).

Experimental top

Paracetamol (1 g, 0.0066 mol) and potassium carbonate (2 g, 0.014 mol) were dissolved in the minimum amount of dimethyl sulfoxide and were heated at 40 °C. After 20 minutes, the ethyl 2-bromo-2-methylpropionate (1.45 ml, 0.0099 mol) was added dropwise and the reaction mixture was heated to reflux (80 °C) and monitored by TLC. After the reaction completion (15 h), the reaction mixture was filtered and solid residue was washed off with acetone (10 ml). The total mother liquors were concentrated under reduced pressure and then poured into water and extracted with ethyl acetate (3 x 15 ml). The organic layer was dried over anhydrous Na2SO4 and partially evaporated under reduced pressure.

The resulting solid was treated with a mixture of THF/MeOH/H2O (3:2:1,v/v/v, 6 ml/mmol), and LiOH was added (3 equiv). The mixture stirred at room temperature for 3 h. Then, HCl solution (10% v/v) was added, and most of the organic solvents removed in vacuo. The partly solid residue was extracted with CH2Cl2 (3 x 10 ml), dried with Na2SO4, filtered, and concentrated in vacuo to give a white solid (m.p. 438 K). Single crystals were obtained from methanol. 1H NMR data (200 MHz; DMSO-d6; Me4Si) δ: 1.46 (6H, s, H-9 and H-10), 2.10 (3H, s, CH3CO), 6.78 (2H, d, J = 8.7, H-2 and H-6), 7.44 (2H, d, J = 8.7, H-3 and H-5), 9.83 (1H, bs, N—H). 13C NMR (50 MHz, DMSO-d6) δ: 23.8 (CH3CO), 25.1 (gem-di CH3), 78.7 (C-7), 119.5 (C-2, C-6), 120.2 (C-3, C-5), 133.9 (C-4), 161.8 (C-1), 167.9 (CONH), 175.2 (COOH). EI—MS: m/z (rel. int.) 237 (M+, 25%).

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C); C—Hmethyl = 0.96 Å, Uiso(Hmethyl)= 1.5 Ueq(C); O—Hhydroxyl = 0.82 Å, Uiso(Hhydroxyl) = 1.5 Ueq(O) = 1.5]. The hydrogen atom bonded to N1 was located by difference Fourier map. Its coordinates were refined with a distance restraint: N—H = 0.86 Å and [Uiso(H) = 1.2 Ueq(N)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and DIAMOND (Crystal Impact, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—H···O and O—H···O interactions (dashed lines), showing the R44(28) graph set motifs. The methyl groups and hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(4-Acetamidophenoxy)-2-methylpropanoic acid top
Crystal data top
C12H15NO4Dx = 1.272 Mg m3
Mr = 237.25Melting point: 438 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3184 (4) ÅCell parameters from 9500 reflections
b = 13.1554 (6) Åθ = 3.0–29.3°
c = 12.0452 (5) ŵ = 0.10 mm1
β = 109.959 (5)°T = 293 K
V = 1238.96 (10) Å3Prism, colourless
Z = 40.19 × 0.14 × 0.13 mm
F(000) = 504
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
2179 independent reflections
Radiation source: (Mo) X-ray Source1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.3659 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.982, Tmax = 0.988l = 1414
34747 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.3201P]
where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C12H15NO4V = 1238.96 (10) Å3
Mr = 237.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3184 (4) ŵ = 0.10 mm1
b = 13.1554 (6) ÅT = 293 K
c = 12.0452 (5) Å0.19 × 0.14 × 0.13 mm
β = 109.959 (5)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
2179 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1738 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.045
34747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
2179 reflectionsΔρmin = 0.18 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57142 (18)0.98467 (12)0.81385 (13)0.0332 (3)
C20.67842 (19)0.96019 (12)0.92728 (13)0.0350 (4)
H2A0.64330.97390.99120.042*
C30.83553 (19)0.91600 (12)0.94636 (13)0.0355 (4)
H30.90590.90061.02290.043*
C40.88934 (18)0.89431 (11)0.85144 (13)0.0320 (3)
C50.7820 (2)0.91711 (13)0.73829 (13)0.0397 (4)
H50.81650.90230.67440.048*
C60.6234 (2)0.96183 (13)0.71873 (13)0.0419 (4)
H60.55230.97640.64220.050*
C70.29399 (19)1.06405 (12)0.69952 (13)0.0347 (4)
C80.3597 (3)1.15075 (14)0.64257 (18)0.0578 (5)
H8A0.40461.20380.69950.087*
H8B0.26751.17710.57680.087*
H8C0.44841.12590.61550.087*
C90.1450 (2)1.10112 (13)0.73554 (14)0.0421 (4)
H9A0.11121.04820.77790.063*
H9B0.05041.11850.66620.063*
H9C0.17981.15990.78520.063*
C100.23247 (19)0.97382 (12)0.61524 (12)0.0349 (4)
C111.1489 (2)0.79383 (12)0.95558 (14)0.0400 (4)
C121.3223 (2)0.76481 (17)0.95380 (19)0.0633 (6)
H12A1.40780.78421.02710.095*
H12B1.34340.79900.88970.095*
H12C1.32670.69260.94340.095*
H11.099 (3)0.8691 (17)0.8137 (17)0.076*
N11.05465 (16)0.85358 (10)0.86741 (11)0.0362 (3)
O10.41935 (13)1.03044 (9)0.80935 (8)0.0390 (3)
O20.20332 (16)0.89154 (9)0.66919 (9)0.0454 (3)
H20.16740.84580.62080.068*
O30.20982 (17)0.97740 (11)0.51131 (9)0.0566 (4)
O41.09585 (17)0.76373 (10)1.03443 (11)0.0555 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (8)0.0358 (8)0.0335 (8)0.0015 (6)0.0109 (6)0.0033 (6)
C20.0367 (8)0.0422 (9)0.0286 (7)0.0008 (7)0.0145 (6)0.0035 (7)
C30.0374 (8)0.0405 (9)0.0279 (7)0.0021 (7)0.0101 (6)0.0001 (7)
C40.0341 (8)0.0301 (8)0.0351 (8)0.0017 (6)0.0161 (6)0.0002 (6)
C50.0417 (9)0.0518 (10)0.0307 (8)0.0021 (8)0.0190 (7)0.0000 (7)
C60.0401 (9)0.0567 (11)0.0282 (8)0.0039 (8)0.0106 (7)0.0009 (7)
C70.0328 (8)0.0373 (9)0.0325 (8)0.0009 (7)0.0092 (6)0.0047 (7)
C80.0660 (13)0.0443 (11)0.0709 (13)0.0051 (9)0.0333 (10)0.0093 (9)
C90.0390 (9)0.0435 (9)0.0423 (9)0.0073 (7)0.0121 (7)0.0020 (7)
C100.0314 (8)0.0453 (9)0.0281 (8)0.0011 (7)0.0105 (6)0.0036 (7)
C110.0423 (9)0.0361 (9)0.0462 (9)0.0052 (7)0.0210 (8)0.0040 (7)
C120.0519 (11)0.0667 (13)0.0807 (14)0.0208 (10)0.0346 (11)0.0217 (11)
N10.0377 (7)0.0386 (7)0.0385 (7)0.0047 (6)0.0211 (6)0.0056 (6)
O10.0312 (6)0.0541 (7)0.0295 (5)0.0068 (5)0.0073 (4)0.0041 (5)
O20.0633 (8)0.0415 (7)0.0362 (6)0.0136 (6)0.0231 (6)0.0078 (5)
O30.0713 (9)0.0697 (9)0.0273 (6)0.0061 (7)0.0149 (6)0.0010 (6)
O40.0630 (8)0.0584 (8)0.0571 (7)0.0249 (6)0.0362 (7)0.0247 (6)
Geometric parameters (Å, º) top
C1—O11.3852 (18)C8—H8A0.9600
C1—C61.389 (2)C8—H8B0.9600
C1—C21.390 (2)C8—H8C0.9600
C2—C31.376 (2)C9—H9A0.9600
C2—H2A0.9300C9—H9B0.9600
C3—C41.392 (2)C9—H9C0.9600
C3—H30.9300C10—O31.2015 (17)
C4—C51.383 (2)C10—O21.3268 (19)
C4—N11.4264 (19)C11—O41.2410 (18)
C5—C61.389 (2)C11—N11.339 (2)
C5—H50.9300C11—C121.499 (2)
C6—H60.9300C12—H12A0.9600
C7—O11.4461 (18)C12—H12B0.9600
C7—C81.525 (2)C12—H12C0.9600
C7—C91.526 (2)N1—H10.86 (2)
C7—C101.532 (2)O2—H20.8200
O1—C1—C6126.82 (13)C7—C8—H8C109.5
O1—C1—C2114.14 (12)H8A—C8—H8C109.5
C6—C1—C2119.04 (14)H8B—C8—H8C109.5
C3—C2—C1120.99 (13)C7—C9—H9A109.5
C3—C2—H2A119.5C7—C9—H9B109.5
C1—C2—H2A119.5H9A—C9—H9B109.5
C2—C3—C4120.18 (14)C7—C9—H9C109.5
C2—C3—H3119.9H9A—C9—H9C109.5
C4—C3—H3119.9H9B—C9—H9C109.5
C5—C4—C3118.96 (14)O3—C10—O2123.53 (15)
C5—C4—N1118.86 (13)O3—C10—C7123.93 (14)
C3—C4—N1122.12 (13)O2—C10—C7112.52 (12)
C4—C5—C6121.01 (14)O4—C11—N1121.96 (14)
C4—C5—H5119.5O4—C11—C12121.67 (15)
C6—C5—H5119.5N1—C11—C12116.36 (14)
C1—C6—C5119.80 (14)C11—C12—H12A109.5
C1—C6—H6120.1C11—C12—H12B109.5
C5—C6—H6120.1H12A—C12—H12B109.5
O1—C7—C8112.51 (14)C11—C12—H12C109.5
O1—C7—C9103.87 (11)H12A—C12—H12C109.5
C8—C7—C9109.84 (14)H12B—C12—H12C109.5
O1—C7—C10110.04 (12)C11—N1—C4127.18 (12)
C8—C7—C10111.79 (13)C11—N1—H1116.3 (15)
C9—C7—C10108.42 (12)C4—N1—H1116.5 (15)
C7—C8—H8A109.5C1—O1—C7122.17 (11)
C7—C8—H8B109.5C10—O2—H2109.5
H8A—C8—H8B109.5
O1—C1—C2—C3178.80 (14)O1—C7—C10—O243.10 (16)
C6—C1—C2—C31.4 (2)C8—C7—C10—O2168.89 (14)
C1—C2—C3—C40.5 (2)C9—C7—C10—O269.88 (16)
C2—C3—C4—C50.5 (2)O4—C11—N1—C42.6 (3)
C2—C3—C4—N1176.59 (14)C12—C11—N1—C4177.66 (16)
C3—C4—C5—C60.6 (2)C5—C4—N1—C11153.32 (16)
N1—C4—C5—C6176.60 (15)C3—C4—N1—C1129.6 (2)
O1—C1—C6—C5178.93 (15)C6—C1—O1—C72.1 (2)
C2—C1—C6—C51.3 (2)C2—C1—O1—C7178.16 (13)
C4—C5—C6—C10.3 (3)C8—C7—O1—C165.53 (19)
O1—C7—C10—O3138.24 (15)C9—C7—O1—C1175.74 (13)
C8—C7—C10—O312.4 (2)C10—C7—O1—C159.85 (17)
C9—C7—C10—O3108.79 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.87 (2)2.21 (2)3.081 (2)174 (2)
O2—H2···O4ii0.821.762.572 (2)172
C3—H3···O40.932.372.874 (2)114
C2—H2A···O1iii0.932.633.536166
C5—H5···O3iv0.932.693.333127
Symmetry codes: (i) x+1, y, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO4
Mr237.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3184 (4), 13.1554 (6), 12.0452 (5)
β (°) 109.959 (5)
V3)1238.96 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.14 × 0.13
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
34747, 2179, 1738
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.04
No. of reflections2179
No. of parameters161
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Crystal Impact, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.87 (2)2.21 (2)3.081 (2)174 (2)
O2—H2···O4ii0.821.762.572 (2)172
C3—H3···O40.932.372.874 (2)114
C2—H2A···O1iii0.932.6273.536166
C5—H5···O3iv0.932.6873.333127
Symmetry codes: (i) x+1, y, z; (ii) x1, y+3/2, z1/2; (iii) x+1, y+2, z+2; (iv) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant No. 100608.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCrystal Impact (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationForcheron, F., Cachefo, A., Thevenon, S., Pinteur, C. & Beylot, M. (2002). Diabetes, 51, 3486–3491.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, ch. 5. New York: Oxford University Press Inc.  Google Scholar
First citationKis, B., Snipes, J. A. & Busija, D. W. (2005). J. Pharmacol. Exp. Ther. 315, 1–7.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiller, D. B. & Spence, J. D. (1998). Clin. Pharmacokinet. 34, 155–162.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNavarrete-Vázquez, G., Torres-Gomez, H., Guerrero-Alvarez, J. & Tlahuext, H. (2011). J. Chem. Crystallogr. 41, 732–736.  Google Scholar
First citationNavarrete-Vázquez, G., Torres-Gómez, H., Hidalgo-Figueroa, S. & Tlahuext, H. (2008). Acta Cryst. E64, o2261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThorp, J. M. & Waring, W. S. (1962). Nature, 194, 948–949.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds