metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ido-κN1}cobalt(II)

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, People's Republic of China
*Correspondence e-mail: libin_qlnu@yahoo.com.cn

(Received 29 January 2013; accepted 31 January 2013; online 6 February 2013)

In the centrosymmetic title complex, [Co(C18H12N5)2(H2O)2], the CoII ion is coordinated by two N,N′-bidentate 5-(pyridin-2-yl)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ide ligands and two water mol­ecules in a trans-CoO2N4 coordination geometry. In the ligand, the dihedral angles between the triazole ring and its adjacent pyridine and benzene rings are 5.57 (14) and 6.89 (16)°, respectively. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to coordination complexes, see: Li et al. (2007[Li, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol. 42, 1036-1043.]); Zhang et al. (2012a[Zhang, X. T., Sun, D., Li, B., Fan, L. M., Li, B. & Wei, P. H. (2012a). Cryst. Growth Des. 12, 3845-3848.],b[Zhang, X. T., Li, B., Zhao, X., Sun, D., Li, D. C. & Dou, J. M. (2012b). CrystEngComm, 14, 2053-2061.]); Fan et al. (2013[Fan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349-355.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H12N5)2(H2O)2]

  • Mr = 691.61

  • Monoclinic, P 21 /c

  • a = 13.2407 (17) Å

  • b = 11.9355 (16) Å

  • c = 9.8644 (13) Å

  • β = 101.158 (1)°

  • V = 1529.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.953

  • 10448 measured reflections

  • 2703 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.139

  • S = 1.00

  • 2703 reflections

  • 229 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2 2.057 (2)
Co1—N1 2.130 (2)
Co1—O1 2.181 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N4i 0.82 (1) 1.98 (1) 2.783 (3) 168 (4)
O1—H2W⋯N5ii 0.82 (1) 2.46 (3) 3.196 (4) 150 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination complexes have attracted upsurging research interest not only because of their appealing structural and topological novelty but also owing to their tremendous potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics and heterogeneous catalysis. (Li et al., 2007; Zhang et al., 2012a,b; Fan et al., 2013). Here, we report one new compound: Co(H2O)2(C18H12N5)2, obtained from the solvothermal reaction of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine and cobalt chloride.

The title compound, Co(H2O)2(C18H12N5)2, consists of of a half of Co(II), a half of depornated 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine, and one associated water molecule. Co(1) owns a distorted octahedral coordination geometry, completed by four N atoms from two depornated 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine and two O atoms from two water molecules (Figure 1). The Co—O distance is 2.181 (2) Å. The Co—N distances are varying from 2.057 (2)—2.130 (2) Å. O—H···N hydrogen bonding in the packing diagram leads to a consolidation of the structure (Fig. 2; Table 2) .

Related literature top

For background to coordination complexes, see: Li et al. (2007); Zhang et al. (2012a,b); Fan et al. (2013).

Experimental top

A mixture of 2-(3-(4-(pyridin-4- yl)phenyl)-1H-1,2,4-triazol-5-yl)pyridine (0.20 mmol, 0.060 g), cobalt(II) nitrate hexahydrate (0.40 mmol, 0.116 g), NaOH (0.20 mmol, 0.008 g) and 12 ml H2O was placed in a Teflon-lined stainless steel vessel, heated to 170 C for 3 days, followed by slow cooling (a descent rate of 10 C/h) to room temperature. Red blocks were obtained. Anal. Calc. for C36H28CoN10O2: C 65.52, H 4.08, N 20.25%; Found: C 65.45, H 4.02, N 20.22%.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms. The H atoms of the water molecule were located from difference density maps and were refined with d(O—H) = 0.83 (2) Å, and with a fixed Uiso of 0.80 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms are generated by the symmetry operation (1-x, -y, -z).
[Figure 2] Fig. 2. The crystal packing of the title compound, displayed with hydrogen bonds as dashed lines.
Diaquabis{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-κN1}cobalt(II) top
Crystal data top
[Co(C18H12N5)2(H2O)2]F(000) = 714
Mr = 691.61Dx = 1.502 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3600 reflections
a = 13.2407 (17) Åθ = 2.3–26.5°
b = 11.9355 (16) ŵ = 0.62 mm1
c = 9.8644 (13) ÅT = 296 K
β = 101.158 (1)°Block, red
V = 1529.4 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2703 independent reflections
Radiation source: fine-focus sealed tube2227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.930, Tmax = 0.953k = 1314
10448 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.084P)2 + 1.4448P]
where P = (Fo2 + 2Fc2)/3
2703 reflections(Δ/σ)max = 0.016
229 parametersΔρmax = 1.05 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C18H12N5)2(H2O)2]V = 1529.4 (3) Å3
Mr = 691.61Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.2407 (17) ŵ = 0.62 mm1
b = 11.9355 (16) ÅT = 296 K
c = 9.8644 (13) Å0.12 × 0.10 × 0.08 mm
β = 101.158 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2227 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.953Rint = 0.030
10448 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0463 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.05 e Å3
2703 reflectionsΔρmin = 0.39 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3746 (2)0.2081 (2)0.1267 (3)0.0338 (7)
H10.34300.15890.19500.041*
C20.3481 (2)0.3190 (3)0.1381 (3)0.0399 (7)
H20.29980.34460.21310.048*
C30.3941 (3)0.3920 (3)0.0371 (3)0.0417 (8)
H30.37740.46770.04290.050*
C40.4652 (2)0.3519 (2)0.0731 (3)0.0364 (7)
H40.49650.39990.14300.044*
C50.4892 (2)0.2395 (2)0.0780 (3)0.0269 (6)
C60.5661 (2)0.1858 (2)0.1853 (3)0.0272 (6)
C70.6826 (2)0.1420 (2)0.3514 (3)0.0297 (6)
C80.7641 (2)0.1417 (3)0.4764 (3)0.0338 (7)
C90.7837 (2)0.2303 (3)0.5675 (3)0.0433 (8)
H90.74340.29460.55180.052*
C100.8626 (3)0.2249 (3)0.6818 (3)0.0478 (9)
H100.87410.28580.74160.057*
C110.9247 (2)0.1313 (3)0.7094 (3)0.0421 (8)
C120.9022 (3)0.0412 (3)0.6208 (4)0.0563 (10)
H120.94120.02380.63800.068*
C130.8234 (3)0.0457 (3)0.5078 (4)0.0522 (9)
H130.80950.01690.45100.063*
C141.0128 (2)0.1248 (3)0.8284 (3)0.0467 (8)
C151.0235 (4)0.1889 (6)0.9427 (5)0.112 (2)
H150.97420.24250.95110.134*
C161.1092 (4)0.1743 (7)1.0485 (5)0.120 (3)
H161.11460.22131.12480.144*
C171.1763 (4)0.0477 (5)0.9319 (5)0.0846 (15)
H171.23070.00080.92250.102*
C181.0955 (3)0.0567 (4)0.8218 (5)0.0771 (14)
H181.09670.01620.74160.093*
Co10.50000.00000.00000.0298 (2)
N10.44390 (18)0.16760 (19)0.0215 (2)0.0289 (5)
N20.58648 (18)0.07828 (19)0.1693 (2)0.0320 (6)
N30.66303 (19)0.0488 (2)0.2766 (2)0.0349 (6)
N40.62453 (18)0.23101 (19)0.2988 (2)0.0292 (5)
N51.1817 (3)0.1015 (4)1.0501 (3)0.0734 (11)
O10.38664 (16)0.04573 (19)0.1239 (2)0.0397 (5)
H1W0.374 (3)0.1106 (9)0.143 (4)0.080*
H2W0.343 (2)0.000 (2)0.137 (5)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (16)0.0313 (15)0.0302 (15)0.0007 (13)0.0078 (12)0.0025 (12)
C20.0414 (18)0.0360 (17)0.0355 (16)0.0070 (14)0.0091 (13)0.0047 (13)
C30.0509 (19)0.0282 (16)0.0403 (17)0.0097 (14)0.0055 (15)0.0020 (13)
C40.0434 (18)0.0278 (15)0.0326 (15)0.0004 (13)0.0061 (13)0.0049 (12)
C50.0279 (14)0.0255 (14)0.0247 (14)0.0014 (11)0.0013 (11)0.0008 (11)
C60.0281 (14)0.0240 (14)0.0263 (13)0.0018 (11)0.0031 (11)0.0011 (11)
C70.0290 (15)0.0313 (15)0.0249 (13)0.0009 (12)0.0040 (11)0.0001 (12)
C80.0297 (15)0.0365 (16)0.0299 (15)0.0003 (13)0.0072 (12)0.0004 (13)
C90.0383 (18)0.0457 (19)0.0400 (17)0.0101 (15)0.0072 (14)0.0099 (15)
C100.0400 (18)0.058 (2)0.0383 (17)0.0087 (16)0.0099 (14)0.0203 (16)
C110.0351 (17)0.057 (2)0.0291 (15)0.0027 (15)0.0069 (13)0.0035 (15)
C120.054 (2)0.049 (2)0.053 (2)0.0133 (18)0.0222 (17)0.0011 (18)
C130.057 (2)0.0392 (19)0.048 (2)0.0050 (17)0.0210 (17)0.0101 (16)
C140.0330 (17)0.068 (2)0.0334 (17)0.0039 (16)0.0072 (14)0.0032 (16)
C150.068 (3)0.191 (7)0.059 (3)0.050 (4)0.033 (2)0.052 (4)
C160.080 (4)0.207 (8)0.056 (3)0.034 (4)0.030 (3)0.055 (4)
C170.058 (3)0.108 (4)0.075 (3)0.013 (3)0.021 (2)0.004 (3)
C180.060 (3)0.094 (4)0.065 (3)0.023 (3)0.019 (2)0.012 (2)
Co10.0330 (3)0.0221 (3)0.0275 (3)0.0006 (2)0.0110 (2)0.0016 (2)
N10.0292 (13)0.0253 (12)0.0272 (12)0.0005 (10)0.0066 (10)0.0006 (10)
N20.0336 (13)0.0268 (13)0.0291 (12)0.0000 (10)0.0104 (10)0.0005 (10)
N30.0372 (14)0.0288 (13)0.0309 (13)0.0006 (11)0.0133 (11)0.0008 (11)
N40.0304 (13)0.0268 (13)0.0263 (12)0.0010 (10)0.0043 (10)0.0035 (10)
N50.0438 (19)0.121 (3)0.0461 (19)0.004 (2)0.0148 (15)0.004 (2)
O10.0389 (12)0.0321 (11)0.0441 (12)0.0015 (10)0.0019 (10)0.0062 (11)
Geometric parameters (Å, º) top
C1—N11.336 (4)C11—C141.488 (4)
C1—C21.368 (4)C12—C131.372 (5)
C1—H10.9300C12—H120.9300
C2—C31.374 (4)C13—H130.9300
C2—H20.9300C14—C151.348 (6)
C3—C41.379 (4)C14—C181.375 (6)
C3—H30.9300C15—C161.395 (6)
C4—C51.377 (4)C15—H150.9300
C4—H40.9300C16—N51.293 (7)
C5—N11.353 (3)C16—H160.9300
C5—C61.466 (4)C17—N51.321 (6)
C6—N21.328 (4)C17—C181.374 (6)
C6—N41.344 (3)C17—H170.9300
C7—N31.333 (4)C18—H180.9300
C7—N41.354 (4)Co1—N2i2.057 (2)
C7—C81.473 (4)Co1—N22.057 (2)
C8—C91.379 (4)Co1—N12.130 (2)
C8—C131.391 (5)Co1—N1i2.130 (2)
C9—C101.381 (4)Co1—O1i2.181 (2)
C9—H90.9300Co1—O12.181 (2)
C10—C111.383 (5)N2—N31.363 (3)
C10—H100.9300O1—H1W0.8200 (11)
C11—C121.381 (5)O1—H2W0.8200 (11)
N1—C1—C2122.8 (3)C18—C14—C11120.2 (3)
N1—C1—H1118.6C14—C15—C16119.6 (5)
C2—C1—H1118.6C14—C15—H15120.2
C1—C2—C3118.8 (3)C16—C15—H15120.2
C1—C2—H2120.6N5—C16—C15126.0 (5)
C3—C2—H2120.6N5—C16—H16117.0
C2—C3—C4119.4 (3)C15—C16—H16117.0
C2—C3—H3120.3N5—C17—C18124.1 (5)
C4—C3—H3120.3N5—C17—H17117.9
C5—C4—C3118.9 (3)C18—C17—H17117.9
C5—C4—H4120.5C17—C18—C14121.0 (4)
C3—C4—H4120.5C17—C18—H18119.5
N1—C5—C4121.7 (2)C14—C18—H18119.5
N1—C5—C6113.3 (2)N2i—Co1—N2180.00 (19)
C4—C5—C6125.0 (2)N2i—Co1—N1102.53 (9)
N2—C6—N4112.9 (2)N2—Co1—N177.47 (9)
N2—C6—C5117.7 (2)N2i—Co1—N1i77.47 (9)
N4—C6—C5129.3 (2)N2—Co1—N1i102.53 (9)
N3—C7—N4114.0 (2)N1—Co1—N1i180.00 (12)
N3—C7—C8119.6 (3)N2i—Co1—O1i89.65 (9)
N4—C7—C8126.3 (3)N2—Co1—O1i90.35 (9)
C9—C8—C13117.4 (3)N1—Co1—O1i88.49 (9)
C9—C8—C7124.0 (3)N1i—Co1—O1i91.51 (9)
C13—C8—C7118.6 (3)N2i—Co1—O190.35 (9)
C8—C9—C10120.9 (3)N2—Co1—O189.65 (9)
C8—C9—H9119.6N1—Co1—O191.51 (9)
C10—C9—H9119.6N1i—Co1—O188.49 (9)
C9—C10—C11121.7 (3)O1i—Co1—O1180.00 (15)
C9—C10—H10119.2C1—N1—C5118.4 (2)
C11—C10—H10119.2C1—N1—Co1126.26 (19)
C12—C11—C10117.2 (3)C5—N1—Co1115.22 (18)
C12—C11—C14119.9 (3)C6—N2—N3107.2 (2)
C10—C11—C14122.9 (3)C6—N2—Co1116.21 (18)
C13—C12—C11121.4 (3)N3—N2—Co1136.62 (19)
C13—C12—H12119.3C7—N3—N2104.5 (2)
C11—C12—H12119.3C6—N4—C7101.4 (2)
C12—C13—C8121.4 (3)C16—N5—C17113.7 (4)
C12—C13—H13119.3Co1—O1—H1W124 (2)
C8—C13—H13119.3Co1—O1—H2W120 (2)
C15—C14—C18114.8 (4)H1W—O1—H2W114.6 (2)
C15—C14—C11124.8 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N4ii0.82 (1)1.98 (1)2.783 (3)168 (4)
O1—H2W···N5iii0.82 (1)2.46 (3)3.196 (4)150 (5)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C18H12N5)2(H2O)2]
Mr691.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.2407 (17), 11.9355 (16), 9.8644 (13)
β (°) 101.158 (1)
V3)1529.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.930, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
10448, 2703, 2227
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.00
No. of reflections2703
No. of parameters229
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N22.057 (2)Co1—O12.181 (2)
Co1—N12.130 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N4i0.8200 (11)1.976 (8)2.783 (3)168 (4)
O1—H2W···N5ii0.8200 (11)2.46 (3)3.196 (4)150 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z1.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, L. M., Zhang, X. T., Li, D. C., Sun, D., Zhang, W. & Dou, J. M. (2013). CrystEngComm, 15, 349–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F. Y., Qu, X. S. & Qiu, Y. F. (2007). Cryst. Res. Technol. 42, 1036–1043.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Li, B., Zhao, X., Sun, D., Li, D. C. & Dou, J. M. (2012b). CrystEngComm, 14, 2053–2061.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. T., Sun, D., Li, B., Fan, L. M., Li, B. & Wei, P. H. (2012a). Cryst. Growth Des. 12, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds