organic compounds
(±)-(4aR,5R,8S,8aR)-8-(tert-Butyldimethylsilyloxy)-2,5,8a-trimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione
aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: felixdelling@ufscar.br
In the title compound, C19H30O3Si, both rings adopt a half-boat conformation. Overall, the molecule approximates a U-shape as the cyclo-2-ene-1,4-dione and butyldimethylsilyloxy substituents lie to the same side of the central cyclohexene ring; the methyl substituent lies to the other side of the molecule. In the crystal, linear supramolecular chains along the b axis are sustained by C—H⋯O interactions.
Related literature
For a general description of the synthesis of higher et al. (2001). For the synthesis of a similar compound containing an N atom in place of the O atom, see: Vieira et al. (2007). For the synthesis, see: Finelli (2004). For additional see: Cremer & Pople (1975).
using the Diels–Alder reaction, see: BrocksomExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536813002973/hg5287sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002973/hg5287Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002973/hg5287Isup3.cml
The catalytic reaction was carried out using 2,6-dimethylcyclohexa-2,5- diene-1,4-dione (83 mg, 0.61 mmol) in anhydrous dichloromethane (1.2 ml) under nitrogen atmosphere at 293 K, and then zinc chloride (91.5 mg, 0.61 mmol) was added. After 40 min stirring, diastereomeric 5-(tert-butyl-dimethyl-silyloxy)-pentadiene-2,4 (71 mg, 0.36 mmol) was slowly added. After 20 h stirring the reaction was ended by adding a δ 6.58 (d, 1H, J = 1.5 Hz); 5.73 (d, 1H, J = 10.1 Hz); 5.63 (ddd, 1H, J = 10.1 Hz, J = 4.4 Hz, J = 3.1 Hz); 3.85 (d, 1H, J = 4.4 Hz); 2.90 (d, 1H, J = 4.9 Hz); 2.43–2.49 (m, 1H); 1.92 (d, 3H, J = 1.5 Hz); 1.45 (d, 3H, J = 7.6 Hz); 1.32 (s, 3H); 0.73 (s, 9H); -0.03 (s, 3H); -0.13 (s, 3H); 13C (CDCl3, 50 MHz) δ (p.p.m.) 202.1; 197.7; 147.4; 141.1; 133.1; 125.1; 71.6; 54.2; 53.4; 28.8; 25.5; 19.4; 17.8; 17.2; 16.2; -4.6; -5.2. Anal. calcd for C19H30O3Si1: C, 68.22; H, 9.04. Found: C, 68.00; H, 9.21.
of NaHCO3. The organic phase was extracted with dichloromethane, dried with Na2SO4 and concentrated on a rota-vapor. The product was purified using a silica gel column with hexane/ethyl acetate (98:2) as the yielding compound (I) (131 mg, 0.39 mmol). Crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane at 293 K; M.pt: 384.3–386.5 K. 1H-NMR (CDCl3, p.p.m., 400 MHz):Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the
in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C).Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C19H30O3Si | F(000) = 728 |
Mr = 334.52 | Dx = 1.127 Mg m−3 |
Monoclinic, P2/c | Melting point: 385.4 K |
Hall symbol: -P 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.325 (2) Å | Cell parameters from 25 reflections |
b = 7.1744 (9) Å | θ = 2.8–27.0° |
c = 17.965 (2) Å | µ = 0.13 mm−1 |
β = 93.577 (9)° | T = 293 K |
V = 1971.4 (4) Å3 | Prism, colourless |
Z = 4 | 0.15 × 0.10 × 0.08 mm |
Enraf–Nonius CAD-4 MACH 3 diffractometer | Rint = 0.072 |
Radiation source: fine-focus sealed tube | θmax = 27.0°, θmin = 2.8° |
Graphite monochromator | h = −19→19 |
ω–2θ scans | k = 0→9 |
4451 measured reflections | l = 0→22 |
4305 independent reflections | 3 standard reflections every 30 min |
1463 reflections with I > 2σ(I) | intensity decay: 1.4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0596P)2] where P = (Fo2 + 2Fc2)/3 |
4305 reflections | (Δ/σ)max < 0.001 |
216 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C19H30O3Si | V = 1971.4 (4) Å3 |
Mr = 334.52 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.325 (2) Å | µ = 0.13 mm−1 |
b = 7.1744 (9) Å | T = 293 K |
c = 17.965 (2) Å | 0.15 × 0.10 × 0.08 mm |
β = 93.577 (9)° |
Enraf–Nonius CAD-4 MACH 3 diffractometer | Rint = 0.072 |
4451 measured reflections | 3 standard reflections every 30 min |
4305 independent reflections | intensity decay: 1.4% |
1463 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.17 e Å−3 |
4305 reflections | Δρmin = −0.21 e Å−3 |
216 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.70796 (7) | 0.41802 (16) | 0.45217 (6) | 0.0549 (4) | |
O3 | 0.76651 (14) | 0.3088 (3) | 0.51880 (11) | 0.0453 (6) | |
O1 | 0.70503 (18) | 0.4837 (5) | 0.68020 (16) | 0.0882 (10) | |
O2 | 0.83093 (19) | −0.1189 (4) | 0.57148 (16) | 0.0785 (9) | |
C5 | 0.8725 (2) | 0.1309 (5) | 0.65576 (18) | 0.0487 (10) | |
H5 | 0.8723 | 0.1034 | 0.7092 | 0.058* | |
C10 | 0.8338 (2) | 0.3308 (5) | 0.64516 (18) | 0.0455 (9) | |
C9 | 0.8372 (2) | 0.3907 (5) | 0.56306 (18) | 0.0492 (10) | |
H9 | 0.8317 | 0.5266 | 0.5602 | 0.059* | |
C8 | 0.9210 (2) | 0.3353 (6) | 0.5317 (2) | 0.0617 (12) | |
H8 | 0.9339 | 0.3873 | 0.4863 | 0.074* | |
C6 | 0.9670 (2) | 0.1243 (6) | 0.6364 (2) | 0.0596 (11) | |
H6 | 0.9993 | 0.2009 | 0.6740 | 0.072* | |
C1 | 0.7382 (3) | 0.3361 (7) | 0.6645 (2) | 0.0576 (11) | |
C7 | 0.9777 (3) | 0.2191 (6) | 0.5632 (2) | 0.0642 (12) | |
H7 | 1.0279 | 0.1935 | 0.5385 | 0.077* | |
C4 | 0.8100 (3) | −0.0050 (6) | 0.6171 (2) | 0.0569 (11) | |
C2 | 0.6855 (3) | 0.1634 (8) | 0.6628 (2) | 0.0618 (12) | |
C16 | 0.6517 (2) | 0.2288 (6) | 0.3974 (2) | 0.0602 (11) | |
C3 | 0.7200 (3) | 0.0080 (7) | 0.6393 (2) | 0.0666 (12) | |
H3 | 0.6856 | −0.0988 | 0.6367 | 0.080* | |
C13 | 0.8858 (2) | 0.4707 (6) | 0.6949 (2) | 0.0721 (13) | |
H13A | 0.8557 | 0.5881 | 0.6940 | 0.108* | |
H13B | 0.9429 | 0.4873 | 0.6766 | 0.108* | |
H13C | 0.8914 | 0.4244 | 0.7451 | 0.108* | |
C17 | 0.5897 (3) | 0.3084 (7) | 0.3356 (2) | 0.1014 (17) | |
H17A | 0.6225 | 0.3792 | 0.3016 | 0.152* | |
H17B | 0.5476 | 0.3880 | 0.3571 | 0.152* | |
H17C | 0.5599 | 0.2083 | 0.3092 | 0.152* | |
C12 | 1.0098 (3) | −0.0693 (6) | 0.6413 (2) | 0.0899 (15) | |
H12A | 1.0013 | −0.1231 | 0.6893 | 0.135* | |
H12B | 1.0713 | −0.0578 | 0.6348 | 0.135* | |
H12C | 0.9835 | −0.1481 | 0.6029 | 0.135* | |
C18 | 0.5973 (3) | 0.1114 (6) | 0.4485 (3) | 0.1031 (17) | |
H18A | 0.5694 | 0.0120 | 0.4203 | 0.155* | |
H18B | 0.5536 | 0.1884 | 0.4691 | 0.155* | |
H18C | 0.6348 | 0.0601 | 0.4882 | 0.155* | |
C14 | 0.6293 (3) | 0.5766 (6) | 0.4944 (2) | 0.0964 (16) | |
H14A | 0.5923 | 0.5059 | 0.5250 | 0.145* | |
H14B | 0.5942 | 0.6378 | 0.4556 | 0.145* | |
H14C | 0.6608 | 0.6681 | 0.5244 | 0.145* | |
C15 | 0.7796 (3) | 0.5561 (7) | 0.3940 (2) | 0.0972 (17) | |
H15A | 0.8082 | 0.6518 | 0.4239 | 0.146* | |
H15B | 0.7451 | 0.6122 | 0.3536 | 0.146* | |
H15C | 0.8228 | 0.4759 | 0.3744 | 0.146* | |
C11 | 0.5927 (2) | 0.1811 (7) | 0.6844 (2) | 0.1013 (17) | |
H11A | 0.5651 | 0.0610 | 0.6819 | 0.152* | |
H11B | 0.5615 | 0.2653 | 0.6509 | 0.152* | |
H11C | 0.5922 | 0.2283 | 0.7344 | 0.152* | |
C19 | 0.7175 (3) | 0.1042 (8) | 0.3628 (3) | 0.135 (2) | |
H19A | 0.6879 | 0.0001 | 0.3391 | 0.202* | |
H19B | 0.7591 | 0.0599 | 0.4009 | 0.202* | |
H19C | 0.7475 | 0.1734 | 0.3264 | 0.202* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0648 (7) | 0.0482 (7) | 0.0504 (6) | −0.0054 (6) | −0.0060 (5) | 0.0073 (6) |
O3 | 0.0514 (14) | 0.0420 (16) | 0.0413 (13) | −0.0090 (13) | −0.0070 (11) | 0.0005 (12) |
O1 | 0.093 (2) | 0.083 (3) | 0.090 (2) | 0.018 (2) | 0.0228 (18) | −0.013 (2) |
O2 | 0.109 (2) | 0.051 (2) | 0.074 (2) | −0.0013 (18) | 0.0003 (17) | −0.0124 (17) |
C5 | 0.057 (2) | 0.054 (3) | 0.035 (2) | 0.001 (2) | 0.0004 (18) | 0.0003 (19) |
C10 | 0.049 (2) | 0.046 (2) | 0.041 (2) | −0.001 (2) | −0.0005 (17) | −0.0072 (19) |
C9 | 0.056 (2) | 0.044 (2) | 0.047 (2) | −0.011 (2) | −0.0034 (19) | 0.002 (2) |
C8 | 0.054 (3) | 0.081 (3) | 0.050 (2) | −0.020 (2) | 0.006 (2) | 0.012 (2) |
C6 | 0.057 (3) | 0.068 (3) | 0.053 (2) | 0.007 (2) | −0.004 (2) | −0.006 (2) |
C1 | 0.072 (3) | 0.061 (3) | 0.039 (2) | 0.006 (3) | 0.000 (2) | −0.004 (2) |
C7 | 0.048 (3) | 0.080 (3) | 0.064 (3) | −0.007 (2) | 0.004 (2) | −0.004 (3) |
C4 | 0.086 (3) | 0.040 (3) | 0.044 (2) | 0.002 (3) | −0.003 (2) | 0.006 (2) |
C2 | 0.054 (3) | 0.083 (4) | 0.049 (2) | −0.005 (3) | 0.002 (2) | 0.014 (3) |
C16 | 0.062 (3) | 0.060 (3) | 0.056 (2) | −0.002 (2) | −0.017 (2) | 0.001 (2) |
C3 | 0.070 (3) | 0.064 (3) | 0.066 (3) | −0.020 (3) | 0.005 (2) | 0.012 (3) |
C13 | 0.086 (3) | 0.067 (3) | 0.060 (3) | −0.004 (3) | −0.016 (2) | −0.021 (2) |
C17 | 0.110 (4) | 0.106 (4) | 0.082 (3) | −0.016 (3) | −0.048 (3) | 0.015 (3) |
C12 | 0.088 (3) | 0.099 (4) | 0.082 (3) | 0.040 (3) | 0.001 (3) | 0.008 (3) |
C18 | 0.125 (4) | 0.083 (4) | 0.097 (4) | −0.044 (3) | −0.032 (3) | 0.019 (3) |
C14 | 0.103 (4) | 0.077 (4) | 0.107 (4) | 0.027 (3) | −0.008 (3) | −0.012 (3) |
C15 | 0.104 (3) | 0.108 (4) | 0.077 (3) | −0.031 (3) | −0.013 (3) | 0.050 (3) |
C11 | 0.061 (3) | 0.145 (5) | 0.100 (4) | −0.007 (3) | 0.020 (3) | 0.019 (4) |
C19 | 0.129 (5) | 0.143 (6) | 0.128 (4) | 0.038 (4) | −0.026 (4) | −0.080 (4) |
Si1—O3 | 1.649 (2) | C16—C17 | 1.527 (5) |
Si1—C15 | 1.850 (4) | C16—C18 | 1.531 (5) |
Si1—C14 | 1.853 (4) | C3—H3 | 0.9300 |
Si1—C16 | 1.858 (4) | C13—H13A | 0.9600 |
O3—C9 | 1.430 (3) | C13—H13B | 0.9600 |
O1—C1 | 1.215 (4) | C13—H13C | 0.9600 |
O2—C4 | 1.215 (4) | C17—H17A | 0.9600 |
C5—C4 | 1.505 (5) | C17—H17B | 0.9600 |
C5—C6 | 1.511 (4) | C17—H17C | 0.9600 |
C5—C10 | 1.559 (5) | C12—H12A | 0.9600 |
C5—H5 | 0.9800 | C12—H12B | 0.9600 |
C10—C1 | 1.528 (5) | C12—H12C | 0.9600 |
C10—C13 | 1.533 (4) | C18—H18A | 0.9600 |
C10—C9 | 1.540 (4) | C18—H18B | 0.9600 |
C9—C8 | 1.487 (4) | C18—H18C | 0.9600 |
C9—H9 | 0.9800 | C14—H14A | 0.9600 |
C8—C7 | 1.307 (5) | C14—H14B | 0.9600 |
C8—H8 | 0.9300 | C14—H14C | 0.9600 |
C6—C7 | 1.500 (5) | C15—H15A | 0.9600 |
C6—C12 | 1.536 (5) | C15—H15B | 0.9600 |
C6—H6 | 0.9800 | C15—H15C | 0.9600 |
C1—C2 | 1.478 (6) | C11—H11A | 0.9600 |
C7—H7 | 0.9300 | C11—H11B | 0.9600 |
C4—C3 | 1.462 (5) | C11—H11C | 0.9600 |
C2—C3 | 1.315 (5) | C19—H19A | 0.9600 |
C2—C11 | 1.503 (5) | C19—H19B | 0.9600 |
C16—C19 | 1.510 (5) | C19—H19C | 0.9600 |
O3—Si1—C15 | 110.43 (15) | C2—C3—C4 | 123.2 (4) |
O3—Si1—C14 | 109.46 (17) | C2—C3—H3 | 118.4 |
C15—Si1—C14 | 109.1 (2) | C4—C3—H3 | 118.4 |
O3—Si1—C16 | 104.54 (16) | C10—C13—H13A | 109.5 |
C15—Si1—C16 | 111.4 (2) | C10—C13—H13B | 109.5 |
C14—Si1—C16 | 111.9 (2) | H13A—C13—H13B | 109.5 |
C9—O3—Si1 | 124.6 (2) | C10—C13—H13C | 109.5 |
C4—C5—C6 | 117.7 (3) | H13A—C13—H13C | 109.5 |
C4—C5—C10 | 108.3 (3) | H13B—C13—H13C | 109.5 |
C6—C5—C10 | 111.3 (3) | C16—C17—H17A | 109.5 |
C4—C5—H5 | 106.3 | C16—C17—H17B | 109.5 |
C6—C5—H5 | 106.3 | H17A—C17—H17B | 109.5 |
C10—C5—H5 | 106.3 | C16—C17—H17C | 109.5 |
C1—C10—C13 | 108.8 (3) | H17A—C17—H17C | 109.5 |
C1—C10—C9 | 107.5 (3) | H17B—C17—H17C | 109.5 |
C13—C10—C9 | 109.1 (3) | C6—C12—H12A | 109.5 |
C1—C10—C5 | 111.0 (3) | C6—C12—H12B | 109.5 |
C13—C10—C5 | 110.6 (3) | H12A—C12—H12B | 109.5 |
C9—C10—C5 | 109.8 (3) | C6—C12—H12C | 109.5 |
O3—C9—C8 | 108.8 (3) | H12A—C12—H12C | 109.5 |
O3—C9—C10 | 110.4 (3) | H12B—C12—H12C | 109.5 |
C8—C9—C10 | 111.7 (3) | C16—C18—H18A | 109.5 |
O3—C9—H9 | 108.6 | C16—C18—H18B | 109.5 |
C8—C9—H9 | 108.6 | H18A—C18—H18B | 109.5 |
C10—C9—H9 | 108.6 | C16—C18—H18C | 109.5 |
C7—C8—C9 | 125.0 (4) | H18A—C18—H18C | 109.5 |
C7—C8—H8 | 117.5 | H18B—C18—H18C | 109.5 |
C9—C8—H8 | 117.5 | Si1—C14—H14A | 109.5 |
C7—C6—C5 | 110.2 (3) | Si1—C14—H14B | 109.5 |
C7—C6—C12 | 113.0 (3) | H14A—C14—H14B | 109.5 |
C5—C6—C12 | 115.3 (3) | Si1—C14—H14C | 109.5 |
C7—C6—H6 | 105.8 | H14A—C14—H14C | 109.5 |
C5—C6—H6 | 105.8 | H14B—C14—H14C | 109.5 |
C12—C6—H6 | 105.8 | Si1—C15—H15A | 109.5 |
O1—C1—C2 | 119.9 (4) | Si1—C15—H15B | 109.5 |
O1—C1—C10 | 119.7 (4) | H15A—C15—H15B | 109.5 |
C2—C1—C10 | 120.3 (4) | Si1—C15—H15C | 109.5 |
C8—C7—C6 | 124.2 (4) | H15A—C15—H15C | 109.5 |
C8—C7—H7 | 117.9 | H15B—C15—H15C | 109.5 |
C6—C7—H7 | 117.9 | C2—C11—H11A | 109.5 |
O2—C4—C3 | 121.4 (4) | C2—C11—H11B | 109.5 |
O2—C4—C5 | 124.0 (4) | H11A—C11—H11B | 109.5 |
C3—C4—C5 | 114.6 (4) | C2—C11—H11C | 109.5 |
C3—C2—C1 | 119.1 (4) | H11A—C11—H11C | 109.5 |
C3—C2—C11 | 124.1 (5) | H11B—C11—H11C | 109.5 |
C1—C2—C11 | 116.7 (5) | C16—C19—H19A | 109.5 |
C19—C16—C17 | 108.9 (4) | C16—C19—H19B | 109.5 |
C19—C16—C18 | 108.9 (4) | H19A—C19—H19B | 109.5 |
C17—C16—C18 | 107.8 (3) | C16—C19—H19C | 109.5 |
C19—C16—Si1 | 110.5 (3) | H19A—C19—H19C | 109.5 |
C17—C16—Si1 | 111.0 (3) | H19B—C19—H19C | 109.5 |
C18—C16—Si1 | 109.6 (3) | ||
C15—Si1—O3—C9 | 43.4 (3) | C9—C10—C1—C2 | 97.9 (4) |
C14—Si1—O3—C9 | −76.6 (3) | C5—C10—C1—C2 | −22.1 (4) |
C16—Si1—O3—C9 | 163.3 (2) | C9—C8—C7—C6 | −0.4 (6) |
C4—C5—C10—C1 | 48.9 (4) | C5—C6—C7—C8 | 18.3 (5) |
C6—C5—C10—C1 | 179.8 (3) | C12—C6—C7—C8 | 148.9 (4) |
C4—C5—C10—C13 | 169.7 (3) | C6—C5—C4—O2 | −0.1 (5) |
C6—C5—C10—C13 | −59.4 (4) | C10—C5—C4—O2 | 127.1 (4) |
C4—C5—C10—C9 | −69.8 (4) | C6—C5—C4—C3 | 179.2 (3) |
C6—C5—C10—C9 | 61.1 (4) | C10—C5—C4—C3 | −53.5 (4) |
Si1—O3—C9—C8 | −98.3 (3) | O1—C1—C2—C3 | 174.0 (4) |
Si1—O3—C9—C10 | 138.8 (2) | C10—C1—C2—C3 | −4.9 (5) |
C1—C10—C9—O3 | −41.2 (4) | O1—C1—C2—C11 | −2.5 (5) |
C13—C10—C9—O3 | −159.0 (3) | C10—C1—C2—C11 | 178.6 (3) |
C5—C10—C9—O3 | 79.6 (3) | O3—Si1—C16—C19 | −62.5 (3) |
C1—C10—C9—C8 | −162.3 (3) | C15—Si1—C16—C19 | 56.7 (4) |
C13—C10—C9—C8 | 79.8 (4) | C14—Si1—C16—C19 | 179.1 (3) |
C5—C10—C9—C8 | −41.5 (4) | O3—Si1—C16—C17 | 176.5 (3) |
O3—C9—C8—C7 | −109.2 (4) | C15—Si1—C16—C17 | −64.3 (3) |
C10—C9—C8—C7 | 12.9 (5) | C14—Si1—C16—C17 | 58.1 (4) |
C4—C5—C6—C7 | 78.1 (4) | O3—Si1—C16—C18 | 57.5 (3) |
C10—C5—C6—C7 | −47.7 (4) | C15—Si1—C16—C18 | 176.8 (3) |
C4—C5—C6—C12 | −51.2 (4) | C14—Si1—C16—C18 | −60.9 (3) |
C10—C5—C6—C12 | −177.0 (3) | C1—C2—C3—C4 | 2.4 (6) |
C13—C10—C1—O1 | 37.1 (5) | C11—C2—C3—C4 | 178.7 (3) |
C9—C10—C1—O1 | −81.0 (4) | O2—C4—C3—C2 | −151.9 (4) |
C5—C10—C1—O1 | 159.0 (3) | C5—C4—C3—C2 | 28.7 (5) |
C13—C10—C1—C2 | −144.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.98 | 2.55 | 3.524 (5) | 171 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H30O3Si |
Mr | 334.52 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.325 (2), 7.1744 (9), 17.965 (2) |
β (°) | 93.577 (9) |
V (Å3) | 1971.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.15 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 MACH 3 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4451, 4305, 1463 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.165, 0.93 |
No. of reflections | 4305 |
No. of parameters | 216 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.21 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), MolEN (Fair, 1990), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O2i | 0.98 | 2.55 | 3.524 (5) | 171 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
We thank CNPq (142088/2011–0 to FND, 306532/2009–3 to JZS), FAPESP (2011/13993–2 to TJB), and CAPES (grant No. 808/2009 to JZS) for financial support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12)
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brocksom, T. J., Correa, A. G., Naves, R. M., Silva, F. Jr, Catani, V., Ceschi, M. A., Zukerman-Schpector, J., Toloi, A. P., Ferreira, M. L. & Brocksom, U. (2001). Diels–Alder Reactions in the Synthesis of Higher in Organic Synthesis: Theory and Applications, Vol. 5, edited by T. Hudlicky, pp. 390–87. London: JAI/Elsevier Science. Google Scholar
ChemAxon (2009). MarvinSketch. www.chemaxon.com. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finelli, F. G. (2004). MSc thesis, Universidade Federal de São Carlos, Brazil. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vieira, Y. W., Nakamura, J., Finelli, F. G., Brocksom, U. & Brocksom, T. J. (2007). J. Braz. Chem. Soc. 18, 448–451. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of polycyclic natural products such as sesqui- and di-terpenes frequently requires the construction of the decalin nucleus. This can be performed using the Diels-Alder reaction between appropriate acyclic dienes and monocyclic dienophiles such as para-benzoquinones. The desired appendages around the decalin nucleus can include oxygen and alkyl substituents, which are conveniently included in the diene and dienophile precursors (Brocksom et al., 2001). It was in this context that the title compound, (I), was investigated (Finelli, 2004). The synthesis of a similar compound, via a multi-component reaction, containing a nitrogen atom in place of the oxygen atom has been published (Vieira et al. 2007). Herein, the crystal structure determination of (I) is described.
In (I), Fig. 1, both rings are in a distorted half-chair conformation. The ring puckering parameters are: q2 = 0.398 (4), 0.372 (4) Å, q3 = 0.254 (4), -0.319 (4) Å, QT = 0.472 (4), 0.490 (4) Å, and θ = 236.6 (6), 155.5 (6)° for the cyclo-2-ene-1,4-dione and cyclohexene rings, respectively (Cremer & Pople, 1975). With reference to the cyclohexene ring, the cyclo-2-ene-1,4-dione and butyldimethylsilyloxy substituents lie to the same side so that the molecule approximates a U-shape; the methyl group lies to the other side of the molecule.
In the crystal molecules are connected through C—H···O interactions that lead to linear supramolecular chains along the b axis, Fig. 2. Chains pack with no specific intermolecular interactions between them, Fig. 3.