organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 1,8-di­phenyl-11-oxatri­cyclo­[6.2.1.02,7]undeca-2,4,6-triene-9,10-di­carboxyl­ate

aDepartment of Physics, P. T. Lee Chengalvaraya Naicker College of Engineering & Technology, Kancheepuram 631 502, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cPostGraduate & Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 10 December 2012; accepted 28 January 2013; online 2 February 2013)

The title compound, C28H26O5, is the Diels–Alder adduct from 1,3-diphenyl­benzo[c]furan and diethyl maleate. The mol­ecule comprises of a fused tricyclic system containing two five-membered rings, which are in envelope conformations with the O atom at the flap, and a six-membered ring adopting a boat conformation. The dihedral angle between phenyl substituents in the 1,8-positions is 55.1 (1)°. The ethyl groups are disordered over two sets of sites, with occupancy ratios of 0.648 (9):0.352 (9) and 0.816 (1):0.184 (1). In the crystal, pairs of C—H⋯π inter­actions link the mol­ecules into inversion dimers.

Related literature

For background to Diels–Alder reactions, see: Stevens & Richards (1997[Stevens, A. M. & Richards, C. J. (1997). Tetrahedron Lett. 38, 7805-7808.]). For related structures, see: Doboszewski et al. (2010[Doboszewski, B., Silva, P. R. da, Nazarenko, A. Y. & Nemykin, V. N. (2010). Acta Cryst. E66, o3217-o3218.]); Toze et al. (2011[Toze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852-o2853.]); Bailey et al. (1995[Bailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589-592.]); Ohwada et al. (2001[Ohwada, T., Miura, M., Tanaka, H., Sakamoto, S., Yamaguchi, K., Ikeda, H. & Inagaki, S. (2001). J. Am. Chem. Soc. 123, 10164-10172.]); Takahashi et al. (2003[Takahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973-.]). For puckering and asymmetry parameters, see: Cremer & Pople(1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H26O5

  • Mr = 442.49

  • Triclinic, [P \overline 1]

  • a = 9.7126 (3) Å

  • b = 11.5930 (3) Å

  • c = 12.5989 (5) Å

  • α = 115.013 (2)°

  • β = 107.126 (2)°

  • γ = 97.431 (1)°

  • V = 1174.60 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.991

  • 20057 measured reflections

  • 4124 independent reflections

  • 3271 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.06

  • 4124 reflections

  • 323 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7and C9–C14 rings respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28BCg1i 0.98 3.00 3.601 (7) 121
C5—H5⋯Cg2ii 0.93 2.89 3.693 (3) 145
Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Diels-Alder adducts from the reaction of anthracene with dienophiles have been used in a variety of applications, including the synthesis of discrete molecular architectures such as molecular gears (Stevens & Richards 1997). The title compound, C28H26O5, comprises a fused tricyclic system and two phenyl rings attached with this system (Fig. 1). The tricyclic system consists of two 5-membered rings and one aromatic ring. In addition, two ethyl carboxylate units are attached to the tricyclic system. Geometrical parameters agree well with reported structures (Doboszewski et al. 2010; Toze et al. 2011; Bailey et al. 1995; Ohwada et al. 2001; Takahashi et al. 2003). The five membered ring C1\C2\C7\C8\O1 adopts an envelope conformation with O1 displaced by -0.752 Å from the mean plane of the other ring atoms C1\C2\C7\C8. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.511 (1) Å, ϕ = -36.5 (1)°, ΔS(O1) = 0.004 (1)° and Δ2(O1) = 0.302 (1)°. The second five membered ring C1\C21\C25\C8\O1 also adopts an envelope conformation with O1 displaced by -0.834) Å from the mean plane of the other ring atoms C1\ C21\C25\C8.The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are q2 = 0.592 (1) Å, ϕ = 144.2 (1)°, ΔS(O1) = 0.002 (1)° and Δ2(O1) = 0.354 (1)°. The six membered ring C1/C2/C7/C8/C25/C21 adopts boat conformation with puckering parameter q2 = 0.951 (1) Å, θ=89.7 (1)° and ϕ = 180.8 (8)°.

The dihedral angle between the rings C1/C2/C7/C8/O1 and C1/C21/C25/C8/O1 is 66.7 (1)°. The dihedral angle between terminal phenyl rings is 55.1 (1)°. One of these aromatic substituents (C9 - C14) is almost orthogonal to the plane formed by the six atoms C1, C2, C7, C8, C25 and C21 of the tricyclic ring, the dihedral angle being 81.1 (1)° (Nardelli, 1983). Atoms C24 and C28 of the ester groups are disordered over two sites with occupancy ratios of 0.648 (9): 0.352 (9) and 0.816 (1): 0.184 (1). In the ester group, the C26—O5—C27—C28 torsion angle for major component is -155.4 (3)° and the C26—O5—C27—C28' torsion angle for minor component is -115 (1)°. The second ester group, C22—O3—C23—C24 connected to the tricyclic ring is almost co-planar as evidenced by torsion angle of -162 (3)°, while the C22—O3—C23—C24' is considerably twisted from the ring with a torsion angle of 137.7 (1)°.

Centrosymmetric dimers are formed by C—H···π (C5—H5···Cg2and C28—H28B···Cg1) interactions, where Cg1 and Cg2 are centroids of the C2—C7 and C9—C14 rings, respectively (Fig. 2).

Related literature top

For background to Diels–Alder reactions, see: Stevens & Richards (1997). For related structures, see: Doboszewski et al. (2010); Toze et al. (2011); Bailey et al. (1995); Ohwada et al. (2001); Takahashi et al. (2003). For puckering and asymmetry parameters, see: Cremer & Pople(1975); Nardelli (1983).

Experimental top

1, 3-diphenylisobenzofuran (1.00 g, 2.26 mmole) was dissolved in toluene (25 ml) and treated with 2 equivalents of diethyl maleate (0.78 g, 4.52 mmole). The reaction mixture was refluxed and the reaction was monitored by TLC. After 8 h, the mixture was cooled to room temperature. The solvent was removed and the residue was purified by column chromatography (Silica gel, 10%, ethyl acetate/hexane) to give the adduct as a white solid. Yield: 1.42 g (87%). This adduct was crystallized from CHCl3/CH3OH (3:1) by slow evaporation of tzhe solvent.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with (C—H= 0.93–0.96 Å), and Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms. The carbon atoms of ester groups are disordered over two sites with occupancy ratio of 0.648 (9): 0.352 (9) and 0.816 (1): 0.184 (1).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the C—H···π interactions in the crystal structure of the title compound.
Diethyl 1,8-diphenyl-11-oxatricyclo[6.2.1.02,7]undeca-2,4,6-triene-9,10-dicarboxylate top
Crystal data top
C28H26O5Z = 2
Mr = 442.49F(000) = 468
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7126 (3) ÅCell parameters from 7905 reflections
b = 11.5930 (3) Åθ = 2.3–26.1°
c = 12.5989 (5) ŵ = 0.09 mm1
α = 115.013 (2)°T = 293 K
β = 107.126 (2)°Block, colourless
γ = 97.431 (1)°0.30 × 0.20 × 0.20 mm
V = 1174.60 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4124 independent reflections
Radiation source: fine-focus sealed tube3271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.952, Tmax = 0.991k = 1313
20057 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2754P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4124 reflectionsΔρmax = 0.23 e Å3
323 parametersΔρmin = 0.18 e Å3
40 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Crystal data top
C28H26O5γ = 97.431 (1)°
Mr = 442.49V = 1174.60 (7) Å3
Triclinic, P1Z = 2
a = 9.7126 (3) ÅMo Kα radiation
b = 11.5930 (3) ŵ = 0.09 mm1
c = 12.5989 (5) ÅT = 293 K
α = 115.013 (2)°0.30 × 0.20 × 0.20 mm
β = 107.126 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4124 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3271 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.991Rint = 0.031
20057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04140 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
4124 reflectionsΔρmin = 0.18 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25522 (17)0.49311 (15)0.32261 (14)0.0371 (4)
C20.15307 (17)0.39619 (15)0.18491 (15)0.0379 (4)
C30.04433 (18)0.40701 (18)0.09315 (16)0.0459 (4)
H30.02160.48690.11040.055*
C40.0298 (2)0.29520 (19)0.02527 (17)0.0528 (5)
H40.10480.29950.08820.063*
C50.0060 (2)0.17731 (19)0.05146 (17)0.0527 (5)
H50.04510.10360.13190.063*
C60.11658 (18)0.16679 (17)0.03995 (15)0.0451 (4)
H60.14150.08770.02200.054*
C70.18838 (17)0.27769 (16)0.15830 (15)0.0374 (4)
C80.31206 (17)0.30534 (15)0.27998 (14)0.0359 (4)
C90.32640 (17)0.18935 (16)0.30214 (14)0.0388 (4)
C100.2801 (2)0.17340 (18)0.38992 (17)0.0497 (4)
H100.24160.23640.43750.060*
C110.2905 (2)0.0648 (2)0.4078 (2)0.0641 (5)
H110.25980.05560.46780.077*
C120.3456 (2)0.02946 (19)0.33801 (19)0.0629 (5)
H120.35200.10260.35030.075*
C130.3913 (2)0.01565 (19)0.25001 (19)0.0595 (5)
H130.42890.07950.20240.071*
C140.3818 (2)0.09273 (18)0.23183 (17)0.0508 (4)
H140.41290.10120.17170.061*
C150.19656 (18)0.59988 (16)0.39805 (15)0.0412 (4)
C160.2768 (2)0.73281 (17)0.46900 (17)0.0501 (4)
H160.37260.76050.47160.060*
C170.2160 (2)0.8256 (2)0.5366 (2)0.0619 (5)
H170.27090.91520.58400.074*
C180.0751 (3)0.7860 (2)0.5339 (2)0.0694 (6)
H180.03370.84860.57810.083*
C190.0040 (3)0.6539 (2)0.4657 (2)0.0808 (7)
H190.09860.62640.46510.097*
C200.0557 (2)0.5613 (2)0.3978 (2)0.0675 (6)
H200.00060.47180.35130.081*
C210.41920 (17)0.53186 (15)0.33086 (14)0.0373 (4)
H210.48220.59480.42030.045*
C220.44240 (19)0.59954 (17)0.25567 (16)0.0437 (4)
C230.6189 (3)0.6761 (3)0.1870 (3)0.0843 (7)
H23A0.53780.63340.10370.101*0.648 (9)
H23B0.62960.77070.22720.101*0.648 (9)
H23C0.62750.60530.11470.101*0.352 (9)
H23D0.53440.70460.15420.101*0.352 (9)
C240.7558 (5)0.6543 (9)0.1749 (7)0.111 (2)0.648 (9)
H24A0.78540.69860.13220.167*0.648 (9)
H24B0.74100.56050.12640.167*0.648 (9)
H24C0.83320.68910.25770.167*0.648 (9)
C24'0.7516 (14)0.7734 (15)0.2455 (11)0.145 (5)0.352 (9)
H24D0.83170.74200.27860.217*0.352 (9)
H24E0.74700.85020.31390.217*0.352 (9)
H24F0.77010.79690.18540.217*0.352 (9)
C250.46133 (17)0.39910 (15)0.29990 (14)0.0369 (4)
H250.54330.41210.37530.044*
C260.50768 (18)0.34621 (17)0.18808 (16)0.0429 (4)
C270.6848 (3)0.2517 (3)0.1148 (3)0.0946 (9)
H27A0.59880.19860.03460.113*0.816 (11)
H27B0.74390.32140.10910.113*0.816 (11)
H27C0.78640.30290.13840.113*0.184 (11)
H27D0.61910.24820.03800.113*0.184 (11)
C280.7750 (7)0.1691 (5)0.1376 (5)0.0845 (14)0.816 (11)
H28A0.85990.22180.21700.127*0.816 (11)
H28B0.81000.13160.07010.127*0.816 (11)
H28C0.71550.09870.14070.127*0.816 (11)
C28'0.674 (4)0.1155 (18)0.091 (2)0.107 (6)0.184 (11)
H28D0.72630.11670.16920.160*0.184 (11)
H28E0.71900.07460.03140.160*0.184 (11)
H28F0.57010.06570.05640.160*0.184 (11)
O10.27065 (12)0.40156 (10)0.37414 (10)0.0381 (3)
O20.34976 (15)0.63584 (14)0.20159 (14)0.0626 (4)
O30.58390 (14)0.62090 (14)0.26383 (12)0.0578 (4)
O40.44061 (15)0.33349 (16)0.08622 (12)0.0669 (4)
O50.63261 (15)0.31127 (15)0.21722 (13)0.0639 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0423 (9)0.0387 (9)0.0422 (8)0.0167 (7)0.0217 (7)0.0250 (7)
C20.0369 (8)0.0413 (9)0.0449 (9)0.0135 (7)0.0208 (7)0.0251 (8)
C30.0432 (9)0.0509 (10)0.0566 (10)0.0182 (8)0.0207 (8)0.0351 (9)
C40.0433 (10)0.0649 (12)0.0511 (10)0.0126 (9)0.0111 (8)0.0348 (10)
C50.0478 (10)0.0534 (11)0.0453 (10)0.0065 (9)0.0114 (8)0.0207 (9)
C60.0441 (9)0.0432 (9)0.0467 (9)0.0123 (8)0.0180 (8)0.0206 (8)
C70.0362 (8)0.0420 (9)0.0426 (9)0.0136 (7)0.0204 (7)0.0240 (7)
C80.0400 (8)0.0402 (9)0.0364 (8)0.0177 (7)0.0209 (7)0.0205 (7)
C90.0379 (8)0.0416 (9)0.0405 (8)0.0150 (7)0.0149 (7)0.0223 (7)
C100.0592 (11)0.0519 (10)0.0551 (10)0.0238 (9)0.0306 (9)0.0330 (9)
C110.0857 (15)0.0619 (12)0.0657 (12)0.0253 (11)0.0354 (11)0.0441 (11)
C120.0762 (13)0.0505 (11)0.0665 (12)0.0234 (10)0.0171 (11)0.0380 (10)
C130.0658 (12)0.0504 (11)0.0646 (12)0.0306 (10)0.0231 (10)0.0275 (10)
C140.0591 (11)0.0512 (11)0.0554 (10)0.0265 (9)0.0296 (9)0.0296 (9)
C150.0471 (9)0.0437 (9)0.0453 (9)0.0213 (8)0.0246 (8)0.0257 (8)
C160.0540 (10)0.0470 (10)0.0577 (11)0.0209 (9)0.0282 (9)0.0266 (9)
C170.0754 (14)0.0457 (11)0.0687 (12)0.0270 (10)0.0345 (11)0.0243 (10)
C180.0797 (15)0.0655 (14)0.0784 (14)0.0430 (12)0.0491 (12)0.0300 (12)
C190.0700 (14)0.0721 (16)0.1089 (19)0.0301 (12)0.0609 (14)0.0317 (14)
C200.0611 (12)0.0514 (11)0.0899 (15)0.0183 (10)0.0472 (12)0.0220 (11)
C210.0398 (8)0.0398 (9)0.0367 (8)0.0132 (7)0.0180 (7)0.0198 (7)
C220.0458 (9)0.0444 (9)0.0457 (9)0.0126 (8)0.0213 (8)0.0238 (8)
C230.0781 (15)0.116 (2)0.0984 (17)0.0188 (15)0.0470 (14)0.0806 (17)
C240.078 (3)0.199 (6)0.141 (5)0.057 (4)0.072 (3)0.130 (5)
C24'0.156 (8)0.143 (9)0.114 (7)0.044 (7)0.041 (6)0.077 (6)
C250.0383 (8)0.0445 (9)0.0346 (8)0.0160 (7)0.0170 (7)0.0219 (7)
C260.0429 (9)0.0476 (10)0.0441 (9)0.0144 (8)0.0231 (8)0.0229 (8)
C270.1091 (19)0.134 (2)0.1008 (18)0.0792 (19)0.0855 (17)0.0674 (18)
C280.096 (3)0.078 (3)0.109 (3)0.046 (2)0.073 (3)0.044 (2)
C28'0.121 (11)0.099 (10)0.109 (10)0.047 (9)0.091 (8)0.024 (8)
O10.0466 (6)0.0410 (6)0.0411 (6)0.0207 (5)0.0259 (5)0.0243 (5)
O20.0622 (8)0.0750 (9)0.0825 (9)0.0300 (7)0.0334 (7)0.0593 (8)
O30.0490 (7)0.0785 (9)0.0669 (8)0.0152 (6)0.0296 (6)0.0497 (7)
O40.0635 (8)0.1043 (11)0.0431 (7)0.0297 (8)0.0281 (6)0.0382 (7)
O50.0624 (8)0.0935 (10)0.0671 (8)0.0468 (8)0.0445 (7)0.0463 (8)
Geometric parameters (Å, º) top
C1—O11.4618 (18)C20—H200.9300
C1—C151.506 (2)C21—C221.507 (2)
C1—C21.519 (2)C21—C251.561 (2)
C1—C211.558 (2)C21—H210.9800
C2—C31.380 (2)C22—O21.196 (2)
C2—C71.385 (2)C22—O31.330 (2)
C3—C41.384 (3)C23—C24'1.356 (9)
C3—H30.9300C23—C241.425 (5)
C4—C51.381 (3)C23—O31.456 (2)
C4—H40.9300C23—H23A0.9700
C5—C61.385 (2)C23—H23B0.9700
C5—H50.9300C23—H23C0.9700
C6—C71.377 (2)C23—H23D0.9700
C6—H60.9300C24—H23C1.1599
C7—C81.515 (2)C24—H24A0.9600
C8—O11.4462 (17)C24—H24B0.9600
C8—C91.499 (2)C24—H24C0.9600
C8—C251.579 (2)C24'—H24D0.9600
C9—C101.380 (2)C24'—H24E0.9600
C9—C141.388 (2)C24'—H24F0.9600
C10—C111.380 (3)C25—C261.509 (2)
C10—H100.9300C25—H250.9800
C11—C121.367 (3)C26—O41.190 (2)
C11—H110.9300C26—O51.327 (2)
C12—C131.369 (3)C27—C281.439 (4)
C12—H120.9300C27—O51.456 (2)
C13—C141.379 (3)C27—C28'1.460 (15)
C13—H130.9300C27—H27A0.9700
C14—H140.9300C27—H27B0.9700
C15—C161.377 (2)C27—H27C0.9700
C15—C201.382 (3)C27—H27D0.9700
C16—C171.385 (3)C28—H27C1.5364
C16—H160.9300C28—H28A0.9600
C17—C181.372 (3)C28—H28B0.9600
C17—H170.9300C28—H28C0.9600
C18—C191.367 (3)C28'—H28D0.9600
C18—H180.9300C28'—H28E0.9600
C19—C201.377 (3)C28'—H28F0.9600
C19—H190.9300
O1—C1—C15109.38 (12)C24'—C23—C2455.8 (7)
O1—C1—C2100.40 (11)C24'—C23—O3115.4 (5)
C15—C1—C2117.40 (13)C24—C23—O3108.9 (3)
O1—C1—C2198.75 (11)C24'—C23—H23A134.7
C15—C1—C21119.01 (13)C24—C23—H23A109.9
C2—C1—C21108.56 (12)O3—C23—H23A109.9
C3—C2—C7120.90 (15)C24'—C23—H23B55.3
C3—C2—C1133.41 (14)C24—C23—H23B109.9
C7—C2—C1105.69 (13)O3—C23—H23B109.9
C2—C3—C4117.89 (16)H23A—C23—H23B108.3
C2—C3—H3121.1C24'—C23—H23C105.3
C4—C3—H3121.1C24—C23—H23C54.0
C5—C4—C3121.02 (16)O3—C23—H23C108.1
C5—C4—H4119.5H23A—C23—H23C59.5
C3—C4—H4119.5H23B—C23—H23C141.9
C4—C5—C6121.17 (17)C24'—C23—H23D112.1
C4—C5—H5119.4C24—C23—H23D142.3
C6—C5—H5119.4O3—C23—H23D108.2
C7—C6—C5117.62 (16)H23A—C23—H23D49.7
C7—C6—H6121.2H23B—C23—H23D62.3
C5—C6—H6121.2H23C—C23—H23D107.4
C6—C7—C2121.39 (15)C23—C24—H23C42.6
C6—C7—C8133.22 (15)C23—C24—H24A109.5
C2—C7—C8105.38 (13)H23C—C24—H24A102.3
O1—C8—C9111.29 (12)C23—C24—H24B109.5
O1—C8—C7100.90 (11)H23C—C24—H24B73.2
C9—C8—C7117.23 (13)C23—C24—H24C109.5
O1—C8—C2599.22 (11)H23C—C24—H24C144.4
C9—C8—C25116.92 (12)C23—C24'—H24D109.5
C7—C8—C25108.62 (12)C23—C24'—H24E109.5
C10—C9—C14118.20 (15)H24D—C24'—H24E109.5
C10—C9—C8120.89 (14)C23—C24'—H24F109.5
C14—C9—C8120.87 (14)H24D—C24'—H24F109.5
C9—C10—C11120.56 (17)H24E—C24'—H24F109.5
C9—C10—H10119.7C26—C25—C21115.19 (13)
C11—C10—H10119.7C26—C25—C8113.88 (13)
C12—C11—C10120.61 (18)C21—C25—C8100.93 (11)
C12—C11—H11119.7C26—C25—H25108.8
C10—C11—H11119.7C21—C25—H25108.8
C13—C12—C11119.64 (17)C8—C25—H25108.8
C13—C12—H12120.2O4—C26—O5123.90 (15)
C11—C12—H12120.2O4—C26—C25125.44 (15)
C12—C13—C14120.18 (18)O5—C26—C25110.63 (14)
C12—C13—H13119.9C28—C27—O5110.3 (2)
C14—C13—H13119.9C28—C27—C28'37.9 (11)
C13—C14—C9120.82 (17)O5—C27—C28'105.7 (7)
C13—C14—H14119.6C28—C27—H27A109.6
C9—C14—H14119.6O5—C27—H27A109.6
C16—C15—C20118.52 (16)C28'—C27—H27A76.6
C16—C15—C1123.58 (15)C28—C27—H27B109.6
C20—C15—C1117.89 (15)O5—C27—H27B109.6
C15—C16—C17120.46 (17)C28'—C27—H27B139.8
C15—C16—H16119.8H27A—C27—H27B108.1
C17—C16—H16119.8C28—C27—H27C76.5
C18—C17—C16120.32 (19)O5—C27—H27C110.6
C18—C17—H17119.8C28'—C27—H27C112.8
C16—C17—H17119.8H27A—C27—H27C133.7
C19—C18—C17119.53 (18)H27B—C27—H27C35.6
C19—C18—H18120.2C28—C27—H27D133.2
C17—C18—H18120.2O5—C27—H27D110.6
C18—C19—C20120.3 (2)C28'—C27—H27D108.4
C18—C19—H19119.8H27A—C27—H27D33.7
C20—C19—H19119.8H27B—C27—H27D76.5
C19—C20—C15120.8 (2)H27C—C27—H27D108.7
C19—C20—H20119.6C27—C28—H27C37.9
C15—C20—H20119.6C27—C28—H28A109.5
C22—C21—C1115.77 (13)C27—C28—H28B109.5
C22—C21—C25117.58 (13)C27—C28—H28C109.5
C1—C21—C25102.46 (12)C27—C28'—H28D109.5
C22—C21—H21106.8C27—C28'—H28E109.5
C1—C21—H21106.8C27—C28'—H28F109.5
C25—C21—H21106.8C8—O1—C198.16 (10)
O2—C22—O3124.14 (15)C22—O3—C23116.23 (15)
O2—C22—C21125.26 (15)C26—O5—C27116.02 (16)
O3—C22—C21110.49 (14)
O1—C1—C2—C3149.26 (17)C15—C16—C17—C180.2 (3)
C15—C1—C2—C330.9 (2)C16—C17—C18—C191.1 (3)
C21—C1—C2—C3107.74 (19)C17—C18—C19—C201.4 (4)
O1—C1—C2—C731.15 (14)C18—C19—C20—C150.5 (4)
C15—C1—C2—C7149.53 (13)C16—C15—C20—C190.8 (3)
C21—C1—C2—C771.84 (15)C1—C15—C20—C19179.5 (2)
C7—C2—C3—C41.1 (2)O1—C1—C21—C22164.98 (12)
C1—C2—C3—C4179.40 (16)C15—C1—C21—C2277.03 (18)
C2—C3—C4—C51.2 (3)C2—C1—C21—C2260.83 (17)
C3—C4—C5—C60.3 (3)O1—C1—C21—C2535.69 (13)
C4—C5—C6—C70.7 (3)C15—C1—C21—C25153.68 (13)
C5—C6—C7—C20.9 (2)C2—C1—C21—C2568.46 (14)
C5—C6—C7—C8179.86 (16)C1—C21—C22—O27.3 (2)
C3—C2—C7—C60.0 (2)C25—C21—C22—O2128.85 (18)
C1—C2—C7—C6179.70 (14)C1—C21—C22—O3176.40 (13)
C3—C2—C7—C8179.20 (14)C25—C21—C22—O354.89 (19)
C1—C2—C7—C80.45 (15)C22—C21—C25—C265.5 (2)
C6—C7—C8—O1148.54 (17)C1—C21—C25—C26122.65 (14)
C2—C7—C8—O132.35 (15)C22—C21—C25—C8128.65 (14)
C6—C7—C8—C927.5 (2)C1—C21—C25—C80.49 (13)
C2—C7—C8—C9153.35 (13)O1—C8—C25—C26159.38 (12)
C6—C7—C8—C25107.75 (19)C9—C8—C25—C2680.95 (17)
C2—C7—C8—C2571.36 (14)C7—C8—C25—C2654.49 (16)
O1—C8—C9—C109.6 (2)O1—C8—C25—C2135.34 (13)
C7—C8—C9—C10105.79 (18)C9—C8—C25—C21155.02 (13)
C25—C8—C9—C10122.60 (16)C7—C8—C25—C2169.54 (14)
O1—C8—C9—C14172.61 (14)C21—C25—C26—O449.0 (2)
C7—C8—C9—C1472.00 (19)C8—C25—C26—O467.0 (2)
C25—C8—C9—C1459.6 (2)C21—C25—C26—O5132.97 (15)
C14—C9—C10—C110.7 (3)C8—C25—C26—O5111.08 (15)
C8—C9—C10—C11178.53 (17)C9—C8—O1—C1176.08 (12)
C9—C10—C11—C120.6 (3)C7—C8—O1—C150.97 (13)
C10—C11—C12—C130.2 (3)C25—C8—O1—C160.17 (12)
C11—C12—C13—C140.0 (3)C15—C1—O1—C8174.57 (12)
C12—C13—C14—C90.1 (3)C2—C1—O1—C850.46 (12)
C10—C9—C14—C130.5 (3)C21—C1—O1—C860.38 (12)
C8—C9—C14—C13178.31 (16)O2—C22—O3—C238.5 (3)
O1—C1—C15—C16116.36 (17)C21—C22—O3—C23175.18 (17)
C2—C1—C15—C16130.19 (17)C24'—C23—O3—C22137.7 (10)
C21—C1—C15—C164.0 (2)C24—C23—O3—C22162.0 (4)
O1—C1—C15—C2062.2 (2)O4—C26—O5—C271.3 (3)
C2—C1—C15—C2051.2 (2)C25—C26—O5—C27176.78 (18)
C21—C1—C15—C20174.54 (16)C28—C27—O5—C26155.4 (3)
C20—C15—C16—C171.2 (3)C28'—C27—O5—C26115.7 (14)
C1—C15—C16—C17179.73 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7and C9–C14 rings respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28B···Cg1i0.983.003.601 (7)121
C5—H5···Cg2ii0.932.893.693 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC28H26O5
Mr442.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7126 (3), 11.5930 (3), 12.5989 (5)
α, β, γ (°)115.013 (2), 107.126 (2), 97.431 (1)
V3)1174.60 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.952, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
20057, 4124, 3271
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.06
No. of reflections4124
No. of parameters323
No. of restraints40
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7and C9–C14 rings respectively.
D—H···AD—HH···AD···AD—H···A
C28—H28B···Cg1i0.983.00273.601 (7)121
C5—H5···Cg2ii0.932.8893.693 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589–592.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDoboszewski, B., Silva, P. R. da, Nazarenko, A. Y. & Nemykin, V. N. (2010). Acta Cryst. E66, o3217–o3218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOhwada, T., Miura, M., Tanaka, H., Sakamoto, S., Yamaguchi, K., Ikeda, H. & Inagaki, S. (2001). J. Am. Chem. Soc. 123, 10164–10172.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevens, A. M. & Richards, C. J. (1997). Tetrahedron Lett. 38, 7805–7808.  CrossRef CAS Web of Science Google Scholar
First citationTakahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973-.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationToze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852–o2853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds