metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[bis­­{μ2-1,2-bis­­[(1H-imidazol-1-yl)meth­yl]benzene}(μ4-9,10-dioxo-9,10-di­hydro­anthracene-1,4,5,8-tetra­carbox­yl­ato)dicobalt(II)] dihydrate]

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: njutljl@163.com

(Received 19 May 2012; accepted 15 June 2012; online 6 February 2013)

The title complex, {[Co2(C18H4O10)(C14H14N4)2]·2H2O}n was synthesized from CoCl2·6H2O, 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carb­oxy­lic acid (H4AQTC) and 1,2-bis­[(1H-imidazol-1-yl)meth­yl]benzene (o-bix) in water. The anthraquinone unit is located about a crystallographic center of inversion. Each asymmetric unit therefore contains one CoII atom and one o-bix ligand, as well as half an AQTC4− ligand and an additional solvent water mol­ecule. The CoII ions are tetra­hedrally surrounded by two O atoms from two AQTC4− anions and by two N atoms from two o-bix ligands, forming a two-dimensional coordination polymer. The solvent water mol­ecules are connected to the carboxyl­ate groups by O—H⋯O hydrogen bonds. Additional weak C—H⋯O hydrogen bonds are observed in the crystal structure.

Related literature

For general background to metal organic frameworks, see: Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.], 2012[Li, J. R., Sculley, J. & Zhou, H. C. (2012). Chem. Rev. 112, 869-932.]); Cheng et al. (2010[Cheng, X. N., Xue, W. & Chen, X. M. (2010). Eur. J. Inorg. Chem. 24, 3850-3855.]); Hong et al. (2009[Hong, D. Y., Hwang, Y. K., Serre, C., Ferey, G. & Chang, J. S. (2009). Adv. Funct. Mater. 19, 1537-1552.]); Miller & Gatteschi (2011[Miller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065-3066.]); Liu et al. (2010[Liu, Y. M., He, R., Wang, F. M., Lu, C. S. & Meng, Q. J. (2010). Inorg. Chem. Commun. 13, 1375-1379.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C18H4O10)(C14H14N4)2]·2H2O

  • Mr = 1010.68

  • Triclinic, [P \overline 1]

  • a = 9.561 (4) Å

  • b = 10.594 (5) Å

  • c = 12.436 (5) Å

  • α = 107.095 (7)°

  • β = 102.454 (6)°

  • γ = 106.551 (6)°

  • V = 1090.7 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 296 K

  • 0.43 × 0.36 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.801

  • 10020 measured reflections

  • 3787 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.04

  • 3787 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H24⋯O4i 0.83 (5) 2.10 (5) 2.911 (4) 166 (5)
O6—H25⋯O2ii 0.99 (6) 1.92 (6) 2.883 (4) 164 (5)
C11—H11⋯O6iii 0.93 2.37 3.192 (4) 148
C12—H12⋯O5ii 0.93 2.39 3.268 (4) 157
C13—H13A⋯O1ii 0.97 2.58 3.389 (4) 141
C13—H13B⋯O3iv 0.97 2.54 3.278 (3) 133
C20—H20A⋯O2ii 0.97 2.58 3.301 (3) 131
C21—H21⋯O6v 0.93 2.52 3.302 (4) 143
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) x-1, y, z; (iv) -x, -y, -z; (v) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Porous solid materials, such as MOFs (metal-organic frameworks) have been widely studied for their potential applications in gas absorption, separation, catalysis and magnetic materials. explorations of advanced porous materials for these applications are an intense subject of scientific research. (Li et al., 1999; Li et al., 2012; Cheng et al., 2010; Hong et al., 2009; Miller et al., 2011; Liu et al., 2010.) Herein we report the crystal structure of the title compound.

The molecular structure of (I) is illustrated in Fig. 1., a summary of the observed hydrogen bonds and the corresponding angles are given in Table 1.

The center of the anthraquinone moiety is a crystallographic center of inversion. Each asymmetric unit therefore contains one cobalt atom and one o-bix ligand as well as one half AQTC4- ligand and an additional solvent water molecule. Cobalt(II) ions are tetrahedrally surrounded by two O atoms from two AQTC4- and two N atoms from two o-bix ligands forming a 2D-coordination polymer.

Related literature top

For general background to metal organic frameworks, see: Li et al. (1999, 2012); Cheng et al. (2010); Hong et al. (2009); Miller & Gatteschi (2011); Liu et al. (2010).

Experimental top

A mixture of H4AQTC (0.025 mmol, 9.8 mg) and o-bix (0.025 mmol, 6.0 mg) were added to distilled water (4 ml) and ultra-sounded for 10 min. The pH value of the mixture was then adjusted to 8.0 with NaOH (0.5 mol.L-1). Then CoCl2 × 6 H2O (0.05 mmol, 12 mg) was added. The reactants were placed in a Teflon-lined stainless steel vessel, heated for 3 days, and then cooled to ambient temperature over 12 h. Red block shaped crystals of (I) were obtained in 30% yield.

Refinement top

All non-hydrogen atoms were refined anisotropically. H atoms of the H2O were located from difference Fourier maps and refined isotropically with a distance restraint of O-H = 0.83-0.99Å. Carbon bound H atoms were placed in calculated positionswith C-H = 0.93 Å for aromatic and 0.97 Å for methylene hydrogen atoms and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. State of an asymmetric unit of compound (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level(Symmetry code: #1 - x,-y,-z; #2 x,y - 1,z; #3 x,y + 1,z; #4 x + 1,y,z; #5 x - 1,y,z).
[Figure 2] Fig. 2. : A view of stacking structure of the title compound (H atom omited for clear except solvent water).
Poly[[bis{µ2-1,2-bis[(1H-imidazol-1-yl)methyl]benzene}(µ4- 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylato)dicobalt(II)] monohydrate] top
Crystal data top
[Co2(C18H4O10)(C14H14N4)2]·H2OZ = 1
Mr = 1010.68F(000) = 518
Triclinic, P1Dx = 1.539 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.561 (4) ÅCell parameters from 5133 reflections
b = 10.594 (5) Åθ = 2.2–27.6°
c = 12.436 (5) ŵ = 0.83 mm1
α = 107.095 (7)°T = 296 K
β = 102.454 (6)°Block, red
γ = 106.551 (6)°0.43 × 0.36 × 0.28 mm
V = 1090.7 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3787 independent reflections
Radiation source: sealed tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.717, Tmax = 0.801k = 1212
10020 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.4627P]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co2(C18H4O10)(C14H14N4)2]·H2Oγ = 106.551 (6)°
Mr = 1010.68V = 1090.7 (8) Å3
Triclinic, P1Z = 1
a = 9.561 (4) ÅMo Kα radiation
b = 10.594 (5) ŵ = 0.83 mm1
c = 12.436 (5) ÅT = 296 K
α = 107.095 (7)°0.43 × 0.36 × 0.28 mm
β = 102.454 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3787 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3411 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.801Rint = 0.045
10020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.39 e Å3
3787 reflectionsΔρmin = 0.32 e Å3
315 parameters
Special details top

Experimental. Anal. Calcd. for C23H18Co1N4O6: C, 54.66; H, 3.59; N, 11.09%. Found: C, 54.34; H, 3.37; N, 10.86%. FT—IR data (KBr pellets, cm-1): 3359(m), 3140(w), 3111(m), 15109(m), 1455(w), 1078(m), 754(m), 732(w), 685(m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3229 (3)0.2312 (2)0.08418 (19)0.0307 (5)
C20.1263 (3)0.3036 (2)0.1570 (2)0.0329 (5)
C30.0113 (3)0.2767 (2)0.09487 (18)0.0301 (5)
C40.0924 (3)0.3922 (2)0.0854 (2)0.0377 (5)
H40.09020.48230.11820.045*
C50.1986 (3)0.3753 (2)0.0281 (2)0.0362 (5)
H50.26430.45330.02030.043*
C60.2080 (3)0.2425 (2)0.01795 (18)0.0286 (5)
C70.1067 (2)0.1253 (2)0.00744 (17)0.0258 (4)
C80.0065 (2)0.1415 (2)0.04555 (17)0.0262 (4)
C90.1271 (2)0.0137 (2)0.04162 (17)0.0263 (4)
C100.3621 (3)0.1884 (2)0.23544 (18)0.0307 (5)
H100.33230.26610.25520.037*
C110.2936 (3)0.0631 (2)0.24410 (18)0.0295 (5)
H110.20850.03800.26920.035*
C120.4870 (3)0.0555 (2)0.17763 (18)0.0302 (5)
H120.55760.02250.14950.036*
C130.3365 (3)0.1710 (2)0.19313 (19)0.0345 (5)
H13A0.42370.19770.18480.041*
H13B0.24990.23020.12070.041*
C140.2956 (3)0.1986 (2)0.29720 (19)0.0319 (5)
C150.1425 (3)0.2315 (3)0.2937 (3)0.0468 (6)
H150.06910.23730.22790.056*
C160.0982 (4)0.2559 (3)0.3875 (3)0.0635 (9)
H160.00410.27650.38470.076*
C170.2054 (4)0.2496 (3)0.4845 (3)0.0601 (9)
H170.17580.26620.54710.072*
C180.3566 (3)0.2188 (3)0.4884 (2)0.0442 (6)
H180.42830.21610.55360.053*
C190.4047 (3)0.1913 (2)0.39615 (19)0.0305 (5)
C200.5728 (3)0.1577 (2)0.4074 (2)0.0344 (5)
H20A0.59760.10980.35450.041*
H20B0.63610.09340.48820.041*
C210.6999 (3)0.3245 (3)0.4543 (2)0.0467 (6)
H210.74940.27380.53560.056*
C220.5629 (3)0.6109 (2)0.26958 (19)0.0337 (5)
H220.50050.61170.20130.040*
C230.7029 (3)0.5502 (3)0.3882 (2)0.0494 (7)
H230.75570.49940.41720.059*
Co10.58835 (3)0.33412 (3)0.13769 (2)0.02845 (12)
N10.4836 (2)0.18355 (19)0.19274 (15)0.0304 (4)
N20.3755 (2)0.02007 (18)0.20818 (15)0.0281 (4)
N30.6159 (2)0.50944 (18)0.27147 (16)0.0315 (4)
N40.6099 (2)0.28740 (18)0.37783 (15)0.0299 (4)
O10.46596 (18)0.30258 (17)0.02288 (13)0.0351 (4)
O20.2749 (2)0.16438 (19)0.19247 (14)0.0458 (4)
O30.22850 (19)0.33483 (18)0.09643 (15)0.0395 (4)
O40.1135 (2)0.29987 (19)0.25620 (15)0.0463 (4)
O50.24715 (17)0.02029 (16)0.05752 (13)0.0331 (4)
O60.9984 (3)0.0915 (3)0.3137 (2)0.0614 (6)
H250.912 (6)0.001 (6)0.285 (5)0.15 (2)*
H240.982 (5)0.161 (5)0.304 (4)0.108 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0325 (14)0.0336 (11)0.0336 (11)0.0138 (10)0.0166 (10)0.0177 (9)
C20.0306 (13)0.0294 (10)0.0355 (12)0.0101 (10)0.0150 (10)0.0060 (9)
C30.0253 (12)0.0362 (11)0.0287 (10)0.0134 (9)0.0093 (9)0.0100 (9)
C40.0377 (15)0.0327 (11)0.0452 (13)0.0163 (10)0.0185 (11)0.0115 (10)
C50.0343 (14)0.0347 (11)0.0417 (12)0.0115 (10)0.0169 (11)0.0156 (10)
C60.0246 (12)0.0375 (11)0.0260 (10)0.0129 (9)0.0095 (9)0.0131 (9)
C70.0227 (12)0.0346 (10)0.0226 (9)0.0123 (9)0.0096 (8)0.0109 (8)
C80.0236 (12)0.0342 (11)0.0235 (10)0.0129 (9)0.0097 (8)0.0111 (8)
C90.0239 (12)0.0368 (11)0.0198 (9)0.0123 (9)0.0098 (8)0.0099 (8)
C100.0369 (13)0.0357 (11)0.0288 (10)0.0204 (10)0.0158 (10)0.0147 (9)
C110.0325 (13)0.0379 (11)0.0277 (10)0.0183 (10)0.0164 (9)0.0157 (9)
C120.0330 (13)0.0370 (11)0.0299 (11)0.0175 (10)0.0166 (10)0.0164 (9)
C130.0487 (15)0.0312 (11)0.0289 (11)0.0174 (10)0.0166 (10)0.0135 (9)
C140.0412 (14)0.0271 (10)0.0342 (11)0.0156 (10)0.0180 (10)0.0144 (9)
C150.0380 (16)0.0479 (14)0.0630 (16)0.0172 (12)0.0190 (13)0.0297 (13)
C160.052 (2)0.074 (2)0.100 (2)0.0316 (16)0.0545 (19)0.0523 (19)
C170.082 (2)0.0705 (19)0.0719 (19)0.0419 (18)0.0586 (19)0.0506 (16)
C180.0666 (19)0.0486 (14)0.0380 (13)0.0318 (13)0.0300 (13)0.0252 (11)
C190.0419 (14)0.0270 (10)0.0304 (11)0.0170 (10)0.0189 (10)0.0125 (8)
C200.0415 (15)0.0262 (10)0.0347 (11)0.0146 (10)0.0132 (10)0.0081 (9)
C210.0584 (18)0.0495 (14)0.0289 (12)0.0294 (14)0.0056 (11)0.0077 (10)
C220.0423 (15)0.0307 (11)0.0283 (11)0.0150 (10)0.0114 (10)0.0105 (9)
C230.0604 (19)0.0484 (15)0.0432 (14)0.0346 (14)0.0079 (13)0.0150 (12)
Co10.0323 (2)0.02908 (17)0.03102 (17)0.01470 (14)0.01786 (14)0.01245 (13)
N10.0347 (11)0.0334 (9)0.0308 (9)0.0162 (8)0.0165 (8)0.0152 (8)
N20.0346 (11)0.0326 (9)0.0261 (8)0.0169 (8)0.0153 (8)0.0150 (7)
N30.0356 (11)0.0304 (9)0.0335 (9)0.0159 (8)0.0167 (8)0.0119 (8)
N40.0353 (11)0.0284 (9)0.0274 (9)0.0147 (8)0.0118 (8)0.0088 (7)
O10.0277 (10)0.0480 (9)0.0394 (8)0.0151 (8)0.0176 (7)0.0243 (7)
O20.0449 (11)0.0543 (10)0.0340 (9)0.0097 (9)0.0214 (8)0.0136 (8)
O30.0338 (10)0.0504 (10)0.0462 (9)0.0245 (8)0.0216 (8)0.0201 (8)
O40.0502 (12)0.0581 (11)0.0356 (9)0.0248 (9)0.0224 (8)0.0143 (8)
O50.0267 (9)0.0384 (8)0.0385 (8)0.0149 (7)0.0185 (7)0.0122 (7)
O60.0451 (14)0.0713 (15)0.0586 (13)0.0237 (12)0.0117 (10)0.0142 (11)
Geometric parameters (Å, º) top
C1—O21.230 (3)C14—C191.398 (3)
C1—O11.283 (3)C15—C161.392 (4)
C1—C61.519 (3)C15—H150.9300
C2—O41.226 (3)C16—C171.374 (5)
C2—O31.283 (3)C16—H160.9300
C2—C31.517 (3)C17—C181.374 (4)
C3—C41.392 (3)C17—H170.9300
C3—C81.401 (3)C18—C191.400 (3)
C4—C51.382 (3)C18—H180.9300
C4—H40.9300C19—C201.509 (3)
C5—C61.391 (3)C20—N41.478 (3)
C5—H50.9300C20—H20A0.9700
C6—C71.401 (3)C20—H20B0.9700
C7—C81.408 (3)C21—C23ii1.352 (3)
C7—C91.489 (3)C21—N41.364 (3)
C8—C9i1.488 (3)C21—H210.9300
C9—O51.223 (3)C22—N31.316 (3)
C9—C8i1.488 (3)C22—N4iii1.336 (3)
C10—C111.349 (3)C22—H220.9300
C10—N11.384 (3)C23—C21iii1.352 (3)
C10—H100.9300C23—N31.376 (3)
C11—N21.380 (3)C23—H230.9300
C11—H110.9300Co1—O3iv1.9267 (17)
C12—N11.325 (3)Co1—O11.9610 (17)
C12—N21.337 (3)Co1—N32.0008 (18)
C12—H120.9300Co1—N12.0110 (18)
C13—N21.479 (3)N4—C22ii1.336 (3)
C13—C141.513 (3)O3—Co1v1.9267 (17)
C13—H13A0.9700O6—H250.99 (6)
C13—H13B0.9700O6—H240.83 (5)
C14—C151.392 (4)
O2—C1—O1124.1 (2)C17—C16—C15120.1 (3)
O2—C1—C6119.3 (2)C17—C16—H16119.9
O1—C1—C6116.41 (18)C15—C16—H16119.9
O4—C2—O3126.4 (2)C16—C17—C18119.7 (2)
O4—C2—C3121.2 (2)C16—C17—H17120.2
O3—C2—C3112.36 (19)C18—C17—H17120.2
C4—C3—C8118.88 (19)C17—C18—C19121.3 (3)
C4—C3—C2118.03 (19)C17—C18—H18119.3
C8—C3—C2123.08 (19)C19—C18—H18119.3
C5—C4—C3121.2 (2)C14—C19—C18119.0 (2)
C5—C4—H4119.4C14—C19—C20122.88 (19)
C3—C4—H4119.4C18—C19—C20118.1 (2)
C4—C5—C6120.5 (2)N4—C20—C19111.96 (18)
C4—C5—H5119.8N4—C20—H20A109.2
C6—C5—H5119.8C19—C20—H20A109.2
C5—C6—C7119.27 (19)N4—C20—H20B109.2
C5—C6—C1117.40 (19)C19—C20—H20B109.2
C7—C6—C1123.23 (19)H20A—C20—H20B107.9
C6—C7—C8120.01 (19)C23ii—C21—N4106.3 (2)
C6—C7—C9120.37 (18)C23ii—C21—H21126.9
C8—C7—C9119.38 (18)N4—C21—H21126.9
C3—C8—C7119.98 (19)N3—C22—N4iii111.6 (2)
C3—C8—C9i120.16 (18)N3—C22—H22124.2
C7—C8—C9i119.73 (18)N4iii—C22—H22124.2
O5—C9—C8i120.24 (19)C21iii—C23—N3109.5 (2)
O5—C9—C7120.15 (19)C21iii—C23—H23125.2
C8i—C9—C7119.39 (18)N3—C23—H23125.2
C11—C10—N1109.68 (19)O3iv—Co1—O194.24 (7)
C11—C10—H10125.2O3iv—Co1—N3115.00 (8)
N1—C10—H10125.2O1—Co1—N3117.63 (8)
C10—C11—N2105.96 (19)O3iv—Co1—N1119.89 (8)
C10—C11—H11127.0O1—Co1—N1111.05 (7)
N2—C11—H11127.0N3—Co1—N1100.17 (8)
N1—C12—N2111.04 (19)C12—N1—C10105.58 (17)
N1—C12—H12124.5C12—N1—Co1131.62 (14)
N2—C12—H12124.5C10—N1—Co1121.56 (14)
N2—C13—C14112.12 (16)C12—N2—C11107.74 (18)
N2—C13—H13A109.2C12—N2—C13125.85 (18)
C14—C13—H13A109.2C11—N2—C13126.09 (18)
N2—C13—H13B109.2C22—N3—C23105.27 (18)
C14—C13—H13B109.2C22—N3—Co1129.70 (16)
H13A—C13—H13B107.9C23—N3—Co1125.00 (16)
C15—C14—C19119.1 (2)C22ii—N4—C21107.31 (18)
C15—C14—C13118.1 (2)C22ii—N4—C20125.81 (19)
C19—C14—C13122.8 (2)C21—N4—C20126.87 (18)
C14—C15—C16120.7 (3)C1—O1—Co1132.29 (13)
C14—C15—H15119.6C2—O3—Co1v120.57 (14)
C16—C15—H15119.6H25—O6—H24120 (4)
O4—C2—C3—C4107.8 (3)C17—C18—C19—C141.4 (4)
O3—C2—C3—C469.5 (3)C17—C18—C19—C20179.8 (2)
O4—C2—C3—C873.1 (3)C14—C19—C20—N4100.3 (2)
O3—C2—C3—C8109.6 (2)C18—C19—C20—N478.5 (2)
C8—C3—C4—C50.3 (4)N2—C12—N1—C100.0 (2)
C2—C3—C4—C5178.9 (2)N2—C12—N1—Co1167.10 (15)
C3—C4—C5—C62.3 (4)C11—C10—N1—C120.7 (2)
C4—C5—C6—C71.1 (3)C11—C10—N1—Co1168.03 (15)
C4—C5—C6—C1177.5 (2)O3iv—Co1—N1—C1221.8 (2)
O2—C1—C6—C5110.7 (2)O1—Co1—N1—C1286.4 (2)
O1—C1—C6—C564.2 (3)N3—Co1—N1—C12148.5 (2)
O2—C1—C6—C765.6 (3)O3iv—Co1—N1—C10172.85 (15)
O1—C1—C6—C7119.5 (2)O1—Co1—N1—C1078.94 (17)
C5—C6—C7—C82.2 (3)N3—Co1—N1—C1046.09 (18)
C1—C6—C7—C8174.02 (19)N1—C12—N2—C110.7 (2)
C5—C6—C7—C9172.1 (2)N1—C12—N2—C13174.39 (19)
C1—C6—C7—C911.7 (3)C10—C11—N2—C121.0 (2)
C4—C3—C8—C73.0 (3)C10—C11—N2—C13174.75 (19)
C2—C3—C8—C7177.9 (2)C14—C13—N2—C12141.3 (2)
C4—C3—C8—C9i172.8 (2)C14—C13—N2—C1146.2 (3)
C2—C3—C8—C9i6.2 (3)N4iii—C22—N3—C230.5 (3)
C6—C7—C8—C34.3 (3)N4iii—C22—N3—Co1178.48 (14)
C9—C7—C8—C3170.09 (19)C21iii—C23—N3—C220.2 (3)
C6—C7—C8—C9i171.61 (19)C21iii—C23—N3—Co1178.31 (18)
C9—C7—C8—C9i14.0 (3)O3iv—Co1—N3—C22109.9 (2)
C6—C7—C9—O513.8 (3)O1—Co1—N3—C220.3 (2)
C8—C7—C9—O5160.54 (19)N1—Co1—N3—C22120.1 (2)
C6—C7—C9—C8i171.68 (18)O3iv—Co1—N3—C2367.7 (2)
C8—C7—C9—C8i14.0 (3)O1—Co1—N3—C23177.34 (19)
N1—C10—C11—N21.1 (2)N1—Co1—N3—C2362.3 (2)
N2—C13—C14—C1588.0 (3)C23ii—C21—N4—C22ii0.4 (3)
N2—C13—C14—C1991.5 (3)C23ii—C21—N4—C20179.3 (2)
C19—C14—C15—C160.5 (4)C19—C20—N4—C22ii69.5 (3)
C13—C14—C15—C16179.1 (2)C19—C20—N4—C21111.9 (3)
C14—C15—C16—C170.9 (4)O2—C1—O1—Co1143.51 (19)
C15—C16—C17—C180.2 (5)C6—C1—O1—Co141.9 (3)
C16—C17—C18—C191.0 (4)O3iv—Co1—O1—C1144.39 (19)
C15—C14—C19—C180.6 (3)N3—Co1—O1—C194.5 (2)
C13—C14—C19—C18179.8 (2)N1—Co1—O1—C120.1 (2)
C15—C14—C19—C20179.4 (2)O4—C2—O3—Co1v16.1 (3)
C13—C14—C19—C201.1 (3)C3—C2—O3—Co1v166.74 (14)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z; (v) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H24···O4iv0.83 (5)2.10 (5)2.911 (4)166 (5)
O6—H25···O2vi0.99 (6)1.92 (6)2.883 (4)164 (5)
C11—H11···O6v0.932.373.192 (4)148
C12—H12···O5vi0.932.393.268 (4)157
C13—H13A···O1vi0.972.583.389 (4)141
C13—H13B···O3i0.972.543.278 (3)133
C20—H20A···O2vi0.972.583.301 (3)131
C21—H21···O6vii0.932.523.302 (4)143
Symmetry codes: (i) x, y, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2(C18H4O10)(C14H14N4)2]·H2O
Mr1010.68
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.561 (4), 10.594 (5), 12.436 (5)
α, β, γ (°)107.095 (7), 102.454 (6), 106.551 (6)
V3)1090.7 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.43 × 0.36 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.717, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
10020, 3787, 3411
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.04
No. of reflections3787
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H24···O4i0.83 (5)2.10 (5)2.911 (4)166 (5)
O6—H25···O2ii0.99 (6)1.92 (6)2.883 (4)164 (5)
C11—H11···O6iii0.93002.37003.192 (4)148.00
C12—H12···O5ii0.93002.39003.268 (4)157.00
C13—H13A···O1ii0.97002.58003.389 (4)141.00
C13—H13B···O3iv0.97002.54003.278 (3)133.00
C20—H20A···O2ii0.97002.58003.301 (3)131.00
C21—H21···O6v0.93002.52003.302 (4)143.00
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y, z; (v) x+2, y, z+1.
 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for the support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X. N., Xue, W. & Chen, X. M. (2010). Eur. J. Inorg. Chem. 24, 3850–3855.  Web of Science CSD CrossRef Google Scholar
First citationHong, D. Y., Hwang, Y. K., Serre, C., Ferey, G. & Chang, J. S. (2009). Adv. Funct. Mater. 19, 1537–1552.  Web of Science CrossRef CAS Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationLi, J. R., Sculley, J. & Zhou, H. C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y. M., He, R., Wang, F. M., Lu, C. S. & Meng, Q. J. (2010). Inorg. Chem. Commun. 13, 1375–1379.  Web of Science CSD CrossRef CAS Google Scholar
First citationMiller, J. S. & Gatteschi, D. (2011). Chem. Soc. Rev. 40, 3065–3066.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds