organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­phenyl­sulfin­yl)aceto­nitrile

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri–Constantine, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

(Received 18 February 2013; accepted 19 February 2013; online 23 February 2013)

In the title compound, C8H6N2O3S, the dihedral angle between the nitro group and the benzene ring is 6.76 (9)°. The bond-angle sum at the S atom is 308.1°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to generate (010) sheets. The crystal studied was found to be a racemic twin.

Related literature

For a related structure and background to sulfoxides, see: Benmebarek et al. (2012[Benmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.]). For related structures see: Yan (2010[Yan, Z. (2010). Acta Cryst. E66, o3311.]); Kobayashi et al. (2003[Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035-3045.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O3S

  • Mr = 210.21

  • Orthorhombic, P 21 21 21

  • a = 5.4114 (2) Å

  • b = 10.7602 (4) Å

  • c = 15.1837 (5) Å

  • V = 884.11 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 295 K

  • 0.26 × 0.2 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8401 measured reflections

  • 2348 independent reflections

  • 2222 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.05

  • 2348 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1379 Friedel pairs

  • Flack parameter: 0.53 (1)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.41 3.3198 (18) 165
C7—H7A⋯O2ii 0.97 2.50 3.1190 (19) 122
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As part of our ongoing studies on the synthesis, structures and biological activity of organometallic sulfanilamide complexes (Benmebarek et al. 2012), we have synthesized and determined the crystal structure of the title compound, (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1. The bond angle sum at the S atom is 308.1°. The nitro group forms a dihedral angle of 6.76 (9)° with the benzene ring, which is very different to that found in 2-(methylsulfinyl)benzamide (25.6°) (Yan, 2010) and in benzamide (26.3°) (Kobayashi et al., 2003), and similar to chloromethylsulfinyl-2-nitrobenzene (2.7°) (Benmebarek et al., 2012). The crystal structure features C—H···O hydrogen bonds (Fig. 2) forming (010) sheets.

Related literature top

For a related structure and background to sulfoxides, see: Benmebarek et al. (2012). For related structures see: Yan (2010); Kobayashi et al., (2003).

Experimental top

Chloromethylsulfinyl-2-nitrobenzene (2.196 g, 10 mmol) obtained according to established procedures (Benmebarek et al., 2012) and potassium cyanide (0.65 g, 10 mmol) were dissolved in 75 ml aqua ethanol solution (25 ml water + 50 ml ethanol) and refluxed for 3 h under continuous stirring. Then the obtained product was evaporated at room temperature to dryness. The residue was diluted in 50 ml pure ethanol. After a few days, colourless blocks were recovered, as the solvent slowly evaporated.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.93 Å and Cmethylene—Hmethylene = 0.97 Å. Uiso(Haryl/methylene) = 1.2Ueq(Caryl/Cmethylene).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: APEX2 (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the asymetric unit of, (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I) viwed down [100] showing the hydrogen bonding in alterning layers parallel to (010) planes.
2-(2-Nitrophenylsulfinyl)acetonitrile top
Crystal data top
C8H6N2O3SF(000) = 432
Mr = 210.21Dx = 1.579 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6191 reflections
a = 5.4114 (2) Åθ = 2.7–29.1°
b = 10.7602 (4) ŵ = 0.35 mm1
c = 15.1837 (5) ÅT = 295 K
V = 884.11 (5) Å3Block, colourless
Z = 40.26 × 0.2 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2222 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.016
Graphite monochromatorθmax = 29.1°, θmin = 4.0°
ϕ and ω scansh = 67
8401 measured reflectionsk = 1414
2348 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.2515P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2348 reflectionsΔρmax = 0.21 e Å3
128 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1379 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.53 (1)
Crystal data top
C8H6N2O3SV = 884.11 (5) Å3
Mr = 210.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4114 (2) ŵ = 0.35 mm1
b = 10.7602 (4) ÅT = 295 K
c = 15.1837 (5) Å0.26 × 0.2 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
2222 reflections with I > 2σ(I)
8401 measured reflectionsRint = 0.016
2348 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.21 e Å3
S = 1.05Δρmin = 0.18 e Å3
2348 reflectionsAbsolute structure: Flack (1983), 1379 Friedel pairs
128 parametersAbsolute structure parameter: 0.53 (1)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.53769 (6)0.02767 (3)0.15053 (2)0.02770 (9)
O20.5137 (2)0.06613 (11)0.22173 (7)0.0395 (3)
O110.4219 (4)0.16230 (15)0.12118 (8)0.0678 (5)
O120.5834 (2)0.17541 (11)0.00821 (9)0.0453 (3)
N10.4351 (3)0.13166 (12)0.04412 (9)0.0352 (3)
N80.0001 (3)0.12996 (17)0.28063 (10)0.0515 (4)
C10.2643 (3)0.03718 (13)0.01153 (9)0.0263 (3)
C20.2906 (2)0.01016 (12)0.07377 (8)0.0235 (2)
C30.1293 (3)0.10289 (13)0.10054 (10)0.0294 (3)
H30.14430.1370.15660.035*
C40.0546 (3)0.14513 (14)0.04407 (11)0.0357 (3)
H40.16220.20710.06280.043*
C50.0795 (3)0.09610 (15)0.03950 (11)0.0376 (3)
H50.20340.1250.07670.045*
C60.0809 (3)0.00355 (14)0.06796 (9)0.0343 (3)
H60.06510.03040.1240.041*
C70.4040 (3)0.17220 (14)0.19493 (11)0.0341 (3)
H7A0.52250.21130.2340.041*
H7B0.37110.22920.14680.041*
C80.1763 (3)0.14879 (15)0.24274 (10)0.0330 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.02549 (15)0.02869 (16)0.02891 (16)0.00442 (13)0.00081 (13)0.00137 (13)
C10.0308 (6)0.0236 (6)0.0246 (6)0.0010 (5)0.0058 (5)0.0006 (5)
O20.0509 (7)0.0360 (5)0.0316 (5)0.0073 (5)0.0070 (5)0.0061 (4)
C30.0344 (7)0.0242 (6)0.0296 (7)0.0001 (5)0.0047 (6)0.0007 (5)
O120.0399 (7)0.0423 (6)0.0537 (7)0.0116 (5)0.0041 (6)0.0087 (5)
C50.0359 (8)0.0373 (8)0.0395 (8)0.0008 (7)0.0071 (7)0.0108 (6)
N10.0417 (7)0.0303 (6)0.0336 (6)0.0008 (6)0.0104 (6)0.0055 (5)
N80.0469 (10)0.0585 (9)0.0492 (8)0.0082 (8)0.0136 (8)0.0025 (7)
C20.0249 (6)0.0216 (6)0.0241 (6)0.0019 (5)0.0024 (5)0.0019 (5)
C40.0326 (7)0.0291 (6)0.0453 (8)0.0061 (6)0.0045 (7)0.0038 (6)
C60.0440 (8)0.0347 (7)0.0244 (6)0.0065 (6)0.0034 (6)0.0033 (5)
O110.0987 (13)0.0692 (10)0.0354 (6)0.0252 (9)0.0125 (8)0.0169 (6)
C80.0360 (8)0.0329 (7)0.0299 (7)0.0085 (6)0.0016 (6)0.0045 (6)
C70.0337 (8)0.0286 (7)0.0401 (8)0.0006 (6)0.0013 (6)0.0080 (6)
Geometric parameters (Å, º) top
S2—O21.4846 (11)C5—C41.381 (2)
S2—C21.8197 (13)C5—C61.390 (2)
S2—C71.8429 (15)C5—H50.93
C1—C61.382 (2)N1—O111.2177 (17)
C1—C21.3989 (18)N8—C81.133 (2)
C1—N11.4606 (18)C4—H40.93
C3—C21.3867 (19)C6—H60.93
C3—C41.390 (2)C8—C71.452 (2)
C3—H30.93C7—H7A0.97
O12—N11.2235 (19)C7—H7B0.97
O2—S2—C2104.49 (6)C3—C2—S2115.83 (10)
O2—S2—C7105.84 (7)C1—C2—S2125.91 (10)
C2—S2—C797.74 (7)C5—C4—C3120.78 (15)
C6—C1—C2122.12 (13)C5—C4—H4119.6
C6—C1—N1117.72 (12)C3—C4—H4119.6
C2—C1—N1120.16 (12)C1—C6—C5118.86 (13)
C2—C3—C4120.35 (13)C1—C6—H6120.6
C2—C3—H3119.8C5—C6—H6120.6
C4—C3—H3119.8N8—C8—C7179.36 (19)
C4—C5—C6119.90 (15)C8—C7—S2111.69 (11)
C4—C5—H5120C8—C7—H7A109.3
C6—C5—H5120S2—C7—H7A109.3
O11—N1—O12123.94 (15)C8—C7—H7B109.3
O11—N1—C1118.48 (15)S2—C7—H7B109.3
O12—N1—C1117.58 (12)H7A—C7—H7B107.9
C3—C2—C1117.97 (13)
C6—C1—N1—O116.2 (2)C7—S2—C2—C3102.58 (11)
C2—C1—N1—O11173.11 (15)O2—S2—C2—C1167.63 (11)
C6—C1—N1—O12173.76 (14)C7—S2—C2—C183.73 (12)
C2—C1—N1—O127.0 (2)C6—C5—C4—C30.1 (2)
C4—C3—C2—C11.0 (2)C2—C3—C4—C50.2 (2)
C4—C3—C2—S2175.24 (11)C2—C1—C6—C51.2 (2)
C6—C1—C2—C31.5 (2)N1—C1—C6—C5178.08 (13)
N1—C1—C2—C3177.73 (12)C4—C5—C6—C10.3 (2)
C6—C1—C2—S2175.08 (11)O2—S2—C7—C842.69 (13)
N1—C1—C2—S24.16 (18)C2—S2—C7—C864.82 (12)
O2—S2—C2—C36.06 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.413.3198 (18)165
C7—H7A···O2ii0.972.503.1190 (19)122
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6N2O3S
Mr210.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)5.4114 (2), 10.7602 (4), 15.1837 (5)
V3)884.11 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.26 × 0.2 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8401, 2348, 2222
Rint0.016
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.05
No. of reflections2348
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18
Absolute structureFlack (1983), 1379 Friedel pairs
Absolute structure parameter0.53 (1)

Computer programs: APEX2 (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.413.3198 (18)165
C7—H7A···O2ii0.972.503.1190 (19)122
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work is supported by `Unité de recherche de Chimie de l'Environnement et Moléculaire Structurale' (CHEMS), Université de Constantine, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence thématique de recherche en sciences et technologie, Algérie) via the PNR program for financial support.

References

First citationBenmebarek, S., Boudraa, M., Bouacida, S. & Daran, J.-C. (2012). Acta Cryst. E68, o3207.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Z. (2010). Acta Cryst. E66, o3311.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds