organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o435-o436

Ethyl 2-amino-4-(4-bromo­phen­yl)-6-meth­­oxy-4H-benzo[h]chromene-3-carboxyl­ate

aChemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt, cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, eApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, fDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and gChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 February 2013; accepted 19 February 2013; online 23 February 2013)

In the title compound, C23H20BrNO4, the pyran ring has a flattened boat conformation with the O and methine C atoms lying to one side of the plane [0.160 (5) and 0.256 (6) Å, respectively] defined by the remaining atoms. Nevertheless, the 4H-benzo[h]chromene ring system approximates a plane (r.m.s. deviation = 0.116 Å) with the bromo­benzene ring almost perpendicular [dihedral angle = 83.27 (16)°] and the ester group coplanar [C—C—C—O = 3.4 (5)°]; the meth­oxy substituent is also coplanar [C—O—C—C = 174.5 (3)°]. In addition to an intra­molecular N—H⋯O(ester carbon­yl) hydrogen bond, the ester carbonyl O atom also forms an inter­molecular N—H⋯O hydrogen bond with the second amine H atom, generating a zigzag supra­molecular chain along the c axis in the crystal packing. The chains are linked into layers in the bc plane by N—H⋯Br hydrogen bonds, and these layers are consolidated into a three-dimensional architecture by C—H⋯π inter­actions.

Related literature

For background to the pharmaceutical activity of 4H-chromene and its derivatives, see: Abd-El-Aziz et al. (2004[Abd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793-1812.], 2007[Abd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287-1301.]); Kemnitzer et al. (2007[Kemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Zhao, J., Crogan-Grundy, C., Xu, L., Lamothe, S., Gourdeau, H., Denis, R., Tseng, B., Kasibhatla, S. & Cai, S. X. (2007). J. Med. Chem. 50, 2858-2864.]); Alvey et al. (2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]). For the isostructural 4-fluoro analogue, see: El-Agrody et al. (2012[El-Agrody, A. M., Al-Omar, M. A., Amr, A.-G. E., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1803-o1804.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20BrNO4

  • Mr = 454.31

  • Monoclinic, P 21 /c

  • a = 13.1543 (14) Å

  • b = 16.8110 (18) Å

  • c = 9.3672 (12) Å

  • β = 96.628 (10)°

  • V = 2057.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.828, Tmax = 1.000

  • 12041 measured reflections

  • 4740 independent reflections

  • 2533 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.164

  • S = 1.02

  • 4740 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1,C2,C7–C10, C17–C22 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯O2 0.88 (1) 2.09 (5) 2.744 (5) 131 (5)
N1—H1⋯O2i 0.88 (1) 2.22 (2) 3.075 (5) 163 (3)
N1—H2⋯Br1ii 0.88 (4) 2.76 (4) 3.547 (4) 149 (5)
C4—H4⋯Cg1i 0.93 2.90 3.673 (5) 142
C6—H6⋯Cg2iii 0.93 2.98 3.743 (5) 140
C23—H23CCg3iii 0.96 2.70 3.593 (5) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4H-Chromene and its derivatives are biologically interesting compounds known for their anti-microbial, anti-fungal and other pharmaceutical activities (Alvey et al., 2009; Kemnitzer et al., 2007). In continuation of on-going interest in the chemical and pharmacological properties of 4H-chromene and fused 4H-chromene derivatives (Abd-El-Aziz et al., 2004; Abd-El-Aziz et al., 2007), the crystal structure of the title compound, (I), is described herein.

The molecular structure of (I), Fig. 1, is isostructural to the recently reported 4-fluoro analogue (El-Agrody et al., 2012). The pyran ring has a flattened boat conformation with the O1 and C11 atoms lying 0.160 (5) and 0.256 (6) Å, respectively, out of the plane defined by the four remaining atoms (r.m.s. deviation = 0.0174 Å). Overall, the 4H-benzo[h]chromene ring system is approximately planar with the r.m.s. deviation of the 14 non-hydrogen atoms being 0.116 Å. The bromobenzene ring is almost perpendicular to this plane, forming a dihedral angle of 83.27 (16)°. By contrast, the ester group, with an anti conformation [C14—O3—C15—C16 torsion angle = -166.9 (4)°], is co-planar [C11—C12—C14—O3 = 3.4 (5)°] due, in part, to an intramolecular N—H···O2 hydrogen bond, Table 1. The methoxy [C23—O4—C7—C7 = 174.5 (3)°] substituent is also co-planar to the ring to which it is attached.

Zigzag (glide symmetry) supramolecular chains along the c axis feature in the crystal packing owing to N—H···O2 hydrogen bonding, Fig. 2 and Table 1. Chains are linked into layers in the bc plane by N—H···Br hydrogen bonds involving the H atom involved in the intramolecular interaction to the O2 atom, Table 1. A consequence of this interaction is that the Br1 and O2 atoms are brought into close proximity, i.e. Br1···O2i = 3.179 (3) Å [i: -x, 1/2 + y, 3/2 - z]. The three-dimensional architecture is consolidated by C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to the pharmaceutical activity of 4H-chromene and its derivatives, see: Abd-El-Aziz et al. (2004, 2007); Kemnitzer et al. (2007); Alvey et al. (2009). For the isostructural 4-fluoro analogue, see: El-Agrody et al. (2012).

Experimental top

A solution of 4-methoxy-1-naphthol (0.01 mol) in EtOH (30 ml) was treated with ethyl α-cyano-p-bromocinnamate (0.01 mol) and piperidine (0.5 ml). The reaction mixture was heated until complete precipitation occurred after 2 h. The solid product was collected by filtration and recrystallized from ethanol to give (I); M.pt: 438–439 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound-H atom was refined with the distance restraint N—H = 0.88±0.01 Å and free Uiso.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the zigzag supramolecular chain along the c axis in (I) sustained by N—H···N hydrogen bonds, shown as blue dashed lines.
[Figure 3] Fig. 3. view in projection down the c axis of the crystal packing in (I). The N—H···N, N—H···Br and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
Ethyl 2-amino-4-(4-bromophenyl)-6-methoxy-4H-benzo[h]chromene-3-carboxylate top
Crystal data top
C23H20BrNO4F(000) = 928
Mr = 454.31Dx = 1.467 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1932 reflections
a = 13.1543 (14) Åθ = 2.8–27.5°
b = 16.8110 (18) ŵ = 2.03 mm1
c = 9.3672 (12) ÅT = 295 K
β = 96.628 (10)°Plate, light-orange
V = 2057.6 (4) Å30.30 × 0.20 × 0.03 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4740 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2533 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1617
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2121
Tmin = 0.828, Tmax = 1.000l = 712
12041 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.7996P]
where P = (Fo2 + 2Fc2)/3
4740 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.91 e Å3
2 restraintsΔρmin = 0.90 e Å3
Crystal data top
C23H20BrNO4V = 2057.6 (4) Å3
Mr = 454.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1543 (14) ŵ = 2.03 mm1
b = 16.8110 (18) ÅT = 295 K
c = 9.3672 (12) Å0.30 × 0.20 × 0.03 mm
β = 96.628 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4740 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2533 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 1.000Rint = 0.054
12041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.91 e Å3
4740 reflectionsΔρmin = 0.90 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04105 (4)0.70821 (4)0.50571 (7)0.0900 (3)
O10.30720 (18)0.30429 (15)0.7238 (3)0.0464 (7)
O20.1283 (2)0.34197 (17)1.0635 (3)0.0539 (7)
O30.1749 (2)0.47024 (17)1.0602 (3)0.0558 (7)
O40.6285 (2)0.50690 (18)0.6512 (3)0.0634 (8)
N10.1869 (3)0.2527 (2)0.8418 (4)0.0538 (9)
H20.138 (3)0.260 (4)0.897 (5)0.11 (2)*
H10.182 (3)0.2203 (18)0.768 (3)0.044 (12)*
C10.3874 (3)0.3580 (2)0.7136 (4)0.0397 (9)
C20.4654 (3)0.3302 (2)0.6337 (4)0.0399 (9)
C30.4637 (3)0.2537 (2)0.5709 (4)0.0447 (9)
H30.40950.21940.58070.054*
C40.5416 (3)0.2300 (3)0.4959 (4)0.0533 (11)
H40.54040.17920.45620.064*
C50.6228 (3)0.2812 (3)0.4783 (5)0.0613 (12)
H50.67520.26440.42670.074*
C60.6260 (3)0.3553 (3)0.5359 (5)0.0579 (12)
H60.68020.38890.52230.069*
C70.5480 (3)0.3824 (2)0.6167 (4)0.0436 (9)
C80.5483 (3)0.4599 (2)0.6797 (4)0.0464 (10)
C90.4730 (3)0.4824 (2)0.7582 (4)0.0463 (10)
H90.47560.53250.80070.056*
C100.3900 (3)0.4308 (2)0.7768 (4)0.0409 (9)
C110.3054 (3)0.4576 (2)0.8616 (4)0.0428 (9)
H110.33690.48290.95010.051*
C120.2446 (3)0.3864 (2)0.9034 (4)0.0390 (9)
C130.2453 (3)0.3168 (2)0.8286 (4)0.0394 (9)
C140.1773 (3)0.3946 (2)1.0137 (4)0.0428 (9)
C150.1070 (4)0.4882 (3)1.1673 (5)0.0741 (14)
H15A0.13430.46691.26010.089*
H15B0.04000.46521.14010.089*
C160.0999 (5)0.5766 (3)1.1742 (6)0.097 (2)
H16A0.05500.59131.24350.146*
H16B0.07360.59681.08140.146*
H16C0.16670.59841.20200.146*
C170.2379 (3)0.5190 (2)0.7770 (4)0.0426 (9)
C180.1791 (3)0.4979 (2)0.6511 (5)0.0516 (10)
H180.17890.44540.61990.062*
C190.1203 (3)0.5538 (3)0.5709 (5)0.0582 (12)
H190.08130.53920.48580.070*
C200.1202 (3)0.6312 (3)0.6184 (5)0.0568 (12)
C210.1771 (4)0.6536 (3)0.7419 (5)0.0659 (13)
H210.17640.70610.77310.079*
C220.2362 (3)0.5972 (3)0.8208 (5)0.0588 (12)
H220.27560.61240.90520.071*
C230.6286 (3)0.5869 (3)0.6996 (5)0.0624 (12)
H23A0.68790.61380.67250.094*
H23B0.63020.58780.80230.094*
H23C0.56800.61330.65660.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0945 (4)0.0850 (5)0.0981 (5)0.0486 (3)0.0437 (3)0.0394 (3)
O10.0453 (14)0.0431 (16)0.0537 (18)0.0112 (12)0.0179 (12)0.0067 (13)
O20.0601 (17)0.0524 (19)0.0521 (18)0.0043 (14)0.0187 (13)0.0031 (14)
O30.0770 (19)0.0445 (17)0.0495 (18)0.0043 (14)0.0229 (14)0.0045 (14)
O40.0519 (17)0.058 (2)0.083 (2)0.0210 (15)0.0179 (14)0.0057 (17)
N10.058 (2)0.046 (2)0.062 (3)0.0103 (19)0.0252 (19)0.0082 (19)
C10.0367 (19)0.042 (2)0.041 (2)0.0061 (17)0.0063 (16)0.0040 (18)
C20.0375 (19)0.042 (2)0.040 (2)0.0000 (17)0.0032 (15)0.0032 (18)
C30.043 (2)0.043 (2)0.047 (2)0.0030 (19)0.0062 (17)0.0026 (19)
C40.059 (3)0.050 (3)0.052 (3)0.004 (2)0.012 (2)0.006 (2)
C50.049 (3)0.069 (3)0.068 (3)0.001 (2)0.019 (2)0.008 (3)
C60.046 (2)0.063 (3)0.068 (3)0.007 (2)0.018 (2)0.002 (2)
C70.036 (2)0.047 (2)0.048 (2)0.0049 (18)0.0054 (16)0.0043 (19)
C80.041 (2)0.047 (2)0.051 (3)0.0103 (18)0.0025 (17)0.001 (2)
C90.045 (2)0.040 (2)0.054 (3)0.0053 (18)0.0043 (18)0.0024 (19)
C100.039 (2)0.041 (2)0.041 (2)0.0011 (17)0.0025 (16)0.0002 (18)
C110.049 (2)0.041 (2)0.039 (2)0.0021 (18)0.0034 (16)0.0040 (18)
C120.043 (2)0.036 (2)0.039 (2)0.0007 (17)0.0069 (16)0.0008 (17)
C130.0392 (19)0.037 (2)0.043 (2)0.0039 (17)0.0095 (16)0.0037 (18)
C140.044 (2)0.044 (2)0.040 (2)0.0026 (19)0.0023 (17)0.0041 (19)
C150.102 (4)0.071 (4)0.055 (3)0.018 (3)0.029 (3)0.008 (3)
C160.151 (6)0.073 (4)0.073 (4)0.044 (4)0.037 (4)0.005 (3)
C170.046 (2)0.035 (2)0.048 (2)0.0047 (17)0.0116 (17)0.0024 (18)
C180.060 (2)0.038 (2)0.056 (3)0.001 (2)0.007 (2)0.001 (2)
C190.056 (3)0.064 (3)0.054 (3)0.002 (2)0.007 (2)0.010 (2)
C200.056 (3)0.050 (3)0.070 (3)0.018 (2)0.031 (2)0.016 (2)
C210.093 (3)0.038 (3)0.072 (3)0.014 (2)0.032 (3)0.000 (2)
C220.077 (3)0.042 (3)0.058 (3)0.000 (2)0.012 (2)0.008 (2)
C230.061 (3)0.050 (3)0.074 (3)0.016 (2)0.001 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C201.903 (4)C9—H90.9300
O1—C131.362 (4)C10—C111.508 (5)
O1—C11.400 (4)C11—C121.517 (5)
O2—C141.218 (4)C11—C171.524 (5)
O3—C141.346 (5)C11—H110.9800
O3—C151.450 (5)C12—C131.364 (5)
O4—C81.369 (4)C12—C141.442 (5)
O4—C231.419 (5)C15—C161.489 (7)
N1—C131.338 (5)C15—H15A0.9700
N1—H20.876 (10)C15—H15B0.9700
N1—H10.878 (10)C16—H16A0.9600
C1—C101.359 (5)C16—H16B0.9600
C1—C21.417 (5)C16—H16C0.9600
C2—C31.413 (5)C17—C221.378 (5)
C2—C71.420 (5)C17—C181.380 (5)
C3—C41.366 (5)C18—C191.382 (6)
C3—H30.9300C18—H180.9300
C4—C51.397 (6)C19—C201.375 (6)
C4—H40.9300C19—H190.9300
C5—C61.355 (6)C20—C211.356 (6)
C5—H50.9300C21—C221.384 (6)
C6—C71.418 (6)C21—H210.9300
C6—H60.9300C22—H220.9300
C7—C81.430 (6)C23—H23A0.9600
C8—C91.354 (6)C23—H23B0.9600
C9—C101.421 (5)C23—H23C0.9600
C13—O1—C1117.9 (3)C14—C12—C11119.7 (3)
C14—O3—C15117.4 (3)N1—C13—O1109.9 (3)
C8—O4—C23117.3 (3)N1—C13—C12127.2 (4)
C13—N1—H2114 (4)O1—C13—C12122.9 (3)
C13—N1—H1115 (3)O2—C14—O3121.9 (4)
H2—N1—H1125 (5)O2—C14—C12126.8 (4)
C10—C1—O1122.1 (3)O3—C14—C12111.2 (4)
C10—C1—C2123.0 (3)O3—C15—C16106.5 (4)
O1—C1—C2114.9 (3)O3—C15—H15A110.4
C1—C2—C3122.9 (3)C16—C15—H15A110.4
C1—C2—C7117.8 (3)O3—C15—H15B110.4
C3—C2—C7119.4 (3)C16—C15—H15B110.4
C4—C3—C2120.2 (4)H15A—C15—H15B108.6
C4—C3—H3119.9C15—C16—H16A109.5
C2—C3—H3119.9C15—C16—H16B109.5
C3—C4—C5120.6 (4)H16A—C16—H16B109.5
C3—C4—H4119.7C15—C16—H16C109.5
C5—C4—H4119.7H16A—C16—H16C109.5
C6—C5—C4120.5 (4)H16B—C16—H16C109.5
C6—C5—H5119.7C22—C17—C18118.3 (4)
C4—C5—H5119.7C22—C17—C11121.3 (4)
C5—C6—C7121.1 (4)C18—C17—C11120.4 (3)
C5—C6—H6119.4C19—C18—C17120.8 (4)
C7—C6—H6119.4C19—C18—H18119.6
C6—C7—C2118.1 (4)C17—C18—H18119.6
C6—C7—C8123.1 (4)C18—C19—C20119.3 (4)
C2—C7—C8118.8 (3)C18—C19—H19120.4
C9—C8—O4125.0 (4)C20—C19—H19120.4
C9—C8—C7120.8 (4)C21—C20—C19121.2 (4)
O4—C8—C7114.3 (3)C21—C20—Br1119.8 (4)
C8—C9—C10121.1 (4)C19—C20—Br1119.0 (4)
C8—C9—H9119.5C20—C21—C22119.0 (4)
C10—C9—H9119.5C20—C21—H21120.5
C1—C10—C9118.5 (4)C22—C21—H21120.5
C1—C10—C11121.0 (3)C17—C22—C21121.4 (4)
C9—C10—C11120.4 (3)C17—C22—H22119.3
C10—C11—C12110.1 (3)C21—C22—H22119.3
C10—C11—C17110.4 (3)O4—C23—H23A109.5
C12—C11—C17112.1 (3)O4—C23—H23B109.5
C10—C11—H11108.0H23A—C23—H23B109.5
C12—C11—H11108.0O4—C23—H23C109.5
C17—C11—H11108.0H23A—C23—H23C109.5
C13—C12—C14119.5 (4)H23B—C23—H23C109.5
C13—C12—C11120.6 (3)
C13—O1—C1—C1017.1 (5)C1—C10—C11—C17105.9 (4)
C13—O1—C1—C2162.4 (3)C9—C10—C11—C1772.4 (4)
C10—C1—C2—C3178.4 (3)C10—C11—C12—C1321.7 (5)
O1—C1—C2—C31.0 (5)C17—C11—C12—C13101.7 (4)
C10—C1—C2—C71.7 (5)C10—C11—C12—C14164.5 (3)
O1—C1—C2—C7178.8 (3)C17—C11—C12—C1472.1 (4)
C1—C2—C3—C4179.5 (4)C1—O1—C13—N1167.7 (3)
C7—C2—C3—C40.7 (5)C1—O1—C13—C1213.7 (5)
C2—C3—C4—C51.0 (6)C14—C12—C13—N12.2 (6)
C3—C4—C5—C60.2 (7)C11—C12—C13—N1171.6 (4)
C4—C5—C6—C70.8 (7)C14—C12—C13—O1179.5 (3)
C5—C6—C7—C21.0 (6)C11—C12—C13—O16.8 (5)
C5—C6—C7—C8179.8 (4)C15—O3—C14—O23.3 (6)
C1—C2—C7—C6179.5 (4)C15—O3—C14—C12177.5 (3)
C3—C2—C7—C60.3 (5)C13—C12—C14—O210.4 (6)
C1—C2—C7—C80.4 (5)C11—C12—C14—O2175.7 (3)
C3—C2—C7—C8179.5 (3)C13—C12—C14—O3170.4 (3)
C23—O4—C8—C94.4 (6)C11—C12—C14—O33.4 (5)
C23—O4—C8—C7174.5 (3)C14—O3—C15—C16166.9 (4)
C6—C7—C8—C9178.7 (4)C10—C11—C17—C22111.9 (4)
C2—C7—C8—C92.1 (6)C12—C11—C17—C22125.0 (4)
C6—C7—C8—O42.2 (6)C10—C11—C17—C1866.0 (5)
C2—C7—C8—O4176.9 (3)C12—C11—C17—C1857.2 (5)
O4—C8—C9—C10177.0 (3)C22—C17—C18—C190.2 (6)
C7—C8—C9—C101.9 (6)C11—C17—C18—C19177.7 (4)
O1—C1—C10—C9178.5 (3)C17—C18—C19—C200.5 (6)
C2—C1—C10—C92.1 (5)C18—C19—C20—C210.4 (7)
O1—C1—C10—C110.2 (5)C18—C19—C20—Br1178.9 (3)
C2—C1—C10—C11179.6 (3)C19—C20—C21—C220.1 (7)
C8—C9—C10—C10.2 (6)Br1—C20—C21—C22178.4 (3)
C8—C9—C10—C11178.5 (4)C18—C17—C22—C210.2 (7)
C1—C10—C11—C1218.4 (5)C11—C17—C22—C21178.1 (4)
C9—C10—C11—C12163.3 (3)C20—C21—C22—C170.4 (7)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1,C2,C7–C10, C17–C22 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2···O20.88 (1)2.09 (5)2.744 (5)131 (5)
N1—H1···O2i0.88 (1)2.22 (2)3.075 (5)163 (3)
N1—H2···Br1ii0.88 (4)2.76 (4)3.547 (4)149 (5)
C4—H4···Cg1i0.932.903.673 (5)142
C6—H6···Cg2iii0.932.983.743 (5)140
C23—H23C···Cg3iii0.962.703.593 (5)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H20BrNO4
Mr454.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.1543 (14), 16.8110 (18), 9.3672 (12)
β (°) 96.628 (10)
V3)2057.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.30 × 0.20 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.828, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12041, 4740, 2533
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.164, 1.02
No. of reflections4740
No. of parameters270
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.90

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1,C2,C7–C10, C17–C22 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H2···O20.876 (10)2.09 (5)2.744 (5)131 (5)
N1—H1···O2i0.878 (10)2.223 (15)3.075 (5)163 (3)
N1—H2···Br1ii0.88 (4)2.76 (4)3.547 (4)149 (5)
C4—H4···Cg1i0.932.903.673 (5)142
C6—H6···Cg2iii0.932.983.743 (5)140
C23—H23C···Cg3iii0.962.703.593 (5)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aamr1963@yahoo.com.

Acknowledgements

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

References

First citationAbd-El-Aziz, A. S., El-Agrody, A. M., Bedair, A. H., Corkery, T. C. & Ata, A. (2004). Heterocycles, 63, 1793–1812.  CAS Google Scholar
First citationAbd-El-Aziz, A. S., Mohamed, H. M., Mohammed, S., Zahid, S., Ata, A., Bedair, A. H., El-Agrody, A. M. & Harvey, P. D. (2007). J. Heterocycl. Chem. 44, 1287–1301.  CAS Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Agrody, A. M., Al-Omar, M. A., Amr, A.-G. E., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1803–o1804.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKemnitzer, W., Drewe, J., Jiang, S., Zhang, H., Zhao, J., Crogan-Grundy, C., Xu, L., Lamothe, S., Gourdeau, H., Denis, R., Tseng, B., Kasibhatla, S. & Cai, S. X. (2007). J. Med. Chem. 50, 2858–2864.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o435-o436
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds