organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­­oxy­meth­yl)-5-(4-methyl­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 8 February 2013; accepted 8 February 2013; online 13 February 2013)

In the title compound, C18H13Cl2N3OS, the eight atoms comprising the central imidazo/thia­diazo­lethia­diazole residue are coplanar (r.m.s. deviation = 0.009 Å). The dihedral angle of 8.72 (13)° between the dichloro­benzene and tolyl rings reflects a twist about the O—C(benzene) bond; the Cm—O—Cb—Cb torsion angle = −168.5 (2)° (m = methyl­ene C and b is benzene C). Supra­molecular tapes along the b axis are found in the crystal structure which are mediated by ππ inter­actions occurring between centrosymmetrically related thia­diazole rings [inter-ring centroid distance = 3.6907 (16) Å] and between the benzene and tolyl rings [inter-ring centroid distance = 3.7597 (16) Å].

Related literature

For background to the biological activity of imidazothia­dia­zo­les, see: Abdel-Wahab et al. (2011[Abdel-Wahab, B. F., Farghaly, M. & Badria, F. A. (2011). Pharm. Chem. J. 45, 30-35.]); Karki et al. (2011[Karki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109-2116.]); Khazi et al. (2011[Khazi, I. A. M., Gadad, A. K., Lamani, R. S. & Bhongade, B. A. (2011). Tetrahedron, 67, 3289-3316.]). For the synthesis, see: Abdel-Wahab et al. (2011[Abdel-Wahab, B. F., Farghaly, M. & Badria, F. A. (2011). Pharm. Chem. J. 45, 30-35.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Prasad, D. J., Castelino, P. A. & Anitha, V. V. (2011). Acta Cryst. E67, o254.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2N3OS

  • Mr = 390.27

  • Triclinic, [P \overline 1]

  • a = 8.3015 (7) Å

  • b = 8.3053 (7) Å

  • c = 14.4374 (13) Å

  • α = 97.180 (7)°

  • β = 92.644 (7)°

  • γ = 118.996 (9)°

  • V = 857.25 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.856, Tmax = 1.000

  • 8391 measured reflections

  • 3932 independent reflections

  • 2659 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.172

  • S = 0.98

  • 3932 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) was investigated in relation to the established biological activities exhibited by imidazothiadiazoles (Abdel-Wahab et al., 2011; Karki et al., 2011; Khazi et al., 2011).

In (I), Fig. 1, the eight atoms comprising the fused imidazo/thiadiazolethiadiazole residue are co-planar (r.m.s. deviation = 0.009 Å). This system forms dihedral angles of 6.01 (10) and 3.28 (11)° with the attached dichlorobenzene and tolyl rings, respectively. The r.m.s. deviation from the least-squares plane for all 25 non-hydrogen atoms is 0.085 Å with maximum deviations of 0.180 (2) and -0.197 (1) for the O1 and Cl1 atoms, respectively. This is consistent with a small twist about the C1—O1 bond with the C7—O1—C1—C2 torsion angle being -168.5 (2)°. The S and O atoms are syn and are separated by 2.823 (3) Å. A small twist was also observed in the structure of the closely related compound 2-isobutyl-6-phenylimidazo[2,1-b][1,3,4]thiadiazole (Fun et al., 2011).

In the crystal packing, molecules aggregate into tapes along the b axis via ππ interactions occurring between centrosymmetrically related thiadiazole rings [inter-ring centroid distance = 3.6907 (16) Å for symmetry operation: 2 - x, -y, 1 - z] and between the benzene and tolyl rings [inter-ring centroid distance = 3.7597 (16) Å for symmetry operation: 2 - x, 1 - y, 1 - z], Fig. 2. Columns stack with no specific interactions between them, Fig. 3.

Related literature top

For background to the biological activity of imidazothiadiazoles, see: Abdel-Wahab et al. (2011); Karki et al. (2011); Khazi et al. (2011). For the synthesis, see: Abdel-Wahab et al. (2011). For a related structure, see: Fun et al. (2011).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2011). Colourless crystals were obtained from DMF solution by slow evaporation at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Uequiv(C) or 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular tape along the b axis in (I) mediated by ππ interactions shown as purple dashed lines.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the b axis. The ππ interactions are shown as purple dashed lines.
2-(2,4-Dichlorophenoxymethyl)-5-(4-methylphenyl)imidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C18H13Cl2N3OSZ = 2
Mr = 390.27F(000) = 400
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3015 (7) ÅCell parameters from 1915 reflections
b = 8.3053 (7) Åθ = 2.8–27.5°
c = 14.4374 (13) ŵ = 0.51 mm1
α = 97.180 (7)°T = 295 K
β = 92.644 (7)°Prism, colourless
γ = 118.996 (9)°0.40 × 0.30 × 0.20 mm
V = 857.25 (13) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3932 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2659 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1010
Tmin = 0.856, Tmax = 1.000l = 1815
8391 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3932 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C18H13Cl2N3OSγ = 118.996 (9)°
Mr = 390.27V = 857.25 (13) Å3
Triclinic, P1Z = 2
a = 8.3015 (7) ÅMo Kα radiation
b = 8.3053 (7) ŵ = 0.51 mm1
c = 14.4374 (13) ÅT = 295 K
α = 97.180 (7)°0.40 × 0.30 × 0.20 mm
β = 92.644 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3932 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2659 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.028
8391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 0.98Δρmax = 0.27 e Å3
3932 reflectionsΔρmin = 0.24 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83905 (10)0.40968 (12)0.15939 (6)0.0701 (3)
Cl20.16453 (12)0.30193 (13)0.04111 (6)0.0730 (3)
S11.00105 (10)0.30491 (9)0.41463 (5)0.0493 (2)
O10.6883 (3)0.3049 (3)0.32904 (14)0.0540 (5)
C10.5593 (3)0.3020 (3)0.26664 (19)0.0429 (6)
C20.6151 (4)0.3510 (3)0.1799 (2)0.0462 (6)
C30.4962 (4)0.3525 (3)0.1110 (2)0.0494 (6)
H30.53540.38470.05340.059*
C40.3174 (4)0.3053 (3)0.12837 (19)0.0476 (6)
C50.2607 (4)0.2588 (4)0.2137 (2)0.0522 (7)
H50.14080.22860.22520.063*
C60.3797 (4)0.2565 (4)0.2827 (2)0.0497 (6)
H60.33960.22440.34020.060*
C70.6268 (4)0.2235 (4)0.40983 (19)0.0492 (6)
H7A0.52520.09640.39200.059*
H7B0.58440.29460.44970.059*
C80.7883 (4)0.2255 (3)0.46024 (18)0.0431 (6)
C91.0864 (4)0.2605 (3)0.51522 (18)0.0444 (6)
C101.0183 (4)0.1610 (4)0.6497 (2)0.0506 (6)
H100.95730.11540.70090.061*
C111.1978 (4)0.2117 (3)0.63753 (18)0.0444 (6)
C121.3346 (4)0.2063 (3)0.70303 (19)0.0455 (6)
C131.5166 (4)0.2710 (4)0.6864 (2)0.0538 (7)
H131.55490.32040.63190.065*
C141.6426 (4)0.2638 (4)0.7489 (2)0.0584 (7)
H141.76440.30990.73580.070*
C151.5936 (4)0.1901 (4)0.8307 (2)0.0541 (7)
C161.4112 (5)0.1263 (4)0.8480 (2)0.0650 (8)
H161.37320.07690.90250.078*
C171.2846 (4)0.1347 (4)0.7856 (2)0.0607 (8)
H171.16350.09150.79930.073*
C181.7309 (5)0.1820 (4)0.8983 (2)0.0712 (9)
H18A1.81260.15320.86400.107*
H18B1.66610.08690.93550.107*
H18C1.80190.30060.93890.107*
N10.7783 (3)0.1707 (3)0.54018 (17)0.0506 (5)
N20.9469 (3)0.1916 (3)0.57041 (15)0.0448 (5)
N31.2402 (3)0.2741 (3)0.55163 (15)0.0483 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0431 (4)0.1083 (6)0.0602 (5)0.0340 (4)0.0157 (4)0.0301 (4)
Cl20.0630 (5)0.1060 (6)0.0645 (5)0.0519 (5)0.0016 (4)0.0230 (5)
S10.0468 (4)0.0648 (4)0.0379 (4)0.0278 (3)0.0067 (3)0.0129 (3)
O10.0417 (10)0.0749 (11)0.0495 (12)0.0280 (9)0.0083 (9)0.0273 (9)
C10.0371 (13)0.0467 (12)0.0439 (15)0.0189 (11)0.0054 (11)0.0120 (11)
C20.0374 (14)0.0519 (13)0.0486 (16)0.0202 (12)0.0068 (12)0.0136 (12)
C30.0496 (16)0.0583 (15)0.0438 (16)0.0277 (14)0.0094 (13)0.0153 (12)
C40.0454 (15)0.0534 (13)0.0480 (16)0.0273 (12)0.0015 (12)0.0108 (12)
C50.0411 (15)0.0637 (15)0.0578 (18)0.0289 (13)0.0095 (14)0.0165 (14)
C60.0447 (15)0.0623 (15)0.0467 (16)0.0275 (13)0.0112 (13)0.0174 (13)
C70.0462 (15)0.0559 (14)0.0464 (16)0.0244 (13)0.0061 (13)0.0155 (12)
C80.0450 (14)0.0421 (12)0.0401 (15)0.0201 (11)0.0035 (12)0.0070 (11)
C90.0441 (14)0.0473 (13)0.0389 (15)0.0212 (12)0.0047 (12)0.0047 (11)
C100.0479 (16)0.0593 (14)0.0470 (16)0.0263 (13)0.0054 (13)0.0188 (13)
C110.0471 (15)0.0400 (12)0.0432 (15)0.0208 (11)0.0017 (12)0.0039 (11)
C120.0445 (15)0.0424 (12)0.0434 (15)0.0193 (12)0.0055 (12)0.0001 (11)
C130.0531 (17)0.0679 (16)0.0442 (16)0.0328 (14)0.0044 (13)0.0102 (13)
C140.0512 (17)0.0751 (18)0.0528 (18)0.0372 (15)0.0016 (14)0.0013 (15)
C150.0609 (19)0.0463 (14)0.0535 (18)0.0282 (14)0.0088 (14)0.0016 (12)
C160.066 (2)0.0637 (17)0.0558 (19)0.0232 (16)0.0040 (16)0.0218 (15)
C170.0493 (17)0.0652 (17)0.0586 (19)0.0193 (14)0.0005 (15)0.0217 (15)
C180.072 (2)0.0674 (17)0.075 (2)0.0387 (17)0.0184 (18)0.0059 (17)
N10.0425 (13)0.0618 (12)0.0509 (14)0.0255 (11)0.0078 (11)0.0217 (11)
N20.0397 (12)0.0514 (11)0.0443 (13)0.0218 (10)0.0059 (10)0.0141 (10)
N30.0427 (12)0.0599 (12)0.0424 (13)0.0252 (11)0.0050 (10)0.0107 (10)
Geometric parameters (Å, º) top
Cl1—C21.729 (3)C10—C111.365 (4)
Cl2—C41.734 (3)C10—N21.373 (3)
S1—C91.743 (3)C10—H100.9300
S1—C81.753 (3)C11—N31.398 (3)
O1—C11.356 (3)C11—C121.465 (4)
O1—C71.413 (3)C12—C131.381 (4)
C1—C61.388 (4)C12—C171.390 (4)
C1—C21.395 (4)C13—C141.379 (4)
C2—C31.374 (4)C13—H130.9300
C3—C41.384 (4)C14—C151.384 (4)
C3—H30.9300C14—H140.9300
C4—C51.373 (4)C15—C161.388 (4)
C5—C61.378 (4)C15—C181.499 (4)
C5—H50.9300C16—C171.386 (4)
C6—H60.9300C16—H160.9300
C7—C81.487 (4)C17—H170.9300
C7—H7A0.9700C18—H18A0.9600
C7—H7B0.9700C18—H18B0.9600
C8—N11.284 (3)C18—H18C0.9600
C9—N31.305 (3)N1—N21.367 (3)
C9—N21.364 (3)
C9—S1—C888.01 (12)N2—C10—H10127.3
C1—O1—C7117.4 (2)C10—C11—N3110.8 (2)
O1—C1—C6125.4 (2)C10—C11—C12126.9 (3)
O1—C1—C2116.3 (2)N3—C11—C12122.2 (2)
C6—C1—C2118.3 (3)C13—C12—C17117.1 (3)
C3—C2—C1121.5 (2)C13—C12—C11122.4 (3)
C3—C2—Cl1119.7 (2)C17—C12—C11120.5 (2)
C1—C2—Cl1118.7 (2)C14—C13—C12121.3 (3)
C2—C3—C4119.2 (3)C14—C13—H13119.3
C2—C3—H3120.4C12—C13—H13119.3
C4—C3—H3120.4C13—C14—C15122.0 (3)
C5—C4—C3120.1 (3)C13—C14—H14119.0
C5—C4—Cl2120.3 (2)C15—C14—H14119.0
C3—C4—Cl2119.6 (2)C14—C15—C16116.8 (3)
C4—C5—C6120.7 (2)C14—C15—C18121.9 (3)
C4—C5—H5119.6C16—C15—C18121.3 (3)
C6—C5—H5119.6C17—C16—C15121.2 (3)
C5—C6—C1120.2 (3)C17—C16—H16119.4
C5—C6—H6119.9C15—C16—H16119.4
C1—C6—H6119.9C16—C17—C12121.5 (3)
O1—C7—C8106.6 (2)C16—C17—H17119.3
O1—C7—H7A110.4C12—C17—H17119.3
C8—C7—H7A110.4C15—C18—H18A109.5
O1—C7—H7B110.4C15—C18—H18B109.5
C8—C7—H7B110.4H18A—C18—H18B109.5
H7A—C7—H7B108.6C15—C18—H18C109.5
N1—C8—C7121.1 (2)H18A—C18—H18C109.5
N1—C8—S1116.9 (2)H18B—C18—H18C109.5
C7—C8—S1121.93 (19)C8—N1—N2108.3 (2)
N3—C9—N2113.1 (2)C9—N2—N1118.9 (2)
N3—C9—S1139.0 (2)C9—N2—C10106.8 (2)
N2—C9—S1107.86 (19)N1—N2—C10134.3 (2)
C11—C10—N2105.4 (2)C9—N3—C11103.8 (2)
C11—C10—H10127.3
C7—O1—C1—C612.1 (4)C10—C11—C12—C173.8 (4)
C7—O1—C1—C2168.5 (2)N3—C11—C12—C17176.8 (2)
O1—C1—C2—C3179.8 (2)C17—C12—C13—C140.3 (4)
C6—C1—C2—C30.8 (4)C11—C12—C13—C14179.7 (2)
O1—C1—C2—Cl10.1 (3)C12—C13—C14—C150.7 (4)
C6—C1—C2—Cl1179.52 (18)C13—C14—C15—C161.2 (4)
C1—C2—C3—C40.4 (4)C13—C14—C15—C18179.8 (3)
Cl1—C2—C3—C4179.96 (18)C14—C15—C16—C170.6 (4)
C2—C3—C4—C50.4 (4)C18—C15—C16—C17179.7 (3)
C2—C3—C4—Cl2178.67 (19)C15—C16—C17—C120.4 (4)
C3—C4—C5—C60.7 (4)C13—C12—C17—C160.8 (4)
Cl2—C4—C5—C6178.4 (2)C11—C12—C17—C16179.2 (3)
C4—C5—C6—C10.2 (4)C7—C8—N1—N2178.7 (2)
O1—C1—C6—C5179.9 (2)S1—C8—N1—N20.5 (3)
C2—C1—C6—C50.5 (4)N3—C9—N2—N1179.9 (2)
C1—O1—C7—C8173.7 (2)S1—C9—N2—N10.0 (3)
O1—C7—C8—N1175.6 (2)N3—C9—N2—C100.9 (3)
O1—C7—C8—S13.6 (3)S1—C9—N2—C10178.94 (16)
C9—S1—C8—N10.4 (2)C8—N1—N2—C90.3 (3)
C9—S1—C8—C7178.8 (2)C8—N1—N2—C10178.3 (3)
C8—S1—C9—N3179.7 (3)C11—C10—N2—C90.6 (3)
C8—S1—C9—N20.19 (17)C11—C10—N2—N1179.3 (2)
N2—C10—C11—N30.1 (3)N2—C9—N3—C110.8 (3)
N2—C10—C11—C12179.6 (2)S1—C9—N3—C11179.0 (2)
C10—C11—C12—C13176.2 (2)C10—C11—N3—C90.4 (3)
N3—C11—C12—C133.2 (3)C12—C11—N3—C9179.1 (2)

Experimental details

Crystal data
Chemical formulaC18H13Cl2N3OS
Mr390.27
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.3015 (7), 8.3053 (7), 14.4374 (13)
α, β, γ (°)97.180 (7), 92.644 (7), 118.996 (9)
V3)857.25 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8391, 3932, 2659
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.172, 0.98
No. of reflections3932
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Farghaly, M. & Badria, F. A. (2011). Pharm. Chem. J. 45, 30–35.  CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Prasad, D. J., Castelino, P. A. & Anitha, V. V. (2011). Acta Cryst. E67, o254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarki, S. S., Panjamurthy, K., Kumar, S., Nambiar, M., Ramareddy, S. A., Chiruvella, K. K. & Raghavan, S. C. (2011). Eur. J. Med. Chem. 46, 2109–2116.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhazi, I. A. M., Gadad, A. K., Lamani, R. S. & Bhongade, B. A. (2011). Tetrahedron, 67, 3289–3316.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds