metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(1H-imidazole-4-carboxyl­ato-κ2N3,O4)manganese(II)

aCollege of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, People's Republic of China, bEngineering Research Center of Starch and Vegetable Protein Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, People's Republic of China, and cSchool of Chemical Engineering and Materials Science, Beijing Institute of Technology, Zhuhai 519088, People's Republic of China
*Correspondence e-mail: adamscutzhbit@yahoo.com.cn

(Received 31 January 2013; accepted 11 February 2013; online 28 February 2013)

In the title compound, [Mn(C4H3N2O2)2(H2O)2], the MnII ion is located on a twofold rotation axis and displays a distorted octa­hedral coordination environment, defined by two N,O-bidentate 1H-imidazole-4-carboxyl­ate ligands in the equatorial plane and two water mol­ecules in axial positions. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional supra­molecular network. ππ stacking inter­actions between the imidazole rings [centroid–centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the structure.

Related literature

For related structures, see: Cai et al. (2012[Cai, S.-L., Pan, M., Zheng, S.-R., Tan, J.-B., Fan, J. & Zhang, W.-G. (2012). CrystEngComm, 14, 2308-2315.]); Chen (2012[Chen, W.-S. (2012). Acta Cryst. E68, m1246.]); Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Haggag (2005[Haggag, S. S. (2005). Egypt. J. Chem. 48, 27-41.]); Shuai et al. (2011[Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.]); Starosta & Leciejewicz (2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]); Yin et al. (2009[Yin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]); Zheng et al. (2011[Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C4H3N2O2)2(H2O)2]

  • Mr = 313.14

  • Orthorhombic, P c c n

  • a = 7.3052 (10) Å

  • b = 11.7997 (17) Å

  • c = 13.5156 (19) Å

  • V = 1165.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.679, Tmax = 0.721

  • 5775 measured reflections

  • 1145 independent reflections

  • 972 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.07

  • 1145 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.95 2.811 (3) 173
O1W—H1WA⋯O2ii 0.87 1.96 2.818 (2) 167
O1W—H1WB⋯O2iii 0.73 2.02 2.751 (2) 176
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, structures containing metals and N-heterocyclic carboxylic acids have attracted much attention due to their fascinating structures and potential applications in many fields. 1H-Imidazole-4-carboxylic acid (H2imc), which contains two N atoms of an imidazole group and one carboxylate group, has been widely used to prepare a variety of coordination polymers with different structures and exceptional properties (Cai et al., 2012; Gryz et al., 2007; Haggag, 2005; Starosta & Leciejewicz, 2006; Zheng et al., 2011). For instance, three mononuclear complexes, [Cd(Himc)2(H2O)2] (Yin et al., 2009), [Zn(Himc)2(H2O)2] (Shuai et al., 2011) and [Co(Himc)2(H2O)2] (Chen, 2012), have been reported. In this paper, we report the synthesis and structure of a new Mn(II) coordination polymer, [Mn(Himc)2(H2O)2], which is isomorphous with the Cd(II), Zn(II) and Co(II) analogs.

The asymmetric unit of the title compound contains a half of [Mn(Himc)2(H2O)2] formula unit. The MnII ion, lying on a twofold rotation axis, is six-coordinated by two N and two O atoms from two cis-oriented N,O-bidentate Himc ligands in the equatorial plane, and two water molecules in the axial positions, forming a slightly distorted octahedral geometry (Fig. 1). The bond lengths and angles around the Mn atom are normal. In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving the coordinated water O atoms, carboxylate O atoms and imidazole N atoms link the molecules into a three-dimensional supramolecular network, as presented in Fig. 2. ππ stacking interactions between the imidazole rings [centroid–centroid distances = 3.5188 (15) and 3.6687 (15) Å] further stabilize the crystal structure.

Related literature top

For related structures, see: Cai et al. (2012); Chen (2012); Gryz et al. (2007); Haggag (2005); Shuai et al. (2011); Starosta & Leciejewicz (2006); Yin et al. (2009); Zheng et al. (2011).

Experimental top

A mixture of H2imc (0.30 mmol), MnCl2.6H2O (0.30 mmol) and 6 ml EtOH/H2O (v/v 1:1) was sealed into a 10 ml sample bottle reactor and heated at 373 k for 72 h under autogenous pressure, and then slowly cooled to room temperature at a rate of 5 K/h. Colorless block crystals of the title compound were obtained, washed with distilled water and dried in air (yield: 30%).

Refinement top

C- and N-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms of the water molecule were located from a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x+3/2, -y+3/2, z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Diaquabis(1H-imidazole-4-carboxylato-κ2N3,O4)manganese(II) top
Crystal data top
[Mn(C4H3N2O2)2(H2O)2]F(000) = 636
Mr = 313.14Dx = 1.785 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1516 reflections
a = 7.3052 (10) Åθ = 3.3–24.9°
b = 11.7997 (17) ŵ = 1.16 mm1
c = 13.5156 (19) ÅT = 298 K
V = 1165.0 (3) Å3Block, colourless
Z = 40.36 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1145 independent reflections
Radiation source: fine-focus sealed tube972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 89
Tmin = 0.679, Tmax = 0.721k = 1410
5775 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3284P]
where P = (Fo2 + 2Fc2)/3
1145 reflections(Δ/σ)max = 0.001
87 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Mn(C4H3N2O2)2(H2O)2]V = 1165.0 (3) Å3
Mr = 313.14Z = 4
Orthorhombic, PccnMo Kα radiation
a = 7.3052 (10) ŵ = 1.16 mm1
b = 11.7997 (17) ÅT = 298 K
c = 13.5156 (19) Å0.36 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
1145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
972 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.721Rint = 0.067
5775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
1145 reflectionsΔρmin = 0.57 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.75000.75000.63202 (3)0.0256 (2)
N10.5501 (2)0.81048 (17)0.52125 (14)0.0282 (5)
N20.3599 (3)0.87066 (19)0.40742 (14)0.0342 (5)
H20.31360.88350.35000.041*
C10.4022 (3)0.87462 (18)0.67505 (16)0.0238 (5)
C20.4063 (3)0.86601 (18)0.56583 (16)0.0241 (5)
C40.5155 (3)0.8144 (2)0.42597 (17)0.0350 (6)
H40.58950.78220.37750.042*
C30.2882 (4)0.9039 (2)0.49557 (18)0.0312 (5)
H30.18040.94420.50570.037*
O10.5374 (2)0.83532 (14)0.72111 (11)0.0310 (4)
O20.2642 (2)0.91985 (15)0.71532 (12)0.0302 (4)
O1W0.5981 (2)0.59207 (14)0.66084 (14)0.0392 (5)
H1WA0.65280.54660.70240.059*
H1WB0.50220.58560.67580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0235 (4)0.0344 (4)0.0189 (3)0.00646 (18)0.0000.000
N10.0272 (11)0.0389 (12)0.0184 (10)0.0068 (8)0.0009 (8)0.0021 (8)
N20.0348 (13)0.0490 (13)0.0186 (10)0.0037 (9)0.0074 (8)0.0014 (8)
C10.0247 (12)0.0233 (11)0.0233 (12)0.0029 (9)0.0020 (9)0.0011 (8)
C20.0243 (12)0.0288 (12)0.0192 (12)0.0008 (9)0.0002 (9)0.0007 (8)
C40.0359 (15)0.0506 (16)0.0186 (12)0.0067 (11)0.0000 (10)0.0031 (10)
C30.0289 (12)0.0391 (13)0.0256 (13)0.0037 (10)0.0008 (10)0.0009 (10)
O10.0287 (10)0.0457 (10)0.0186 (8)0.0087 (7)0.0010 (7)0.0002 (7)
O20.0243 (10)0.0432 (11)0.0232 (10)0.0047 (6)0.0048 (6)0.0051 (7)
O1W0.0279 (10)0.0429 (11)0.0467 (12)0.0036 (7)0.0039 (8)0.0133 (8)
Geometric parameters (Å, º) top
Mn1—O1W2.2037 (17)N2—H20.8600
Mn1—O1Wi2.2038 (17)C1—O11.257 (3)
Mn1—O1i2.2079 (16)C1—O21.264 (3)
Mn1—O12.2079 (16)C1—C21.480 (3)
Mn1—N12.2097 (19)C2—C31.359 (3)
Mn1—N1i2.2097 (19)C4—H40.9300
N1—C41.313 (3)C3—H30.9300
N1—C21.377 (3)O1W—H1WA0.87
N2—C41.340 (3)O1W—H1WB0.73
N2—C31.359 (3)
O1W—Mn1—O1Wi159.64 (10)C4—N2—H2126.1
O1W—Mn1—O1i82.66 (6)C3—N2—H2126.1
O1Wi—Mn1—O1i86.27 (6)O1—C1—O2124.7 (2)
O1W—Mn1—O186.27 (6)O1—C1—C2116.93 (18)
O1Wi—Mn1—O182.66 (6)O2—C1—C2118.34 (19)
O1i—Mn1—O1113.90 (8)C3—C2—N1109.6 (2)
O1W—Mn1—N193.44 (7)C3—C2—C1131.4 (2)
O1Wi—Mn1—N1100.34 (7)N1—C2—C1118.98 (18)
O1i—Mn1—N1168.96 (6)N1—C4—N2111.4 (2)
O1—Mn1—N175.97 (7)N1—C4—H4124.3
O1W—Mn1—N1i100.34 (7)N2—C4—H4124.3
O1Wi—Mn1—N1i93.44 (7)C2—C3—N2105.9 (2)
O1i—Mn1—N1i75.96 (7)C2—C3—H3127.1
O1—Mn1—N1i168.97 (6)N2—C3—H3127.1
N1—Mn1—N1i94.70 (10)C1—O1—Mn1116.82 (14)
C4—N1—C2105.38 (19)Mn1—O1W—H1WA113.7
C4—N1—Mn1143.43 (17)Mn1—O1W—H1WB128.2
C2—N1—Mn1111.19 (14)H1WA—O1W—H1WB101.3
C4—N2—C3107.8 (2)
O1W—Mn1—N1—C495.6 (3)O1—C1—C2—N13.7 (3)
O1Wi—Mn1—N1—C499.5 (3)O2—C1—C2—N1175.9 (2)
O1i—Mn1—N1—C426.7 (5)C2—N1—C4—N21.0 (3)
O1—Mn1—N1—C4179.1 (3)Mn1—N1—C4—N2178.4 (2)
N1i—Mn1—N1—C45.1 (3)C3—N2—C4—N10.8 (3)
O1W—Mn1—N1—C285.01 (16)N1—C2—C3—N20.3 (3)
O1Wi—Mn1—N1—C279.94 (16)C1—C2—C3—N2179.3 (2)
O1i—Mn1—N1—C2153.9 (3)C4—N2—C3—C20.3 (3)
O1—Mn1—N1—C20.28 (15)O2—C1—O1—Mn1175.69 (16)
N1i—Mn1—N1—C2174.31 (19)C2—C1—O1—Mn13.9 (2)
C4—N1—C2—C30.8 (3)O1W—Mn1—O1—C192.12 (16)
Mn1—N1—C2—C3178.83 (16)O1Wi—Mn1—O1—C1105.01 (16)
C4—N1—C2—C1178.8 (2)O1i—Mn1—O1—C1172.39 (18)
Mn1—N1—C2—C11.5 (2)N1—Mn1—O1—C12.38 (16)
O1—C1—C2—C3176.7 (2)N1i—Mn1—O1—C135.2 (4)
O2—C1—C2—C33.7 (3)
Symmetry code: (i) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2ii0.861.952.811 (3)173
O1W—H1WA···O2iii0.871.962.818 (2)167
O1W—H1WB···O2iv0.732.022.751 (2)176
Symmetry codes: (ii) x+1/2, y, z1/2; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C4H3N2O2)2(H2O)2]
Mr313.14
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)7.3052 (10), 11.7997 (17), 13.5156 (19)
V3)1165.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.36 × 0.32 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.679, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
5775, 1145, 972
Rint0.067
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.07
No. of reflections1145
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.952.811 (3)173
O1W—H1WA···O2ii0.871.962.818 (2)167
O1W—H1WB···O2iii0.732.022.751 (2)176
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the Engineering Research Center of Starch and Vegetable Protein Processing, Ministry of Education, South China University of Technology for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCai, S.-L., Pan, M., Zheng, S.-R., Tan, J.-B., Fan, J. & Zhang, W.-G. (2012). CrystEngComm, 14, 2308–2315.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, W.-S. (2012). Acta Cryst. E68, m1246.  CSD CrossRef IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYin, W.-P., Li, Y.-G., Mei, X.-L. & Yao, J.-C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.  CAS Google Scholar
First citationZheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds