organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-(4aR,5R,8S,8aR)-8-(tert-Butyl­di­methyl­sil­yl­oxy)-2,5,8a-tri­methyl-4a,5,8,8a-tetra­hydro­naphthalene-1,4-dione

aDepartment of Chemistry, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: felixdelling@ufscar.br

(Received 28 January 2013; accepted 29 January 2013; online 2 February 2013)

In the title compound, C19H30O3Si, both rings adopt a half-boat conformation. Overall, the mol­ecule approximates a U-shape as the cyclo-2-ene-1,4-dione and butyl­dimethyl­sil­yloxy substituents lie to the same side of the central cyclo­hexene ring; the methyl substituent lies to the other side of the mol­ecule. In the crystal, linear supra­molecular chains along the b axis are sustained by C—H⋯O inter­actions.

Related literature

For a general description of the synthesis of higher terpenoids using the Diels–Alder reaction, see: Brocksom et al. (2001[Brocksom, T. J., Correa, A. G., Naves, R. M., Silva, F. Jr, Catani, V., Ceschi, M. A., Zukerman-Schpector, J., Toloi, A. P., Ferreira, M. L. & Brocksom, U. (2001). Diels-Alder Reactions in the Synthesis of Higher Terpenes, in Organic Synthesis: Theory and Applications, Vol. 5, edited by T. Hudlicky, pp. 390-87. London: JAI/Elsevier Science.]). For the synthesis of a similar compound containing an N atom in place of the O atom, see: Vieira et al. (2007[Vieira, Y. W., Nakamura, J., Finelli, F. G., Brocksom, U. & Brocksom, T. J. (2007). J. Braz. Chem. Soc. 18, 448-451.]). For the synthesis, see: Finelli (2004[Finelli, F. G. (2004). MSc thesis, Universidade Federal de São Carlos, Brazil.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H30O3Si

  • Mr = 334.52

  • Monoclinic, P 2/c

  • a = 15.325 (2) Å

  • b = 7.1744 (9) Å

  • c = 17.965 (2) Å

  • β = 93.577 (9)°

  • V = 1971.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 MACH 3 diffractometer

  • 4451 measured reflections

  • 4305 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.072

  • 3 standard reflections every 30 min intensity decay: 1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.165

  • S = 0.93

  • 4305 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.98 2.55 3.524 (5) 171
Symmetry code: (i) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (ChemAxon, 2009[ChemAxon (2009). MarvinSketch. www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of polycyclic natural products such as sesqui- and di-terpenes frequently requires the construction of the decalin nucleus. This can be performed using the Diels-Alder reaction between appropriate acyclic dienes and monocyclic dienophiles such as para-benzoquinones. The desired appendages around the decalin nucleus can include oxygen and alkyl substituents, which are conveniently included in the diene and dienophile precursors (Brocksom et al., 2001). It was in this context that the title compound, (I), was investigated (Finelli, 2004). The synthesis of a similar compound, via a multi-component reaction, containing a nitrogen atom in place of the oxygen atom has been published (Vieira et al. 2007). Herein, the crystal structure determination of (I) is described.

In (I), Fig. 1, both rings are in a distorted half-chair conformation. The ring puckering parameters are: q2 = 0.398 (4), 0.372 (4) Å, q3 = 0.254 (4), -0.319 (4) Å, QT = 0.472 (4), 0.490 (4) Å, and θ = 236.6 (6), 155.5 (6)° for the cyclo-2-ene-1,4-dione and cyclohexene rings, respectively (Cremer & Pople, 1975). With reference to the cyclohexene ring, the cyclo-2-ene-1,4-dione and butyldimethylsilyloxy substituents lie to the same side so that the molecule approximates a U-shape; the methyl group lies to the other side of the molecule.

In the crystal molecules are connected through C—H···O interactions that lead to linear supramolecular chains along the b axis, Fig. 2. Chains pack with no specific intermolecular interactions between them, Fig. 3.

Related literature top

For a general description of the synthesis of higher terpenoids using the Diels–Alder reaction, see: Brocksom et al. (2001). For the synthesis of a similar compound containing an N atom in place of the O atom, see: Vieira et al. (2007). For the synthesis, see: Finelli (2004). For additional conformational analysis, see: Cremer & Pople (1975).

Experimental top

The catalytic reaction was carried out using 2,6-dimethylcyclohexa-2,5- diene-1,4-dione (83 mg, 0.61 mmol) in anhydrous dichloromethane (1.2 ml) under nitrogen atmosphere at 293 K, and then zinc chloride (91.5 mg, 0.61 mmol) was added. After 40 min stirring, diastereomeric 5-(tert-butyl-dimethyl-silyloxy)-pentadiene-2,4 (71 mg, 0.36 mmol) was slowly added. After 20 h stirring the reaction was ended by adding a saturated solution of NaHCO3. The organic phase was extracted with dichloromethane, dried with Na2SO4 and concentrated on a rota-vapor. The product was purified using a silica gel chromatography column with hexane/ethyl acetate (98:2) as the eluent, yielding compound (I) (131 mg, 0.39 mmol). Crystals were grown by slow evaporation from a solution of 15% of acetyl acetate in hexane at 293 K; M.pt: 384.3–386.5 K. 1H-NMR (CDCl3, p.p.m., 400 MHz): δ 6.58 (d, 1H, J = 1.5 Hz); 5.73 (d, 1H, J = 10.1 Hz); 5.63 (ddd, 1H, J = 10.1 Hz, J = 4.4 Hz, J = 3.1 Hz); 3.85 (d, 1H, J = 4.4 Hz); 2.90 (d, 1H, J = 4.9 Hz); 2.43–2.49 (m, 1H); 1.92 (d, 3H, J = 1.5 Hz); 1.45 (d, 3H, J = 7.6 Hz); 1.32 (s, 3H); 0.73 (s, 9H); -0.03 (s, 3H); -0.13 (s, 3H); 13C (CDCl3, 50 MHz) δ (p.p.m.) 202.1; 197.7; 147.4; 141.1; 133.1; 125.1; 71.6; 54.2; 53.4; 28.8; 25.5; 19.4; 17.8; 17.2; 16.2; -4.6; -5.2. Anal. calcd for C19H30O3Si1: C, 68.22; H, 9.04. Found: C, 68.00; H, 9.21.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the linear supramolecular chain sustained by C—H···O interactions (orange dashed lines) in the crystal structure of (I).
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I).
(±)-(4aR,5R,8S,8aR)-8-(tert-Butyldimethylsilyloxy)-2,5,8a-trimethyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione top
Crystal data top
C19H30O3SiF(000) = 728
Mr = 334.52Dx = 1.127 Mg m3
Monoclinic, P2/cMelting point: 385.4 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 15.325 (2) ÅCell parameters from 25 reflections
b = 7.1744 (9) Åθ = 2.8–27.0°
c = 17.965 (2) ŵ = 0.13 mm1
β = 93.577 (9)°T = 293 K
V = 1971.4 (4) Å3Prism, colourless
Z = 40.15 × 0.10 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4 MACH 3
diffractometer
Rint = 0.072
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.8°
Graphite monochromatorh = 1919
ω–2θ scansk = 09
4451 measured reflectionsl = 022
4305 independent reflections3 standard reflections every 30 min
1463 reflections with I > 2σ(I) intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
4305 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H30O3SiV = 1971.4 (4) Å3
Mr = 334.52Z = 4
Monoclinic, P2/cMo Kα radiation
a = 15.325 (2) ŵ = 0.13 mm1
b = 7.1744 (9) ÅT = 293 K
c = 17.965 (2) Å0.15 × 0.10 × 0.08 mm
β = 93.577 (9)°
Data collection top
Enraf–Nonius CAD-4 MACH 3
diffractometer
Rint = 0.072
4451 measured reflections3 standard reflections every 30 min
4305 independent reflections intensity decay: 1.4%
1463 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 0.93Δρmax = 0.17 e Å3
4305 reflectionsΔρmin = 0.21 e Å3
216 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.70796 (7)0.41802 (16)0.45217 (6)0.0549 (4)
O30.76651 (14)0.3088 (3)0.51880 (11)0.0453 (6)
O10.70503 (18)0.4837 (5)0.68020 (16)0.0882 (10)
O20.83093 (19)0.1189 (4)0.57148 (16)0.0785 (9)
C50.8725 (2)0.1309 (5)0.65576 (18)0.0487 (10)
H50.87230.10340.70920.058*
C100.8338 (2)0.3308 (5)0.64516 (18)0.0455 (9)
C90.8372 (2)0.3907 (5)0.56306 (18)0.0492 (10)
H90.83170.52660.56020.059*
C80.9210 (2)0.3353 (6)0.5317 (2)0.0617 (12)
H80.93390.38730.48630.074*
C60.9670 (2)0.1243 (6)0.6364 (2)0.0596 (11)
H60.99930.20090.67400.072*
C10.7382 (3)0.3361 (7)0.6645 (2)0.0576 (11)
C70.9777 (3)0.2191 (6)0.5632 (2)0.0642 (12)
H71.02790.19350.53850.077*
C40.8100 (3)0.0050 (6)0.6171 (2)0.0569 (11)
C20.6855 (3)0.1634 (8)0.6628 (2)0.0618 (12)
C160.6517 (2)0.2288 (6)0.3974 (2)0.0602 (11)
C30.7200 (3)0.0080 (7)0.6393 (2)0.0666 (12)
H30.68560.09880.63670.080*
C130.8858 (2)0.4707 (6)0.6949 (2)0.0721 (13)
H13A0.85570.58810.69400.108*
H13B0.94290.48730.67660.108*
H13C0.89140.42440.74510.108*
C170.5897 (3)0.3084 (7)0.3356 (2)0.1014 (17)
H17A0.62250.37920.30160.152*
H17B0.54760.38800.35710.152*
H17C0.55990.20830.30920.152*
C121.0098 (3)0.0693 (6)0.6413 (2)0.0899 (15)
H12A1.00130.12310.68930.135*
H12B1.07130.05780.63480.135*
H12C0.98350.14810.60290.135*
C180.5973 (3)0.1114 (6)0.4485 (3)0.1031 (17)
H18A0.56940.01200.42030.155*
H18B0.55360.18840.46910.155*
H18C0.63480.06010.48820.155*
C140.6293 (3)0.5766 (6)0.4944 (2)0.0964 (16)
H14A0.59230.50590.52500.145*
H14B0.59420.63780.45560.145*
H14C0.66080.66810.52440.145*
C150.7796 (3)0.5561 (7)0.3940 (2)0.0972 (17)
H15A0.80820.65180.42390.146*
H15B0.74510.61220.35360.146*
H15C0.82280.47590.37440.146*
C110.5927 (2)0.1811 (7)0.6844 (2)0.1013 (17)
H11A0.56510.06100.68190.152*
H11B0.56150.26530.65090.152*
H11C0.59220.22830.73440.152*
C190.7175 (3)0.1042 (8)0.3628 (3)0.135 (2)
H19A0.68790.00010.33910.202*
H19B0.75910.05990.40090.202*
H19C0.74750.17340.32640.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0648 (7)0.0482 (7)0.0504 (6)0.0054 (6)0.0060 (5)0.0073 (6)
O30.0514 (14)0.0420 (16)0.0413 (13)0.0090 (13)0.0070 (11)0.0005 (12)
O10.093 (2)0.083 (3)0.090 (2)0.018 (2)0.0228 (18)0.013 (2)
O20.109 (2)0.051 (2)0.074 (2)0.0013 (18)0.0003 (17)0.0124 (17)
C50.057 (2)0.054 (3)0.035 (2)0.001 (2)0.0004 (18)0.0003 (19)
C100.049 (2)0.046 (2)0.041 (2)0.001 (2)0.0005 (17)0.0072 (19)
C90.056 (2)0.044 (2)0.047 (2)0.011 (2)0.0034 (19)0.002 (2)
C80.054 (3)0.081 (3)0.050 (2)0.020 (2)0.006 (2)0.012 (2)
C60.057 (3)0.068 (3)0.053 (2)0.007 (2)0.004 (2)0.006 (2)
C10.072 (3)0.061 (3)0.039 (2)0.006 (3)0.000 (2)0.004 (2)
C70.048 (3)0.080 (3)0.064 (3)0.007 (2)0.004 (2)0.004 (3)
C40.086 (3)0.040 (3)0.044 (2)0.002 (3)0.003 (2)0.006 (2)
C20.054 (3)0.083 (4)0.049 (2)0.005 (3)0.002 (2)0.014 (3)
C160.062 (3)0.060 (3)0.056 (2)0.002 (2)0.017 (2)0.001 (2)
C30.070 (3)0.064 (3)0.066 (3)0.020 (3)0.005 (2)0.012 (3)
C130.086 (3)0.067 (3)0.060 (3)0.004 (3)0.016 (2)0.021 (2)
C170.110 (4)0.106 (4)0.082 (3)0.016 (3)0.048 (3)0.015 (3)
C120.088 (3)0.099 (4)0.082 (3)0.040 (3)0.001 (3)0.008 (3)
C180.125 (4)0.083 (4)0.097 (4)0.044 (3)0.032 (3)0.019 (3)
C140.103 (4)0.077 (4)0.107 (4)0.027 (3)0.008 (3)0.012 (3)
C150.104 (3)0.108 (4)0.077 (3)0.031 (3)0.013 (3)0.050 (3)
C110.061 (3)0.145 (5)0.100 (4)0.007 (3)0.020 (3)0.019 (4)
C190.129 (5)0.143 (6)0.128 (4)0.038 (4)0.026 (4)0.080 (4)
Geometric parameters (Å, º) top
Si1—O31.649 (2)C16—C171.527 (5)
Si1—C151.850 (4)C16—C181.531 (5)
Si1—C141.853 (4)C3—H30.9300
Si1—C161.858 (4)C13—H13A0.9600
O3—C91.430 (3)C13—H13B0.9600
O1—C11.215 (4)C13—H13C0.9600
O2—C41.215 (4)C17—H17A0.9600
C5—C41.505 (5)C17—H17B0.9600
C5—C61.511 (4)C17—H17C0.9600
C5—C101.559 (5)C12—H12A0.9600
C5—H50.9800C12—H12B0.9600
C10—C11.528 (5)C12—H12C0.9600
C10—C131.533 (4)C18—H18A0.9600
C10—C91.540 (4)C18—H18B0.9600
C9—C81.487 (4)C18—H18C0.9600
C9—H90.9800C14—H14A0.9600
C8—C71.307 (5)C14—H14B0.9600
C8—H80.9300C14—H14C0.9600
C6—C71.500 (5)C15—H15A0.9600
C6—C121.536 (5)C15—H15B0.9600
C6—H60.9800C15—H15C0.9600
C1—C21.478 (6)C11—H11A0.9600
C7—H70.9300C11—H11B0.9600
C4—C31.462 (5)C11—H11C0.9600
C2—C31.315 (5)C19—H19A0.9600
C2—C111.503 (5)C19—H19B0.9600
C16—C191.510 (5)C19—H19C0.9600
O3—Si1—C15110.43 (15)C2—C3—C4123.2 (4)
O3—Si1—C14109.46 (17)C2—C3—H3118.4
C15—Si1—C14109.1 (2)C4—C3—H3118.4
O3—Si1—C16104.54 (16)C10—C13—H13A109.5
C15—Si1—C16111.4 (2)C10—C13—H13B109.5
C14—Si1—C16111.9 (2)H13A—C13—H13B109.5
C9—O3—Si1124.6 (2)C10—C13—H13C109.5
C4—C5—C6117.7 (3)H13A—C13—H13C109.5
C4—C5—C10108.3 (3)H13B—C13—H13C109.5
C6—C5—C10111.3 (3)C16—C17—H17A109.5
C4—C5—H5106.3C16—C17—H17B109.5
C6—C5—H5106.3H17A—C17—H17B109.5
C10—C5—H5106.3C16—C17—H17C109.5
C1—C10—C13108.8 (3)H17A—C17—H17C109.5
C1—C10—C9107.5 (3)H17B—C17—H17C109.5
C13—C10—C9109.1 (3)C6—C12—H12A109.5
C1—C10—C5111.0 (3)C6—C12—H12B109.5
C13—C10—C5110.6 (3)H12A—C12—H12B109.5
C9—C10—C5109.8 (3)C6—C12—H12C109.5
O3—C9—C8108.8 (3)H12A—C12—H12C109.5
O3—C9—C10110.4 (3)H12B—C12—H12C109.5
C8—C9—C10111.7 (3)C16—C18—H18A109.5
O3—C9—H9108.6C16—C18—H18B109.5
C8—C9—H9108.6H18A—C18—H18B109.5
C10—C9—H9108.6C16—C18—H18C109.5
C7—C8—C9125.0 (4)H18A—C18—H18C109.5
C7—C8—H8117.5H18B—C18—H18C109.5
C9—C8—H8117.5Si1—C14—H14A109.5
C7—C6—C5110.2 (3)Si1—C14—H14B109.5
C7—C6—C12113.0 (3)H14A—C14—H14B109.5
C5—C6—C12115.3 (3)Si1—C14—H14C109.5
C7—C6—H6105.8H14A—C14—H14C109.5
C5—C6—H6105.8H14B—C14—H14C109.5
C12—C6—H6105.8Si1—C15—H15A109.5
O1—C1—C2119.9 (4)Si1—C15—H15B109.5
O1—C1—C10119.7 (4)H15A—C15—H15B109.5
C2—C1—C10120.3 (4)Si1—C15—H15C109.5
C8—C7—C6124.2 (4)H15A—C15—H15C109.5
C8—C7—H7117.9H15B—C15—H15C109.5
C6—C7—H7117.9C2—C11—H11A109.5
O2—C4—C3121.4 (4)C2—C11—H11B109.5
O2—C4—C5124.0 (4)H11A—C11—H11B109.5
C3—C4—C5114.6 (4)C2—C11—H11C109.5
C3—C2—C1119.1 (4)H11A—C11—H11C109.5
C3—C2—C11124.1 (5)H11B—C11—H11C109.5
C1—C2—C11116.7 (5)C16—C19—H19A109.5
C19—C16—C17108.9 (4)C16—C19—H19B109.5
C19—C16—C18108.9 (4)H19A—C19—H19B109.5
C17—C16—C18107.8 (3)C16—C19—H19C109.5
C19—C16—Si1110.5 (3)H19A—C19—H19C109.5
C17—C16—Si1111.0 (3)H19B—C19—H19C109.5
C18—C16—Si1109.6 (3)
C15—Si1—O3—C943.4 (3)C9—C10—C1—C297.9 (4)
C14—Si1—O3—C976.6 (3)C5—C10—C1—C222.1 (4)
C16—Si1—O3—C9163.3 (2)C9—C8—C7—C60.4 (6)
C4—C5—C10—C148.9 (4)C5—C6—C7—C818.3 (5)
C6—C5—C10—C1179.8 (3)C12—C6—C7—C8148.9 (4)
C4—C5—C10—C13169.7 (3)C6—C5—C4—O20.1 (5)
C6—C5—C10—C1359.4 (4)C10—C5—C4—O2127.1 (4)
C4—C5—C10—C969.8 (4)C6—C5—C4—C3179.2 (3)
C6—C5—C10—C961.1 (4)C10—C5—C4—C353.5 (4)
Si1—O3—C9—C898.3 (3)O1—C1—C2—C3174.0 (4)
Si1—O3—C9—C10138.8 (2)C10—C1—C2—C34.9 (5)
C1—C10—C9—O341.2 (4)O1—C1—C2—C112.5 (5)
C13—C10—C9—O3159.0 (3)C10—C1—C2—C11178.6 (3)
C5—C10—C9—O379.6 (3)O3—Si1—C16—C1962.5 (3)
C1—C10—C9—C8162.3 (3)C15—Si1—C16—C1956.7 (4)
C13—C10—C9—C879.8 (4)C14—Si1—C16—C19179.1 (3)
C5—C10—C9—C841.5 (4)O3—Si1—C16—C17176.5 (3)
O3—C9—C8—C7109.2 (4)C15—Si1—C16—C1764.3 (3)
C10—C9—C8—C712.9 (5)C14—Si1—C16—C1758.1 (4)
C4—C5—C6—C778.1 (4)O3—Si1—C16—C1857.5 (3)
C10—C5—C6—C747.7 (4)C15—Si1—C16—C18176.8 (3)
C4—C5—C6—C1251.2 (4)C14—Si1—C16—C1860.9 (3)
C10—C5—C6—C12177.0 (3)C1—C2—C3—C42.4 (6)
C13—C10—C1—O137.1 (5)C11—C2—C3—C4178.7 (3)
C9—C10—C1—O181.0 (4)O2—C4—C3—C2151.9 (4)
C5—C10—C1—O1159.0 (3)C5—C4—C3—C228.7 (5)
C13—C10—C1—C2144.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.982.553.524 (5)171
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H30O3Si
Mr334.52
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)15.325 (2), 7.1744 (9), 17.965 (2)
β (°) 93.577 (9)
V3)1971.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4 MACH 3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4451, 4305, 1463
Rint0.072
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.165, 0.93
No. of reflections4305
No. of parameters216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.21

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), MolEN (Fair, 1990), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O2i0.982.553.524 (5)171
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank CNPq (142088/2011–0 to FND, 306532/2009–3 to JZS), FAPESP (2011/13993–2 to TJB), and CAPES (grant No. 808/2009 to JZS) for financial support. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12)

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrocksom, T. J., Correa, A. G., Naves, R. M., Silva, F. Jr, Catani, V., Ceschi, M. A., Zukerman-Schpector, J., Toloi, A. P., Ferreira, M. L. & Brocksom, U. (2001). Diels–Alder Reactions in the Synthesis of Higher Terpenes, in Organic Synthesis: Theory and Applications, Vol. 5, edited by T. Hudlicky, pp. 390–87. London: JAI/Elsevier Science.  Google Scholar
First citationChemAxon (2009). MarvinSketch. www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinelli, F. G. (2004). MSc thesis, Universidade Federal de São Carlos, Brazil.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVieira, Y. W., Nakamura, J., Finelli, F. G., Brocksom, U. & Brocksom, T. J. (2007). J. Braz. Chem. Soc. 18, 448–451.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds