organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-bromo-3-eth­­oxy­carbonyl­amino-1-benzo­furan-2-carboxyl­ate

aDepartment of Biotechnology, PES Institute of Technology, BSK III Stg, Bangalore 560 085, India, bDepartment of Chemistry, SSMRV College, 4th T Block, Jayanagar, Bangalore 560 041, India, cDepartment of Biotechnology and Bioinformatics, Kuvempu University, Shankarghatta 577 451, India, and dDepartment of Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta 577 451, India
*Correspondence e-mail: girija.shivakumar@rediffmail.com

(Received 17 January 2013; accepted 29 January 2013; online 6 February 2013)

In the title compound, C14H14BrNO5, the ester group is disordered [occupancy ratio 0.52 (2):0.48 (2)]. The major component is nearly coplanar with the benzofuran plane, subtending a dihedral angle of 7.84 (2)°, while the amide group is twisted out of the benzofuran plane making a dihedral angle of 39.69 (2)°. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, pairs of weak C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers, which are further linked via strong N—H⋯O hydrogen bonds, generating a zigzag chain extending along [100].

Related literature

For the biological activity of benzofuran derivatives, see: Oter et al. (2007[Oter, O., Ertekin, K., Kirilmis, C., Koca, M. & Ahmedzade, M. (2007). Sens. Actuators B, 122, 450-456.]) & Habermann et al. (1999[Habermann, J., Ley, S. V., Scicinski, J. J., Scott, J. S., Smits, R. & Thomas, A. W. (1999). J. Chem. Soc. Perkin Trans. 1, 17, 2425-2427.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrNO5

  • Mr = 356.17

  • Monoclinic, P 21 /c

  • a = 14.1960 (7) Å

  • b = 4.8050 (2) Å

  • c = 22.128 (1) Å

  • β = 90.653 (1)°

  • V = 1509.29 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.426, Tmax = 0.500

  • 14023 measured reflections

  • 2660 independent reflections

  • 1969 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.102

  • S = 1.07

  • 2660 reflections

  • 223 parameters

  • 73 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.89 (1) 2.40 (3) 2.909 (4) 117 (3)
N1—H1⋯O2i 0.89 (1) 2.27 (2) 3.021 (4) 142 (3)
C10—H10B⋯O4ii 0.97 (1) 2.66 (2) 3.427 (4) 135 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzofuran derivatives are an important class of heterocyclic compounds that are known to possess variety of biological properties. Substituted benzofurans also find their application in different field such as fluorescent sensor (Oter et al., 2007), antioxidants, brightening agents, a variety of drugs and agriculture (Habermann et al., 1999). In the title compound the ester group is nearly planar with the benzofuran plane with a dihedral angle of 7.84 (2)° while the amide group is twisted out of the benzofuran plane with a dihedral angle of 39.69 (2)°.

The crystal packing is mainly governed by intra- and inter-molecular interactions. An intra-molecular N1—H1···O4 hydrogen bond (Table 1, Figure 2) acting as conformational lock is found between carbonyl O4 and H1 atom of the amide group. The crystal structure is stabilized by inter-molecular interactions N1—H1···O2 (Table 1, Figure 3) resulting in molecular chains along a axis. The structure is further stabilised by inter-molecular C10—H10B···O4 interaction (Table 1, figure 3) resulting in the formation of centrosymmetric dimers about the inversion centers.

Related literature top

For the biological activity of benzofuran derivatives, see: Oter et al. (2007) & Habermann et al. (1999).

Experimental top

A mixture of ethyl 3-amino-5-bromobenzofuran-2-carboxylate (2.84 g, 0.01 mol), anhydrous potassium carbonate (2.76 g, 0.02 mol) and ethyl chloroformate (5 ml) in dry benzene (30 ml) was heated under reflux for 8 h. The reaction mixture was filtered and potassium salts were washed with benzene. The filtrate on removal of benzene furnished the desired compound as a yellow solid. It was recrystallized from ethanol (3 g, 84%), m.p. 93–94oC.

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C-H distances of 0.95 - 0.99 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms. The N-bound H atom positions were determined from difference electron density map and refined freely. One of the ethoxy groups (O5, C10, and C11) was disordered. The disorder was resolved and the final occupancy factors of the components were in the ratio 51:49. The thermal parameters of the atoms of the disordered groups were restrained within an effective standard deviation of 0.02 Å2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme with displacement ellipiods drawn at 50% probability level.
[Figure 2] Fig. 2. A view of the N-H···O intramolecular interaction (dotted lines) in the crystal structure of the title compound.
[Figure 3] Fig. 3. A view of the N—H···O and C—H···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Ethyl 5-bromo-3-ethoxycarbonylamino-1-benzofuran-2-carboxylate top
Crystal data top
C14H14BrNO5F(000) = 720
Mr = 356.17Dx = 1.567 Mg m3
Monoclinic, P21/cMelting point: 570.17 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.1960 (7) ÅCell parameters from 4262 reflections
b = 4.8050 (2) Åθ = 2.3–23.0°
c = 22.128 (1) ŵ = 2.74 mm1
β = 90.653 (1)°T = 293 K
V = 1509.29 (12) Å3Needle, pale yellow
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2660 independent reflections
Radiation source: fine-focus sealed tube1969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.426, Tmax = 0.500k = 53
14023 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.449P]
where P = (Fo2 + 2Fc2)/3
2660 reflections(Δ/σ)max = 0.002
223 parametersΔρmax = 0.62 e Å3
73 restraintsΔρmin = 0.60 e Å3
Crystal data top
C14H14BrNO5V = 1509.29 (12) Å3
Mr = 356.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1960 (7) ŵ = 2.74 mm1
b = 4.8050 (2) ÅT = 293 K
c = 22.128 (1) Å0.35 × 0.30 × 0.30 mm
β = 90.653 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2660 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1969 reflections with I > 2σ(I)
Tmin = 0.426, Tmax = 0.500Rint = 0.029
14023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03873 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.62 e Å3
2660 reflectionsΔρmin = 0.60 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2061 (3)0.6782 (7)0.72919 (15)0.0527 (9)
C20.2889 (3)0.6822 (9)0.76285 (17)0.0676 (11)
H20.29340.79550.79680.081*
C30.3644 (3)0.5218 (10)0.74686 (17)0.0698 (11)
H30.42040.52280.76910.084*
C40.3527 (3)0.3576 (8)0.69566 (16)0.0526 (9)
C50.2708 (2)0.3532 (7)0.66123 (14)0.0439 (8)
C60.1954 (3)0.5175 (7)0.67849 (15)0.0474 (8)
H60.13940.51850.65630.057*
C70.2883 (2)0.1515 (6)0.61445 (14)0.0424 (8)
C80.3765 (2)0.0536 (7)0.62420 (16)0.0508 (9)
C90.4290 (3)0.1488 (9)0.58970 (19)0.0630 (10)
C120.1724 (2)0.2280 (7)0.53506 (14)0.0432 (8)
C130.0721 (3)0.2372 (8)0.44862 (16)0.0632 (10)
H13A0.10220.40940.43650.076*
H13B0.01320.28230.46800.076*
C140.0547 (4)0.0582 (11)0.39524 (19)0.0908 (15)
H14A0.11360.01260.37680.136*
H14B0.01540.15550.36670.136*
H14C0.02370.10960.40760.136*
N10.2276 (2)0.0576 (6)0.56904 (13)0.0486 (7)
O10.41846 (17)0.1771 (6)0.67389 (11)0.0614 (7)
O20.16059 (19)0.4717 (5)0.54388 (12)0.0640 (7)
O30.13305 (17)0.0840 (5)0.48991 (10)0.0550 (6)
O40.3952 (2)0.2753 (7)0.54795 (14)0.0803 (9)
Br10.10487 (3)0.90618 (9)0.754534 (18)0.0721 (2)
O50.5138 (10)0.195 (5)0.6161 (9)0.081 (4)0.52 (2)
C100.5720 (9)0.418 (4)0.5900 (9)0.090 (3)0.52 (2)
H10A0.56590.58010.61590.108*0.52 (2)
H10B0.54440.46680.55110.108*0.52 (2)
C110.6683 (13)0.373 (5)0.5813 (11)0.114 (5)0.52 (2)
H11A0.69700.54060.56700.171*0.52 (2)
H11B0.69740.31820.61880.171*0.52 (2)
H11C0.67650.22750.55190.171*0.52 (2)
O5'0.5217 (11)0.153 (6)0.6020 (9)0.080 (4)0.48 (2)
C10'0.5794 (10)0.328 (4)0.5639 (9)0.088 (3)0.48 (2)
H10C0.56010.52190.56560.105*0.48 (2)
H10D0.57870.26560.52230.105*0.48 (2)
C11'0.6704 (12)0.285 (5)0.5926 (11)0.109 (5)0.48 (2)
H11D0.71700.39450.57240.163*0.48 (2)
H11E0.66750.34090.63430.163*0.48 (2)
H11F0.68700.09190.59040.163*0.48 (2)
H10.236 (3)0.114 (4)0.5551 (16)0.066 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.044 (2)0.0463 (19)0.0026 (17)0.0021 (18)0.0018 (16)
C20.086 (3)0.066 (3)0.051 (2)0.004 (2)0.004 (2)0.0180 (19)
C30.071 (3)0.080 (3)0.057 (2)0.005 (2)0.023 (2)0.012 (2)
C40.054 (2)0.053 (2)0.051 (2)0.0006 (18)0.0075 (17)0.0055 (17)
C50.050 (2)0.0392 (19)0.0427 (17)0.0039 (15)0.0093 (15)0.0021 (14)
C60.051 (2)0.0416 (18)0.0492 (19)0.0017 (16)0.0061 (15)0.0027 (16)
C70.049 (2)0.0352 (18)0.0432 (18)0.0007 (15)0.0098 (15)0.0003 (14)
C80.048 (2)0.051 (2)0.053 (2)0.0035 (17)0.0099 (16)0.0051 (17)
C90.054 (2)0.063 (3)0.071 (3)0.010 (2)0.008 (2)0.008 (2)
C120.048 (2)0.0358 (19)0.0461 (18)0.0001 (15)0.0073 (15)0.0025 (15)
C130.073 (3)0.056 (2)0.060 (2)0.011 (2)0.026 (2)0.001 (2)
C140.116 (4)0.096 (4)0.060 (3)0.015 (3)0.034 (3)0.008 (3)
N10.0601 (18)0.0319 (16)0.0532 (17)0.0075 (13)0.0205 (14)0.0060 (13)
O10.0541 (15)0.0690 (17)0.0606 (15)0.0056 (13)0.0196 (12)0.0128 (13)
O20.087 (2)0.0361 (14)0.0685 (16)0.0102 (13)0.0289 (14)0.0078 (12)
O30.0703 (16)0.0411 (13)0.0530 (14)0.0065 (12)0.0255 (12)0.0052 (11)
O40.0720 (19)0.082 (2)0.087 (2)0.0160 (16)0.0124 (16)0.0337 (18)
Br10.0910 (4)0.0599 (3)0.0658 (3)0.0063 (2)0.0203 (2)0.0064 (2)
O50.051 (4)0.102 (7)0.089 (8)0.024 (4)0.008 (4)0.026 (6)
C100.061 (4)0.116 (8)0.093 (7)0.018 (5)0.000 (5)0.025 (6)
C110.103 (8)0.135 (12)0.104 (9)0.043 (7)0.002 (7)0.048 (8)
O5'0.054 (4)0.109 (7)0.078 (7)0.023 (4)0.009 (4)0.027 (6)
C10'0.064 (4)0.114 (8)0.086 (7)0.037 (5)0.003 (5)0.026 (6)
C11'0.085 (7)0.126 (12)0.116 (9)0.032 (7)0.038 (6)0.039 (9)
Geometric parameters (Å, º) top
C1—C61.369 (5)C13—O31.451 (4)
C1—C21.385 (5)C13—C141.480 (5)
C1—Br11.897 (4)C13—H13A0.9700
C2—C31.369 (6)C13—H13B0.9700
C2—H20.9300C14—H14A0.9600
C3—C41.389 (5)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—O11.366 (4)N1—H10.886 (10)
C4—C51.384 (5)O5—C101.476 (14)
C5—C61.386 (5)C10—C111.401 (16)
C5—C71.442 (4)C10—H10A0.9700
C6—H60.9300C10—H10B0.9700
C7—C81.352 (5)C11—H11A0.9600
C7—N11.392 (4)C11—H11B0.9600
C8—O11.379 (4)C11—H11C0.9600
C8—C91.448 (5)O5'—C10'1.451 (14)
C9—O41.201 (5)C10'—C11'1.448 (16)
C9—O5'1.342 (15)C10'—H10C0.9700
C9—O51.350 (14)C10'—H10D0.9700
C12—O21.199 (4)C11'—H11D0.9600
C12—O31.333 (4)C11'—H11E0.9600
C12—N11.354 (4)C11'—H11F0.9600
C6—C1—C2122.3 (3)C13—C14—H14A109.5
C6—C1—Br1119.4 (3)C13—C14—H14B109.5
C2—C1—Br1118.3 (3)H14A—C14—H14B109.5
C3—C2—C1121.0 (3)C13—C14—H14C109.5
C3—C2—H2119.5H14A—C14—H14C109.5
C1—C2—H2119.5H14B—C14—H14C109.5
C2—C3—C4116.4 (4)C12—N1—C7123.7 (3)
C2—C3—H3121.8C12—N1—H1116 (3)
C4—C3—H3121.8C7—N1—H1118 (2)
O1—C4—C5111.7 (3)C4—O1—C8105.3 (3)
O1—C4—C3125.0 (3)C12—O3—C13116.8 (3)
C5—C4—C3123.3 (4)C9—O5—C10116.7 (14)
C4—C5—C6119.1 (3)C11—C10—O5119.5 (12)
C4—C5—C7104.7 (3)C11—C10—H10A107.5
C6—C5—C7136.1 (3)O5—C10—H10A107.5
C1—C6—C5117.9 (3)C11—C10—H10B107.5
C1—C6—H6121.0O5—C10—H10B107.5
C5—C6—H6121.0H10A—C10—H10B107.0
C8—C7—N1124.6 (3)C10—C11—H11A109.5
C8—C7—C5106.7 (3)C10—C11—H11B109.5
N1—C7—C5128.7 (3)H11A—C11—H11B109.5
C7—C8—O1111.6 (3)C10—C11—H11C109.5
C7—C8—C9129.1 (3)H11A—C11—H11C109.5
O1—C8—C9119.3 (3)H11B—C11—H11C109.5
O4—C9—O5'122.1 (10)C9—O5'—C10'116.8 (15)
O4—C9—O5126.6 (10)C11'—C10'—O5'99.7 (13)
O4—C9—C8122.8 (3)C11'—C10'—H10C111.8
O5'—C9—C8114.4 (11)O5'—C10'—H10C111.8
O5—C9—C8110.1 (10)C11'—C10'—H10D111.8
O2—C12—O3124.8 (3)O5'—C10'—H10D111.8
O2—C12—N1125.5 (3)H10C—C10'—H10D109.6
O3—C12—N1109.7 (3)C10'—C11'—H11D109.5
O3—C13—C14107.5 (3)C10'—C11'—H11E109.5
O3—C13—H13A110.2H11D—C11'—H11E109.5
C14—C13—H13A110.2C10'—C11'—H11F109.5
O3—C13—H13B110.2H11D—C11'—H11F109.5
C14—C13—H13B110.2H11E—C11'—H11F109.5
H13A—C13—H13B108.5
C6—C1—C2—C30.5 (6)C7—C8—C9—O5'164.7 (13)
Br1—C1—C2—C3179.9 (3)O1—C8—C9—O5'13.8 (13)
C1—C2—C3—C40.1 (6)C7—C8—C9—O5178.0 (12)
C2—C3—C4—O1177.6 (4)O1—C8—C9—O53.5 (13)
C2—C3—C4—C50.7 (6)O2—C12—N1—C79.0 (6)
O1—C4—C5—C6177.7 (3)O3—C12—N1—C7170.8 (3)
C3—C4—C5—C60.8 (6)C8—C7—N1—C12138.4 (4)
O1—C4—C5—C70.1 (4)C5—C7—N1—C1245.2 (5)
C3—C4—C5—C7178.3 (4)C5—C4—O1—C80.3 (4)
C2—C1—C6—C50.4 (5)C3—C4—O1—C8178.2 (4)
Br1—C1—C6—C5180.0 (2)C7—C8—O1—C40.3 (4)
C4—C5—C6—C10.2 (5)C9—C8—O1—C4179.1 (3)
C7—C5—C6—C1176.8 (4)O2—C12—O3—C130.4 (5)
C4—C5—C7—C80.1 (4)N1—C12—O3—C13179.4 (3)
C6—C5—C7—C8176.9 (4)C14—C13—O3—C12167.0 (4)
C4—C5—C7—N1177.0 (3)O4—C9—O5—C102 (2)
C6—C5—C7—N10.1 (6)O5'—C9—O5—C1078 (7)
N1—C7—C8—O1177.4 (3)C8—C9—O5—C10173.7 (11)
C5—C7—C8—O10.3 (4)C9—O5—C10—C11136 (2)
N1—C7—C8—C94.1 (6)O4—C9—O5'—C10'3 (2)
C5—C7—C8—C9178.8 (4)O5—C9—O5'—C10'109 (8)
C7—C8—C9—O45.6 (7)C8—C9—O5'—C10'173.0 (13)
O1—C8—C9—O4175.9 (4)C9—O5'—C10'—C11'178 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.89 (1)2.40 (3)2.909 (4)117 (3)
N1—H1···O2i0.89 (1)2.27 (2)3.021 (4)142 (3)
C10—H10B···O4ii0.97 (1)2.66 (2)3.427 (4)135 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14BrNO5
Mr356.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.1960 (7), 4.8050 (2), 22.128 (1)
β (°) 90.653 (1)
V3)1509.29 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.426, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
14023, 2660, 1969
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.07
No. of reflections2660
No. of parameters223
No. of restraints73
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.60

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.89 (1)2.40 (3)2.909 (4)117 (3)
N1—H1···O2i0.886 (10)2.27 (2)3.021 (4)142 (3)
C10—H10B···O4ii0.970 (10)2.66 (2)3.427 (4)135 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z+1.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology (IIT), Chennai, India, for the data collection. PK and CRG also thank the Rashtriya Sikshana Samithi Trust (RSST) and the Principal, Sri Sivananda Sarma Memorial Rashtriya Vidyalaya (SSMRV) College, Bangalore, for their constant support and encouragement in carrying out this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHabermann, J., Ley, S. V., Scicinski, J. J., Scott, J. S., Smits, R. & Thomas, A. W. (1999). J. Chem. Soc. Perkin Trans. 1, 17, 2425–2427.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOter, O., Ertekin, K., Kirilmis, C., Koca, M. & Ahmedzade, M. (2007). Sens. Actuators B, 122, 450–456.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds