organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o414-o415

3-(4-Chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 February 2013; accepted 14 February 2013; online 20 February 2013)

In the title compound, C16H13ClFN3S, the pyrazole ring adopts an envelope conformation with the methine C atom being the flap atom. The chloro- and fluoro­benzene rings are twisted out of the plane of the pyrazole ring [dihedral angles = 15.12 (11) and 80.55 (10)°, respectively]. The amine group is orientated towards a ring N atom, forming an intra­molecular N—H⋯N hydrogen bond. This H atom also forms a hydrogen bond to the F atom, which along with N—H⋯S hydrogen bonding leads to a supra­molecular chain along the c axis. Connections between chains of the type Cl⋯π lead to a layer in the bc plane.

Related literature

For the biological activity of pyrazolin-1-yl­thia­zoles, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.], 2012[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263-268.]); Chimenti et al. (2010[Chimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800-804.]). For related structures, see: Chantrapromma et al. (2012[Chantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830-o831.]); Abdel-Wahab et al. (2013[Abdel-Wahab, B. F., Mohamed, H. A., Khidre, R. E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o386.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClFN3S

  • Mr = 333.80

  • Monoclinic, P 21 /c

  • a = 14.5402 (9) Å

  • b = 11.2700 (8) Å

  • c = 9.5169 (6) Å

  • β = 103.850 (6)°

  • V = 1514.17 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 295 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.898, Tmax = 1.000

  • 10191 measured reflections

  • 3478 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.01

  • 3478 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯N1 0.88 2.24 2.617 (2) 106
N3—H31⋯F1i 0.88 2.41 3.257 (2) 163
N3—H32⋯S1ii 0.88 2.81 3.5203 (19) 139
C4—Cl1⋯Cg1iii 1.735 (2) 3.9240 (12) 4.183 (2) 86.17 (17)
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyrazolin-1-ylthiazole derivatives are known to exhibit biological potential (Abdel-Wahab et al., 2012; Abdel-Wahab et al., 2009; Chimenti et al., 2010) and motivated the investigation of the title compound, (I).

The central pyrazolyl ring in (I), Fig. 1, adopts an envelope conformation with the methine-C9 atom being the flap atom. The amine group is orientated towards the ring-N2 atom, forming a hydrogen bond, Table 1, assisted by the near co-planar relationship between the thioamide group and the pyrazolyl ring with the N1—N2—C16—N3 torsion angle being -0.7 (2)°. Both the chloro- and fluoro-benzene rings are twisted out of the least-squares plane through the five-membered ring, forming dihedral angles of 15.12 (11) and 80.55 (10)°, respectively. Quite similar conformations have been observed in related structures bearing two six-membered rings (Chantrapromma et al., 2012; Abdel-Wahab et al., 2013).

In the crystal packing, the amine-H31 atom participating in the intramolecular N—H···N hydrogen bond also forms a hydrogen bond to the F1 atom, Table 1. This interaction along with an N—H···S hydrogen bond leads to a supramolecular chain along the c axis, Table 1. Chains are connected into a layer in the bc plane by Cl···π interactions, Fig. 2 and Table 1. Layers stack along the a axis without specific interactions between them, Fig. 3.

Related literature top

For the biological activity of pyrazolin-1-ylthiazoles, see: Abdel-Wahab et al. (2009, 2012); Chimenti et al. (2010). For related structures, see: Chantrapromma et al. (2012); Abdel-Wahab et al. (2013).

Experimental top

To a suspension of (E)-1-(4-chlorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (1 mmol, 0.26 g) and sodium hydroxide (2.5 mmol, 1.0 g) in ethanol (20 ml), thiosemicarbazide (1.2 mmol, 0.11 g) was added. The mixture was refluxed for 12 h, then left to cool. The solid product was filtered off, washed with ethanol and dried. Recrystallization was by slow evaporation of its DMF solution.

Refinement top

Nitrogen- and carbon-bound H-atoms were placed in calculated positions (N—H = 0.88 Å, and C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2–1.5Uequiv(N,C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular layer in the bc plane in (I) mediated by N—H···S, N—H···F and Cl···π interactions, shown as orange, blue and purple dashed lines, respectively.
[Figure 3] Fig. 3. A view of the crystal packing in projection down the c axis. The N—H···S, N—H···F and Cl···π interactions are shown as orange, blue and purple dashed lines, respectively.
3-(4-Chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide top
Crystal data top
C16H13ClFN3SF(000) = 688
Mr = 333.80Dx = 1.464 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2717 reflections
a = 14.5402 (9) Åθ = 2.9–27.5°
b = 11.2700 (8) ŵ = 0.40 mm1
c = 9.5169 (6) ÅT = 295 K
β = 103.850 (6)°Prism, colourless
V = 1514.17 (17) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3478 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2570 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scanh = 1518
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1411
Tmin = 0.898, Tmax = 1.000l = 1212
10191 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.4541P]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H13ClFN3SV = 1514.17 (17) Å3
Mr = 333.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5402 (9) ŵ = 0.40 mm1
b = 11.2700 (8) ÅT = 295 K
c = 9.5169 (6) Å0.40 × 0.30 × 0.20 mm
β = 103.850 (6)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3478 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2570 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 1.000Rint = 0.031
10191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
3478 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54931 (5)0.65490 (7)0.48095 (8)0.0811 (3)
S10.01110 (4)1.16708 (5)0.15948 (5)0.04527 (17)
F10.27125 (11)1.14248 (13)0.60633 (13)0.0658 (4)
N10.20984 (11)1.00001 (15)0.08010 (15)0.0379 (4)
N20.13525 (11)1.03202 (14)0.03592 (15)0.0368 (4)
N30.10065 (13)1.17944 (16)0.10514 (17)0.0463 (4)
H310.14831.15420.17410.056*
H320.06691.24070.12070.056*
C10.31834 (13)0.83907 (18)0.1544 (2)0.0381 (4)
C20.37595 (15)0.9020 (2)0.2678 (2)0.0498 (5)
H20.36610.98290.27720.060*
C30.44754 (16)0.8454 (2)0.3665 (2)0.0559 (6)
H30.48600.88790.44190.067*
C40.46163 (14)0.7261 (2)0.3529 (2)0.0505 (6)
C50.40755 (15)0.6624 (2)0.2408 (3)0.0533 (6)
H50.41870.58190.23140.064*
C60.33602 (14)0.7194 (2)0.1414 (2)0.0476 (5)
H60.29930.67660.06470.057*
C70.23925 (13)0.89711 (18)0.05223 (19)0.0366 (4)
C80.18302 (14)0.84371 (17)0.08689 (19)0.0394 (4)
H8A0.14240.78020.06870.047*
H8B0.22420.81360.14520.047*
C90.12464 (13)0.95057 (17)0.15998 (18)0.0365 (4)
H90.05810.92820.19660.044*
C100.16342 (12)1.00448 (17)0.27969 (17)0.0330 (4)
C110.23938 (13)1.08168 (18)0.24895 (19)0.0403 (5)
H110.26561.10320.15340.048*
C120.27723 (14)1.12774 (19)0.3580 (2)0.0442 (5)
H120.32881.17910.33700.053*
C130.23618 (15)1.09503 (19)0.4978 (2)0.0430 (5)
C140.16111 (15)1.01890 (19)0.53370 (19)0.0463 (5)
H140.13500.99830.62960.056*
C150.12497 (14)0.97331 (18)0.42252 (19)0.0400 (4)
H150.07410.92100.44420.048*
C160.07946 (13)1.12480 (17)0.02300 (19)0.0352 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0556 (4)0.0764 (5)0.0967 (5)0.0061 (3)0.0106 (3)0.0318 (4)
S10.0410 (3)0.0485 (4)0.0446 (3)0.0047 (2)0.0067 (2)0.0045 (2)
F10.0922 (10)0.0679 (10)0.0444 (7)0.0139 (8)0.0304 (7)0.0066 (6)
N10.0384 (8)0.0440 (10)0.0306 (7)0.0025 (7)0.0068 (6)0.0007 (7)
N20.0406 (8)0.0402 (10)0.0295 (7)0.0046 (7)0.0080 (6)0.0024 (6)
N30.0537 (10)0.0438 (10)0.0409 (9)0.0073 (8)0.0106 (7)0.0069 (7)
C10.0368 (10)0.0409 (12)0.0380 (9)0.0007 (8)0.0116 (7)0.0033 (8)
C20.0544 (13)0.0427 (13)0.0485 (12)0.0034 (10)0.0045 (9)0.0004 (9)
C30.0520 (13)0.0587 (16)0.0488 (12)0.0014 (11)0.0041 (10)0.0004 (10)
C40.0349 (10)0.0542 (15)0.0606 (13)0.0006 (10)0.0078 (9)0.0182 (11)
C50.0412 (11)0.0397 (13)0.0768 (15)0.0024 (10)0.0094 (10)0.0066 (11)
C60.0400 (11)0.0449 (13)0.0565 (12)0.0026 (9)0.0091 (9)0.0029 (10)
C70.0360 (10)0.0397 (12)0.0361 (9)0.0015 (8)0.0129 (7)0.0007 (8)
C80.0462 (11)0.0372 (11)0.0355 (9)0.0004 (9)0.0111 (8)0.0002 (8)
C90.0364 (9)0.0401 (11)0.0324 (9)0.0022 (8)0.0074 (7)0.0048 (8)
C100.0329 (9)0.0343 (10)0.0307 (8)0.0027 (8)0.0056 (7)0.0015 (7)
C110.0412 (10)0.0458 (12)0.0313 (9)0.0044 (9)0.0033 (7)0.0028 (8)
C120.0431 (11)0.0462 (13)0.0437 (11)0.0074 (9)0.0114 (8)0.0010 (9)
C130.0575 (12)0.0397 (12)0.0354 (10)0.0030 (10)0.0181 (9)0.0038 (8)
C140.0605 (13)0.0466 (13)0.0289 (9)0.0014 (10)0.0053 (8)0.0020 (8)
C150.0440 (11)0.0380 (11)0.0350 (9)0.0046 (9)0.0037 (8)0.0030 (8)
C160.0378 (9)0.0351 (11)0.0358 (9)0.0042 (8)0.0148 (7)0.0024 (8)
Geometric parameters (Å, º) top
Cl1—C41.735 (2)C5—H50.9300
S1—C161.6821 (19)C6—H60.9300
F1—C131.365 (2)C7—C81.505 (2)
N1—C71.285 (2)C8—C91.540 (3)
N1—N21.397 (2)C8—H8A0.9700
N2—C161.347 (2)C8—H8B0.9700
N2—C91.474 (2)C9—C101.514 (3)
N3—C161.335 (2)C9—H90.9800
N3—H310.8800C10—C111.381 (3)
N3—H320.8800C10—C151.386 (2)
C1—C61.384 (3)C11—C121.386 (3)
C1—C21.392 (3)C11—H110.9300
C1—C71.470 (3)C12—C131.373 (3)
C2—C31.380 (3)C12—H120.9300
C2—H20.9300C13—C141.366 (3)
C3—C41.371 (3)C14—C151.388 (3)
C3—H30.9300C14—H140.9300
C4—C51.367 (3)C15—H150.9300
C5—C61.385 (3)
C7—N1—N2107.67 (15)C7—C8—H8B111.4
C16—N2—N1119.92 (15)C9—C8—H8B111.4
C16—N2—C9127.35 (15)H8A—C8—H8B109.2
N1—N2—C9112.63 (14)N2—C9—C10111.49 (15)
C16—N3—H31120.0N2—C9—C8100.63 (13)
C16—N3—H32120.0C10—C9—C8112.91 (15)
H31—N3—H32120.0N2—C9—H9110.5
C6—C1—C2118.41 (18)C10—C9—H9110.5
C6—C1—C7120.48 (18)C8—C9—H9110.5
C2—C1—C7121.10 (19)C11—C10—C15118.82 (17)
C3—C2—C1120.5 (2)C11—C10—C9121.08 (15)
C3—C2—H2119.7C15—C10—C9120.06 (17)
C1—C2—H2119.7C10—C11—C12121.19 (17)
C4—C3—C2119.7 (2)C10—C11—H11119.4
C4—C3—H3120.2C12—C11—H11119.4
C2—C3—H3120.2C13—C12—C11117.83 (19)
C3—C4—C5121.16 (19)C13—C12—H12121.1
C3—C4—Cl1119.23 (17)C11—C12—H12121.1
C5—C4—Cl1119.61 (19)C14—C13—F1118.55 (17)
C4—C5—C6119.1 (2)C14—C13—C12123.16 (18)
C4—C5—H5120.4F1—C13—C12118.28 (19)
C6—C5—H5120.4C13—C14—C15117.89 (17)
C5—C6—C1121.1 (2)C13—C14—H14121.1
C5—C6—H6119.5C15—C14—H14121.1
C1—C6—H6119.5C10—C15—C14121.10 (18)
N1—C7—C1120.74 (17)C10—C15—H15119.4
N1—C7—C8113.88 (16)C14—C15—H15119.4
C1—C7—C8125.33 (18)N3—C16—N2115.42 (16)
C7—C8—C9102.08 (15)N3—C16—S1122.79 (16)
C7—C8—H8A111.4N2—C16—S1121.78 (14)
C9—C8—H8A111.4
C7—N1—N2—C16167.15 (16)C16—N2—C9—C8159.69 (18)
C7—N1—N2—C99.4 (2)N1—N2—C9—C816.59 (19)
C6—C1—C2—C31.4 (3)C7—C8—C9—N216.22 (18)
C7—C1—C2—C3177.32 (19)C7—C8—C9—C10102.72 (17)
C1—C2—C3—C40.3 (3)N2—C9—C10—C1131.9 (2)
C2—C3—C4—C51.8 (4)C8—C9—C10—C1180.5 (2)
C2—C3—C4—Cl1177.91 (17)N2—C9—C10—C15150.42 (17)
C3—C4—C5—C61.4 (4)C8—C9—C10—C1597.1 (2)
Cl1—C4—C5—C6178.23 (17)C15—C10—C11—C120.1 (3)
C4—C5—C6—C10.3 (3)C9—C10—C11—C12177.60 (18)
C2—C1—C6—C51.7 (3)C10—C11—C12—C130.6 (3)
C7—C1—C6—C5177.00 (19)C11—C12—C13—C140.7 (3)
N2—N1—C7—C1179.67 (16)C11—C12—C13—F1178.21 (18)
N2—N1—C7—C82.9 (2)F1—C13—C14—C15178.68 (19)
C6—C1—C7—N1165.27 (18)C12—C13—C14—C150.2 (3)
C2—C1—C7—N113.4 (3)C11—C10—C15—C140.4 (3)
C6—C1—C7—C811.9 (3)C9—C10—C15—C14178.12 (18)
C2—C1—C7—C8169.41 (19)C13—C14—C15—C100.3 (3)
N1—C7—C8—C912.9 (2)N1—N2—C16—N30.7 (2)
C1—C7—C8—C9169.76 (17)C9—N2—C16—N3175.38 (17)
C16—N2—C9—C1080.3 (2)N1—N2—C16—S1179.89 (13)
N1—N2—C9—C10103.38 (17)C9—N2—C16—S14.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H31···N10.882.242.617 (2)106
N3—H31···F1i0.882.413.257 (2)163
N3—H32···S1ii0.882.813.5203 (19)139
C4—Cl1···Cg1iii1.74 (1)3.92 (1)4.183 (2)86 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y+5/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClFN3S
Mr333.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)14.5402 (9), 11.2700 (8), 9.5169 (6)
β (°) 103.850 (6)
V3)1514.17 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.898, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10191, 3478, 2570
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.111, 1.01
No. of reflections3478
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H31···N10.882.242.617 (2)106
N3—H31···F1i0.882.413.257 (2)163
N3—H32···S1ii0.882.813.5203 (19)139
C4—Cl1···Cg1iii1.735 (2)3.9240 (12)4.183 (2)86.17 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y+5/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Mohamed, H. A., Khidre, R. E., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o386.  Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChantrapromma, S., Nonthason, P., Suwunwong, T. & Fun, H.-K. (2012). Acta Cryst. E68, o830–o831.  CSD CrossRef IUCr Journals Google Scholar
First citationChimenti, F., Carradori, S., Secci, D., Bolasco, A., Bizzarri, B., Chimenti, P., Granese, A., Yáñez, M. & Orallo, F. (2010). Eur. J. Med. Chem. 45, 800–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o414-o415
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds