metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The non-centrosymmetric polymorph of (quinolin-8-ol-κ2N,O)(quinolin-8-olato-κ2N,O)silver(I)

aSchool of Pharmacy, Guangdong Medical College, Dongguan 523808, People's Republic of China, and bSchool of Clinical Medicine, Guangdong Medical College, Dongguan 523808, People's Republic of China
*Correspondence e-mail: maq197511@yahoo.com.cn

(Received 8 January 2013; accepted 28 January 2013; online 2 February 2013)

The title compound, [Ag(C9H6NO)(C9H7NO)], crystallizes as a non-centrosymmetric polymorph. The structure was previously reported by Wu et al. [(2006). Acta Cryst. E62, m281–m282] in the centrosymmetric space group Pbcn. The AgI ion displays a distorted tetra­hedral coordination geometry defined by two N and two O atoms from a neutral quinolin-8-ol ligand (HQ) and a deprotonated quinolin-8-olate anion (Q). The dihedral angle between the two ligands is 47.0 (1)°. Strong O—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular chain along the a-axis direction.

Related literature

For the centrosymmetric polymorph, see: Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C9H6NO)(C9H7NO)]

  • Mr = 397.17

  • Orthorhombic, P 21 21 21

  • a = 7.2320 (3) Å

  • b = 10.4857 (6) Å

  • c = 18.9398 (10) Å

  • V = 1436.25 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.19 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 1.000

  • 8103 measured reflections

  • 2554 independent reflections

  • 2305 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.057

  • S = 1.08

  • 2554 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1056 Friedel pairs

  • Flack parameter: −0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.73 2.495 (3) 154
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In the title compound,(I), the Ag ion is four-coordinated by two nitrogen atoms and two oxygen atoms from two 8-hydroxyquinoline ligands, forming a distorted tetrahedral geometry (Fig. 1). The two 8-hydroxyquinoline ligands are different in their mode of the coordination. One is a neutral ligand while the other is deprotonated. The dihedral angle between two 8-hydroxyquinoline mean planes is 47.0 (1)°. A polymorph (II) of the structure has been previously reported by Wu et al. (2006) in the centrosymmetric space group Pbcn with a = 11.434 (2)Å, b = 14.817 (3)Å, c = 8.7828 (18)Å. The Ag-N bondlengths of 2.174 (3), 2.176 (3)Å in (I) are shorter than the value of 2.2377 (19)Å for (II) while the Ag-O bondlengths of 2.596 (2), 2.649 (2)Å are longer than the value of 2.4831 (17)Å found for (II). Inter-molecular O_H···O hydrogen bonding between HQ and Q- ligands form a supramolecular chain structure (Table 1, Fig. 2). Weak π-π interactions are observed between neighboring aromatic rings [dihedral angle 2.0 (2)°] with the centroid-to-centroid distance of 3.75 (1) Å, which is favorable to increase the stability of the structure (Fig. 3).

Related literature top

For the centrosymmetric polymorph, see: Wu et al. (2006).

Experimental top

A methanol solution (15 ml) of 8-hydroxyquinoline(HQ) (0.075 g,0.5 mmol) was mixed with an aqueous solution (5 ml) of AgNO3 (0.085 g, 0.5 mmol). Ammonia solution was dropped into the mixture under stirring until it was almost clear. Then it was filtered. Yellow single crystals, suitable for X-ray, were obtained after several days.

Refinement top

The H atoms on C atoms and O atom were placed in idealized positions and refined as riding atoms with C—H = 0.93 Å and O—H = 0.84 (2) Å, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I).
[Figure 2] Fig. 2. View of the hydrogen-bonding chain of (1). Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. View of the packing. H atoms have been omitted for clarity.
(Quinolin-8-ol-κ2N,O)(quinolin-8-olato-κ2N,O)silver(I) top
Crystal data top
[Ag(C9H6NO)(C9H7NO)]F(000) = 792
Mr = 397.17Dx = 1.837 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3403 reflections
a = 7.2320 (3) Åθ = 2.8–29.6°
b = 10.4857 (6) ŵ = 1.42 mm1
c = 18.9398 (10) ÅT = 293 K
V = 1436.25 (13) Å3Block, yellow
Z = 40.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
2554 independent reflections
Radiation source: Enhance (Mo) X-ray Source2305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3592 pixels mm-1θmax = 25.1°, θmin = 2.9°
ω scansh = 87
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 912
Tmin = 0.884, Tmax = 1.000l = 2221
8103 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.022P)2 + 0.3181P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2554 reflectionsΔρmax = 0.41 e Å3
208 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack (1983), 1056 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Ag(C9H6NO)(C9H7NO)]V = 1436.25 (13) Å3
Mr = 397.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2320 (3) ŵ = 1.42 mm1
b = 10.4857 (6) ÅT = 293 K
c = 18.9398 (10) Å0.19 × 0.18 × 0.15 mm
Data collection top
Bruker SMART
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2305 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1.000Rint = 0.033
8103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.41 e Å3
S = 1.08Δρmin = 0.34 e Å3
2554 reflectionsAbsolute structure: Flack (1983), 1056 Friedel pairs
208 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.3321 (5)0.5388 (4)0.2207 (2)0.0428 (11)
H170.22470.49040.22400.051*
C180.4685 (6)0.5214 (4)0.2684 (2)0.0413 (11)
H180.45280.46350.30510.050*
Ag10.87935 (4)0.85088 (3)0.101833 (16)0.04331 (11)
C61.4013 (5)1.0168 (4)0.0955 (2)0.0428 (10)
H61.50831.01870.12270.051*
O20.5261 (3)0.7849 (2)0.10618 (14)0.0319 (6)
H2A0.43180.78630.08210.048*
O11.2184 (3)0.8451 (3)0.05683 (12)0.0347 (6)
C81.2323 (5)0.9235 (4)0.00265 (19)0.0279 (8)
C71.3899 (6)0.9315 (4)0.03871 (19)0.0360 (9)
H71.49030.87910.02860.043*
C91.0833 (4)1.0077 (3)0.01372 (18)0.0264 (8)
C130.6343 (5)0.5908 (3)0.26259 (18)0.0300 (8)
C150.5067 (5)0.6993 (3)0.15794 (19)0.0268 (8)
N10.9246 (4)1.0033 (3)0.02576 (16)0.0309 (8)
N20.8161 (4)0.7483 (3)0.19863 (16)0.0280 (7)
C110.9365 (5)0.6477 (5)0.3027 (2)0.0406 (10)
H111.03250.64070.33520.049*
C160.3498 (5)0.6289 (4)0.1662 (2)0.0372 (9)
H160.25200.64080.13500.045*
C140.6564 (4)0.6808 (3)0.20672 (18)0.0245 (8)
C20.7975 (5)1.1738 (4)0.0422 (2)0.0435 (11)
H20.69961.22970.04970.052*
C41.0976 (5)1.0959 (3)0.07134 (19)0.0325 (9)
C30.9487 (6)1.1781 (4)0.0839 (2)0.0411 (11)
H30.95401.23590.12110.049*
C100.9497 (5)0.7328 (4)0.2455 (2)0.0404 (10)
H101.05740.78040.24040.048*
C10.7905 (5)1.0843 (4)0.0121 (2)0.0414 (11)
H10.68511.08180.04020.050*
C120.7824 (6)0.5764 (4)0.3098 (2)0.0388 (10)
H120.77420.51720.34620.047*
C51.2597 (5)1.0971 (4)0.1118 (2)0.0401 (10)
H51.27051.15260.14980.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.033 (2)0.037 (3)0.059 (3)0.0098 (19)0.0030 (19)0.007 (2)
C180.047 (2)0.035 (3)0.042 (3)0.002 (2)0.010 (2)0.015 (2)
Ag10.04359 (16)0.04830 (19)0.03805 (17)0.00869 (17)0.00683 (17)0.01115 (17)
C60.039 (2)0.054 (3)0.036 (2)0.013 (2)0.013 (2)0.006 (2)
O20.0300 (11)0.0322 (14)0.0337 (14)0.0030 (11)0.0046 (13)0.0085 (14)
O10.0289 (12)0.0401 (16)0.0350 (14)0.0029 (14)0.0021 (11)0.0112 (15)
C80.0259 (18)0.031 (2)0.027 (2)0.0041 (18)0.0037 (16)0.0017 (18)
C70.0288 (18)0.041 (2)0.038 (2)0.002 (2)0.002 (2)0.0019 (18)
C90.0271 (19)0.027 (2)0.0249 (19)0.0052 (17)0.0029 (15)0.0009 (15)
C130.0324 (18)0.029 (2)0.028 (2)0.008 (2)0.0037 (18)0.0008 (15)
C150.0291 (18)0.023 (2)0.028 (2)0.0052 (16)0.0018 (16)0.0009 (17)
N10.0246 (16)0.0364 (19)0.0318 (18)0.0006 (15)0.0009 (12)0.0021 (14)
N20.0268 (15)0.0289 (18)0.0283 (17)0.0006 (14)0.0010 (13)0.0005 (15)
C110.037 (2)0.049 (3)0.036 (2)0.005 (2)0.0110 (16)0.006 (2)
C160.034 (2)0.035 (2)0.043 (2)0.004 (2)0.0063 (17)0.0065 (18)
C140.0257 (17)0.022 (2)0.0257 (18)0.0052 (16)0.0037 (14)0.0016 (15)
C20.041 (2)0.042 (3)0.048 (3)0.014 (2)0.009 (2)0.007 (2)
C40.039 (2)0.029 (2)0.029 (2)0.008 (2)0.0038 (17)0.0036 (15)
C30.053 (2)0.030 (2)0.040 (3)0.0032 (19)0.0094 (19)0.0092 (19)
C100.032 (2)0.050 (3)0.040 (2)0.002 (2)0.0016 (18)0.000 (2)
C10.031 (2)0.049 (3)0.044 (3)0.008 (2)0.0000 (19)0.003 (2)
C120.051 (2)0.034 (3)0.030 (2)0.003 (2)0.0009 (19)0.0078 (19)
C50.044 (2)0.041 (3)0.035 (2)0.010 (2)0.001 (2)0.011 (2)
Geometric parameters (Å, º) top
C17—C181.349 (6)C13—C141.427 (5)
C17—C161.406 (5)C15—C161.362 (5)
C17—H170.9300C15—C141.436 (5)
C18—C131.407 (6)N1—C11.316 (5)
C18—H180.9300N2—C101.322 (5)
Ag1—N22.174 (3)N2—C141.364 (4)
Ag1—N12.176 (3)C11—C121.348 (5)
Ag1—O12.596 (2)C11—C101.408 (6)
Ag1—O22.649 (2)C11—H110.9300
C6—C51.361 (6)C16—H160.9300
C6—C71.401 (5)C2—C31.349 (5)
C6—H60.9300C2—C11.394 (6)
O2—C151.336 (4)C2—H20.9300
O2—H2A0.8200C4—C31.400 (5)
O1—C81.319 (4)C4—C51.400 (6)
C8—C71.386 (5)C3—H30.9300
C8—C91.427 (5)C10—H100.9300
C7—H70.9300C1—H10.9300
C9—N11.370 (4)C12—H120.9300
C9—C41.434 (5)C5—H50.9300
C13—C121.403 (5)
C18—C17—C16121.1 (4)C9—N1—Ag1120.8 (2)
C18—C17—H17119.5C10—N2—C14118.7 (3)
C16—C17—H17119.5C10—N2—Ag1118.3 (2)
C17—C18—C13120.1 (4)C14—N2—Ag1122.0 (2)
C17—C18—H18120.0C12—C11—C10118.9 (3)
C13—C18—H18120.0C12—C11—H11120.5
N2—Ag1—N1162.38 (12)C10—C11—H11120.5
N2—Ag1—O1117.62 (9)C15—C16—C17121.6 (3)
N1—Ag1—O170.00 (10)C15—C16—H16119.2
N2—Ag1—O269.00 (9)C17—C16—H16119.2
N1—Ag1—O2110.96 (9)N2—C14—C13121.4 (3)
O1—Ag1—O2156.21 (9)N2—C14—C15119.7 (3)
C5—C6—C7121.7 (4)C13—C14—C15118.8 (3)
C5—C6—H6119.2C3—C2—C1118.9 (4)
C7—C6—H6119.2C3—C2—H2120.5
C15—O2—H2A109.5C1—C2—H2120.5
C8—O1—Ag1108.2 (2)C3—C4—C5123.0 (4)
O1—C8—C7122.7 (3)C3—C4—C9118.1 (4)
O1—C8—C9119.8 (3)C5—C4—C9118.8 (3)
C7—C8—C9117.4 (3)C2—C3—C4120.2 (4)
C8—C7—C6121.4 (4)C2—C3—H3119.9
C8—C7—H7119.3C4—C3—H3119.9
C6—C7—H7119.3N2—C10—C11123.1 (4)
N1—C9—C8119.5 (3)N2—C10—H10118.5
N1—C9—C4119.8 (3)C11—C10—H10118.5
C8—C9—C4120.6 (3)N1—C1—C2123.6 (4)
C12—C13—C18123.1 (3)N1—C1—H1118.2
C12—C13—C14117.3 (4)C2—C1—H1118.2
C18—C13—C14119.7 (3)C11—C12—C13120.5 (4)
O2—C15—C16122.3 (3)C11—C12—H12119.7
O2—C15—C14118.9 (3)C13—C12—H12119.7
C16—C15—C14118.8 (3)C6—C5—C4120.0 (4)
C1—N1—C9119.2 (3)C6—C5—H5120.0
C1—N1—Ag1119.6 (3)C4—C5—H5120.0
C16—C17—C18—C132.2 (7)Ag1—N2—C14—C13165.2 (2)
N2—Ag1—O1—C8173.2 (2)C10—N2—C14—C15177.8 (3)
N1—Ag1—O1—C810.6 (2)Ag1—N2—C14—C1514.3 (4)
Ag1—O1—C8—C7172.3 (3)C12—C13—C14—N21.3 (5)
Ag1—O1—C8—C99.9 (4)C18—C13—C14—N2178.9 (3)
O1—C8—C7—C6179.3 (4)C12—C13—C14—C15179.2 (3)
C9—C8—C7—C61.4 (5)C18—C13—C14—C150.6 (5)
C5—C6—C7—C81.1 (6)O2—C15—C14—N21.4 (5)
O1—C8—C9—N12.1 (5)C16—C15—C14—N2178.7 (3)
C7—C8—C9—N1180.0 (3)O2—C15—C14—C13179.1 (3)
O1—C8—C9—C4178.4 (3)C16—C15—C14—C130.9 (5)
C7—C8—C9—C40.5 (5)N1—C9—C4—C31.9 (5)
C17—C18—C13—C12179.3 (4)C8—C9—C4—C3178.6 (3)
C17—C18—C13—C140.9 (6)N1—C9—C4—C5178.8 (3)
C8—C9—N1—C1177.5 (3)C8—C9—C4—C50.7 (5)
C4—C9—N1—C13.0 (5)C1—C2—C3—C41.6 (6)
C8—C9—N1—Ag19.7 (4)C5—C4—C3—C2178.9 (4)
C4—C9—N1—Ag1169.8 (2)C9—C4—C3—C20.4 (6)
N2—Ag1—N1—C157.9 (5)C14—N2—C10—C111.4 (6)
O1—Ag1—N1—C1176.8 (3)Ag1—N2—C10—C11167.0 (3)
N2—Ag1—N1—C9129.4 (4)C12—C11—C10—N21.3 (6)
O1—Ag1—N1—C910.4 (2)C9—N1—C1—C21.8 (6)
N1—Ag1—N2—C1084.3 (4)Ag1—N1—C1—C2171.1 (3)
O1—Ag1—N2—C1027.5 (3)C3—C2—C1—N10.5 (7)
N1—Ag1—N2—C14107.7 (4)C10—C11—C12—C132.7 (6)
O1—Ag1—N2—C14140.4 (2)C18—C13—C12—C11178.3 (4)
O2—C15—C16—C17179.7 (4)C14—C13—C12—C111.5 (6)
C14—C15—C16—C170.4 (6)C7—C6—C5—C40.2 (6)
C18—C17—C16—C152.0 (7)C3—C4—C5—C6178.2 (4)
C10—N2—C14—C132.7 (5)C9—C4—C5—C61.1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.732.495 (3)154
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C9H6NO)(C9H7NO)]
Mr397.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.2320 (3), 10.4857 (6), 18.9398 (10)
V3)1436.25 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.19 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.884, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8103, 2554, 2305
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.057, 1.08
No. of reflections2554
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.34
Absolute structureFlack (1983), 1056 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.732.495 (3)154.4
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge the Guangdong Medical College for financial support (Q2009028, 2010 C3102003, 200910815266) and thank H. P. Xiao for the data collection.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds