organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o426-o427

(2E)-1-(2-Methyl-4-phenyl­quinolin-3-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one

aDepartment of Chemistry, BITS, Pilani–K. K. Birla Goa Campus, Goa 403 726, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 18 February 2013; accepted 18 February 2013; online 23 February 2013)

In the title compound, C24H19NOS, the quinoline residue (r.m.s. deviation = 0.018 Å) is essentially orthogonal to both the phenyl [dihedral angle = 88.95 (8)°] and 2-thienyl [81.98 (9)°] rings. The carbonyl O atom lies to one side of the quinoline plane, the carbonyl C atom is almost coplanar and the remaining atoms of the chalcone residue lies to the other side, so that overall the mol­ecule has an L-shape. The conformation about the ethyl­ene bond [1.340 (2) Å] is E. In the crystal, a supra­molecular chain with the shape of a square rod aligned along the b-axis direction is sustained by C—H⋯π inter­actions, the π-systems being the heterocyclic rings.

Related literature

For background details and the biological application of quinoline and quinoline chalcones, see: Joshi et al. (2011[Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872-876.]); Prasath & Bhavana (2012[Prasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525-530.]); Kalanithi et al. (2012[Kalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155-162.]); Prasath et al. (2013[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62-70.]). For the structure of the dimethyl-substituted quinolinyl compound without a methyl substituent on the 2-thienyl ring, see: Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283-o2284.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19NOS

  • Mr = 369.46

  • Triclinic, [P \overline 1]

  • a = 10.0815 (7) Å

  • b = 10.2956 (7) Å

  • c = 10.5403 (7) Å

  • α = 71.013 (6)°

  • β = 78.697 (5)°

  • γ = 70.412 (6)°

  • V = 969.99 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.780, Tmax = 1.000

  • 8430 measured reflections

  • 4473 independent reflections

  • 3484 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.03

  • 4473 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1,C20–C23 and N1,C1,C6–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.93 2.88 3.688 (2) 146
C22—H22⋯Cg2ii 0.93 2.60 3.457 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In addition to their being valuable intermediates in organic synthesis (Prasath & Bhavana, 2012; Joshi et al., 2011), quinoline and heterocyclic analogues, such as chalcones, exhibit a variety of biological activities, e.g. anti-plasmodial, anti-microbial and anticancer activities (Prasath et al., 2013; Kalanithi et al., 2012). The title quinolinyl/chalcone bearing a thienyl substituent, (I), was investigated in the context of the above.

In (I), Fig. 1, the phenyl ring is perpendicular to the quinolinyl residue (r.m.s. deviation = 0.018 Å), forming a dihedral angle of 88.95 (8)°. The 3-thienyl ring also occupies a position approximately orthogonal to the quinolinyl residue with a dihedral angle of 81.98 (9)°. With respect to the plane through the quinolinyl residue, the carbonyl-O1 atom lies to one side, the carbonyl-C17 atom is almost co-planar and the remaining chalcone residue lies to the other side so that the molecule has an L-shape. The conformation about the ethylene bond [1.340 (2) Å] is E. A similar conformation and displacement of atoms was found in the most closely related structure, namely that of the recently reported (2E)-1-(2,4-dimethylquinolin-3-yl)-3-(thiophen-2-yl)prop-2-en-1-one (Prasath et al., 2011).

The most notable feature of the crystal packing is the formation of supramolecular chains along the b axis and sustained by C—H···π interactions between quinolinyl-C6—H4 and the 3-thienyl ring, and between 3-thienyl-H22 and the pyridyl ring, Fig. 2 and Table 1. Owing to the L-shape of the molecule, the chain has the shape of a square rod. Chains stack with no specific interactions between them, Fig. 3.

Related literature top

For background details and the biological application of quinoline and quinoline chalcones, see: Joshi et al. (2011); Prasath & Bhavana (2012); Kalanithi et al. (2012); Prasath et al. (2013). For the structure of the dimethyl-substituted quinolinyl compound without a methyl substituent on the 2-thienyl ring, see: Prasath et al. (2011).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (1.3 g, 0.005 M), 3-methylthiophene-2-carbaldehyde (630 mg, 0.005 M) and KOH (0.5 g) in distilled ethanol (50 ml) was stirred for 12 h at room temperature. The resulting mixture was neutralized with dilute acetic acid. The deposited solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethyl acetate and hexane. Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded colourless prisms in 76% yield; M.pt: 453–455 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the supramolecular chain in (I). The C—H···π interactions are shown as purple dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell content for (I). The C—H···π interactions are shown as purple dashed lines.
(2E)-1-(2-Methyl-4-phenylquinolin-3-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one top
Crystal data top
C24H19NOSZ = 2
Mr = 369.46F(000) = 388
Triclinic, P1Dx = 1.265 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0815 (7) ÅCell parameters from 2781 reflections
b = 10.2956 (7) Åθ = 3.1–27.5°
c = 10.5403 (7) ŵ = 0.18 mm1
α = 71.013 (6)°T = 295 K
β = 78.697 (5)°Prism, colourless
γ = 70.412 (6)°0.40 × 0.20 × 0.10 mm
V = 969.99 (11) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4473 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3484 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω scanh = 1213
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.780, Tmax = 1.000l = 1213
8430 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.2365P]
where P = (Fo2 + 2Fc2)/3
4473 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H19NOSγ = 70.412 (6)°
Mr = 369.46V = 969.99 (11) Å3
Triclinic, P1Z = 2
a = 10.0815 (7) ÅMo Kα radiation
b = 10.2956 (7) ŵ = 0.18 mm1
c = 10.5403 (7) ÅT = 295 K
α = 71.013 (6)°0.40 × 0.20 × 0.10 mm
β = 78.697 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4473 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3484 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 1.000Rint = 0.025
8430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
4473 reflectionsΔρmin = 0.26 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33532 (6)0.72592 (6)0.97283 (5)0.05153 (17)
O10.33453 (18)0.20079 (15)1.00072 (14)0.0629 (4)
N10.08222 (15)0.34043 (16)0.65204 (16)0.0454 (4)
C10.18240 (18)0.31032 (18)0.54916 (17)0.0399 (4)
C20.1367 (2)0.3073 (2)0.4323 (2)0.0527 (5)
H20.04060.32850.42620.063*
C30.2316 (3)0.2738 (2)0.3286 (2)0.0602 (5)
H30.20020.27180.25220.072*
C40.3757 (2)0.2425 (3)0.3361 (2)0.0608 (6)
H40.43970.21960.26450.073*
C50.4241 (2)0.2449 (2)0.44696 (19)0.0511 (5)
H50.52080.22410.45020.061*
C60.32869 (18)0.27881 (17)0.55698 (17)0.0379 (4)
C70.37112 (17)0.28190 (17)0.67702 (17)0.0363 (4)
C80.26889 (17)0.31240 (17)0.77857 (17)0.0367 (4)
C90.12435 (18)0.33970 (19)0.76224 (19)0.0432 (4)
C100.0110 (2)0.3675 (3)0.8747 (2)0.0672 (6)
H10A0.08020.39050.84450.101*
H10B0.01640.44660.90080.101*
H10C0.02440.28330.95050.101*
C110.52458 (17)0.24958 (18)0.69071 (16)0.0377 (4)
C120.6053 (2)0.1100 (2)0.7428 (2)0.0514 (5)
H120.56340.03610.77170.062*
C130.7480 (2)0.0793 (2)0.7525 (2)0.0561 (5)
H130.80160.01510.78740.067*
C140.8112 (2)0.1878 (2)0.71062 (19)0.0520 (5)
H140.90740.16660.71620.062*
C150.7321 (2)0.3266 (2)0.6608 (2)0.0526 (5)
H150.77450.40020.63340.063*
C160.5892 (2)0.3582 (2)0.65095 (19)0.0467 (4)
H160.53600.45310.61740.056*
C170.30768 (19)0.31202 (19)0.90990 (18)0.0415 (4)
C180.30830 (19)0.44686 (19)0.92575 (18)0.0416 (4)
H180.33530.44531.00590.050*
C190.27227 (18)0.57334 (18)0.83162 (17)0.0391 (4)
H190.24630.57210.75220.047*
C200.26953 (18)0.71087 (18)0.84036 (17)0.0385 (4)
C210.2191 (2)0.84246 (19)0.75107 (18)0.0454 (4)
C220.2355 (2)0.9534 (2)0.7922 (2)0.0590 (5)
H220.20711.04970.74350.071*
C230.2960 (3)0.9070 (2)0.9081 (2)0.0606 (6)
H230.31410.96700.94800.073*
C240.1539 (3)0.8692 (3)0.6258 (2)0.0666 (6)
H24A0.20320.79360.58430.100*
H24B0.16040.95950.56440.100*
H24C0.05630.87150.64840.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0653 (3)0.0586 (3)0.0420 (3)0.0270 (3)0.0072 (2)0.0187 (2)
O10.0963 (12)0.0451 (8)0.0471 (8)0.0234 (8)0.0149 (8)0.0052 (6)
N10.0385 (8)0.0491 (9)0.0537 (9)0.0144 (7)0.0028 (7)0.0203 (7)
C10.0421 (9)0.0381 (9)0.0429 (9)0.0148 (7)0.0045 (7)0.0126 (7)
C20.0524 (11)0.0573 (12)0.0557 (11)0.0191 (10)0.0130 (9)0.0178 (10)
C30.0766 (15)0.0704 (14)0.0451 (11)0.0282 (12)0.0101 (10)0.0222 (10)
C40.0661 (14)0.0750 (15)0.0488 (11)0.0261 (12)0.0074 (10)0.0290 (11)
C50.0475 (10)0.0645 (12)0.0479 (10)0.0219 (10)0.0050 (9)0.0245 (9)
C60.0401 (9)0.0364 (8)0.0404 (9)0.0156 (7)0.0011 (7)0.0120 (7)
C70.0380 (8)0.0321 (8)0.0412 (9)0.0137 (7)0.0025 (7)0.0108 (7)
C80.0396 (9)0.0345 (8)0.0392 (8)0.0135 (7)0.0007 (7)0.0135 (7)
C90.0381 (9)0.0454 (10)0.0493 (10)0.0135 (8)0.0028 (8)0.0199 (8)
C100.0439 (11)0.1004 (18)0.0656 (14)0.0208 (12)0.0099 (10)0.0432 (13)
C110.0366 (9)0.0420 (9)0.0371 (8)0.0139 (7)0.0011 (7)0.0134 (7)
C120.0469 (10)0.0448 (10)0.0613 (12)0.0176 (9)0.0012 (9)0.0114 (9)
C130.0451 (11)0.0522 (12)0.0639 (13)0.0066 (9)0.0087 (9)0.0128 (10)
C140.0379 (9)0.0735 (14)0.0508 (11)0.0182 (10)0.0040 (8)0.0239 (10)
C150.0509 (11)0.0640 (13)0.0551 (11)0.0318 (10)0.0013 (9)0.0194 (10)
C160.0476 (10)0.0449 (10)0.0523 (11)0.0189 (8)0.0074 (8)0.0129 (8)
C170.0421 (9)0.0416 (9)0.0419 (9)0.0136 (8)0.0001 (7)0.0142 (8)
C180.0449 (9)0.0446 (10)0.0395 (9)0.0130 (8)0.0047 (7)0.0171 (8)
C190.0414 (9)0.0427 (9)0.0380 (9)0.0134 (8)0.0026 (7)0.0172 (7)
C200.0397 (9)0.0426 (9)0.0374 (8)0.0139 (7)0.0003 (7)0.0170 (7)
C210.0489 (10)0.0430 (10)0.0456 (10)0.0133 (8)0.0019 (8)0.0157 (8)
C220.0767 (14)0.0408 (10)0.0626 (13)0.0196 (10)0.0046 (11)0.0173 (9)
C230.0802 (15)0.0572 (12)0.0616 (13)0.0354 (12)0.0030 (11)0.0293 (11)
C240.0771 (15)0.0589 (13)0.0609 (13)0.0090 (12)0.0250 (12)0.0138 (11)
Geometric parameters (Å, º) top
S1—C231.698 (2)C11—C161.389 (2)
S1—C201.7281 (17)C12—C131.382 (3)
O1—C171.217 (2)C12—H120.9300
N1—C91.310 (2)C13—C141.376 (3)
N1—C11.368 (2)C13—H130.9300
C1—C61.413 (2)C14—C151.366 (3)
C1—C21.410 (3)C14—H140.9300
C2—C31.358 (3)C15—C161.384 (3)
C2—H20.9300C15—H150.9300
C3—C41.390 (3)C16—H160.9300
C3—H30.9300C17—C181.453 (2)
C4—C51.362 (3)C18—C191.340 (2)
C4—H40.9300C18—H180.9300
C5—C61.412 (2)C19—C201.439 (2)
C5—H50.9300C19—H190.9300
C6—C71.426 (2)C20—C211.370 (3)
C7—C81.370 (2)C21—C221.413 (3)
C7—C111.495 (2)C21—C241.494 (3)
C8—C91.423 (2)C22—C231.345 (3)
C8—C171.509 (2)C22—H220.9300
C9—C101.505 (2)C23—H230.9300
C10—H10A0.9600C24—H24A0.9600
C10—H10B0.9600C24—H24B0.9600
C10—H10C0.9600C24—H24C0.9600
C11—C121.381 (3)
C23—S1—C2091.61 (10)C13—C12—H12119.7
C9—N1—C1118.32 (15)C14—C13—C12120.29 (19)
N1—C1—C6122.78 (16)C14—C13—H13119.9
N1—C1—C2118.05 (16)C12—C13—H13119.9
C6—C1—C2119.15 (16)C15—C14—C13119.83 (18)
C3—C2—C1120.68 (19)C15—C14—H14120.1
C3—C2—H2119.7C13—C14—H14120.1
C1—C2—H2119.7C14—C15—C16120.21 (17)
C2—C3—C4120.30 (19)C14—C15—H15119.9
C2—C3—H3119.9C16—C15—H15119.9
C4—C3—H3119.9C15—C16—C11120.58 (18)
C5—C4—C3120.85 (19)C15—C16—H16119.7
C5—C4—H4119.6C11—C16—H16119.7
C3—C4—H4119.6O1—C17—C18121.50 (17)
C4—C5—C6120.50 (18)O1—C17—C8119.87 (15)
C4—C5—H5119.8C18—C17—C8118.60 (15)
C6—C5—H5119.8C19—C18—C17123.79 (16)
C1—C6—C5118.52 (16)C19—C18—H18118.1
C1—C6—C7117.62 (15)C17—C18—H18118.1
C5—C6—C7123.85 (16)C18—C19—C20126.93 (16)
C8—C7—C6118.51 (15)C18—C19—H19116.5
C8—C7—C11121.58 (15)C20—C19—H19116.5
C6—C7—C11119.90 (14)C21—C20—C19127.31 (16)
C7—C8—C9119.67 (16)C21—C20—S1111.30 (13)
C7—C8—C17120.94 (15)C19—C20—S1121.39 (13)
C9—C8—C17119.35 (15)C20—C21—C22111.32 (18)
N1—C9—C8123.07 (15)C20—C21—C24125.56 (17)
N1—C9—C10116.42 (16)C22—C21—C24123.12 (18)
C8—C9—C10120.50 (17)C23—C22—C21113.90 (19)
C9—C10—H10A109.5C23—C22—H22123.1
C9—C10—H10B109.5C21—C22—H22123.1
H10A—C10—H10B109.5C22—C23—S1111.86 (15)
C9—C10—H10C109.5C22—C23—H23124.1
H10A—C10—H10C109.5S1—C23—H23124.1
H10B—C10—H10C109.5C21—C24—H24A109.5
C12—C11—C16118.55 (16)C21—C24—H24B109.5
C12—C11—C7120.36 (15)H24A—C24—H24B109.5
C16—C11—C7121.08 (16)C21—C24—H24C109.5
C11—C12—C13120.52 (17)H24A—C24—H24C109.5
C11—C12—H12119.7H24B—C24—H24C109.5
C9—N1—C1—C60.1 (3)C8—C7—C11—C1690.2 (2)
C9—N1—C1—C2178.26 (16)C6—C7—C11—C1691.0 (2)
N1—C1—C2—C3178.02 (18)C16—C11—C12—C131.3 (3)
C6—C1—C2—C30.4 (3)C7—C11—C12—C13178.36 (18)
C1—C2—C3—C40.3 (3)C11—C12—C13—C140.3 (3)
C2—C3—C4—C50.1 (3)C12—C13—C14—C150.8 (3)
C3—C4—C5—C60.3 (3)C13—C14—C15—C160.7 (3)
N1—C1—C6—C5178.14 (16)C14—C15—C16—C110.3 (3)
C2—C1—C6—C50.2 (2)C12—C11—C16—C151.3 (3)
N1—C1—C6—C71.3 (2)C7—C11—C16—C15178.31 (17)
C2—C1—C6—C7179.58 (15)C7—C8—C17—O187.5 (2)
C4—C5—C6—C10.1 (3)C9—C8—C17—O190.2 (2)
C4—C5—C6—C7179.22 (17)C7—C8—C17—C1894.1 (2)
C1—C6—C7—C81.2 (2)C9—C8—C17—C1888.2 (2)
C5—C6—C7—C8178.19 (16)O1—C17—C18—C19176.33 (18)
C1—C6—C7—C11179.93 (15)C8—C17—C18—C192.0 (3)
C5—C6—C7—C110.7 (2)C17—C18—C19—C20179.62 (16)
C6—C7—C8—C90.1 (2)C18—C19—C20—C21172.65 (18)
C11—C7—C8—C9178.75 (15)C18—C19—C20—S17.9 (3)
C6—C7—C8—C17177.80 (14)C23—S1—C20—C210.25 (14)
C11—C7—C8—C171.1 (2)C23—S1—C20—C19179.28 (15)
C1—N1—C9—C81.5 (3)C19—C20—C21—C22179.31 (17)
C1—N1—C9—C10177.62 (17)S1—C20—C21—C220.2 (2)
C7—C8—C9—N11.6 (3)C19—C20—C21—C241.0 (3)
C17—C8—C9—N1179.27 (15)S1—C20—C21—C24179.51 (16)
C7—C8—C9—C10177.54 (18)C20—C21—C22—C230.0 (3)
C17—C8—C9—C100.2 (3)C24—C21—C22—C23179.70 (19)
C8—C7—C11—C1290.2 (2)C21—C22—C23—S10.2 (3)
C6—C7—C11—C1288.7 (2)C20—S1—C23—C220.24 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1,C20–C23 and N1,C1,C6–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.932.883.688 (2)146
C22—H22···Cg2ii0.932.603.457 (2)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H19NOS
Mr369.46
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.0815 (7), 10.2956 (7), 10.5403 (7)
α, β, γ (°)71.013 (6), 78.697 (5), 70.412 (6)
V3)969.99 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.780, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8430, 4473, 3484
Rint0.025
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.03
No. of reflections4473
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1,C20–C23 and N1,C1,C6–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.932.883.688 (2)146
C22—H22···Cg2ii0.932.603.457 (2)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB and RP gratefully acknowledge the Council of Scientific and Industrial Research (CSIR), India, for research grant 02 (0076)/12/EMR-II and Senior Research Fellowship (09/919/(0014)/2012 EMR-I), respectively. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJoshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.  Web of Science CrossRef CAS Google Scholar
First citationKalanithi, M., Rajarajan, M., Tharmaraj, P. & Sheela, C. D. (2012). Spectrochim. Acta A, 87, 155–162.  CrossRef CAS Google Scholar
First citationPrasath, R. & Bhavana, P. (2012). Heteroat. Chem. 23, 525–530.  Web of Science CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283–o2284.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013). J. Organomet. Chem. 726, 62–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o426-o427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds