organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o422-o423

3-Chloro-4-[2-(4-chloro­benzyl­­idene)hydrazinyl­­idene]-1-methyl-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine-2,2-dione

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, NWFP, Pakistan, bDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, dDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and eMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 27 December 2012; accepted 14 February 2013; online 23 February 2013)

In the title compound, C16H13Cl2N3O2S, the dihedral angle between the aromatic rings is 6.62 (2)° and the C=N—N=C torsion angle is 176.2 (4)°. The thia­zine ring shows an envelope conformation, with the S atom displaced by 0.633 (6) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.037 Å). The Cl atom is an an axial conformation and is displaced by 2.015 (6) Å from the thia­zine ring plane. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, generating a three-dimensional network. Very weak aromatic ππ stacking inter­actions [centroid–centroid separations = 3.928 (2) Å] are also observed.

Related literature

For background to benzothia­zines, see: Misu & Togo (2003[Misu, Y. & Togo, H. (2003). Org. Biomol. Chem. 1, 1342-1346.]); Harmata et al. (2006[Harmata, M., Calkins, N. L., Baughman, R. G. & Barnes, C. L. (2006). J. Org. Chem. 71, 3650-3652.]). For the synthesis and biological activity of the title compound and related materials, see: Ahmad et al. (2010a[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010a). Eur. J. Med. Chem. 45, 698-704.]); Shafiq et al. (2011a[Shafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011a). J. Chil. Chem. Soc. 56, 527-531.]). For further synthetic details, see: Shafiq et al. (2011b[Shafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011b). Asian J. Chem. 23, 2101-2106.]). For related structures, see: Ahmad et al. (2010b[Ahmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010b). J. Chem. Crystallogr. 40, 1188-1194.]); Shafiq et al. (2011c[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011c). Acta Cryst. E67, o2038.], 2013[Shafiq, M., Tahir, M. N., Harrison, W. T. A., Khan, I. U. & Shafique, S. (2013). Acta Cryst. E69, o165.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13Cl2N3O2S

  • Mr = 382.25

  • Monoclinic, P 21 /c

  • a = 12.309 (2) Å

  • b = 17.189 (3) Å

  • c = 8.1837 (13) Å

  • β = 101.632 (8)°

  • V = 1695.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 296 K

  • 0.28 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.868, Tmax = 0.931

  • 13580 measured reflections

  • 3319 independent reflections

  • 1736 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.00

  • 3319 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.48 3.356 (6) 158
C12—H12⋯O2ii 0.93 2.59 3.419 (5) 149
C13—H13⋯O1iii 0.93 2.50 3.293 (5) 143
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y, -z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazine derivatives are versatile chiral ligands (Harmata et al., 2006) and show various biological activities (Ahmad et al., 2010a, Misu & Togo, 2003). As part of our ongoing studies in this area (Shafiq et al., 2011a,b), we now describe the synthesis and structure of the title compound, (I) (Fig. 1).

The dihedral angle between the aromatic rings C1–C6 and C11–C16 is 6.6 (2)° and the C9=N2—N3=C10 torsion angle is 176.2 (4)°. The conformation of the C1/C6/C8/C9/N1/S1 thiazine ring is an envelope, with the S atom displaced by -0.633 (6) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.037 Å). This displacement is smaller than that seen in related structures (Shafiq et al., 2013). In (I), atom C7 is displaced from the mean plane of the ring by 0.541 (7) Å and Cl1, in an axial site, is displaced by 2.015 (6) Å. Atom C8 is a stereogenic centre with an S configuration in the arbitrarily-chosen asymmetric unit. Nevertheless, crystal symmetry indicates a racemic mixture.

In the crystal, moelcules are linked by C—H···O interactions (Table 1) to generate a three-dimensional network (Fig. 2). Very weak aromatic π-π stacking interactions between the benzene rings C1—C6 and C13—C18 benzene rings [centroid-centroid separations = 3.928 (2) Å] are also observed.

Related literature top

For background to benzothiazines, see: Misu & Togo (2003); Harmata et al. (2006). For the synthesis and biological activity of the title compound and related materials, see: Ahmad et al. (2010a); Shafiq et al. (2011a). For further synthetic details, see: Shafiq et al. (2011b). For related structures, see: Ahmad et al. (2010b); Shafiq et al. (2011c, 2013).

Experimental top

The Schiff base derivative of (4Z)-4-hydrazinylidene-1-methyl-3,4-dihydro -1H-2,1-benzothiazine 2,2-dioxide (Shafiq et al., 2011c) and para-chlorobenzaldehyde was prepared using the method reported previously (Shafiq et al., 2011a). Chlorination of the Schiff base was undertaken using N-chloro succinimide and dibenzoylperoxide (Shafiq et al., 2011b). The crude product was re-crystallized from ethyl acetate and dichloromethane solution (1:1 v/v) to obtain yellow blocks of the title compound.

Refinement top

H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of (I), showing H···O interactions as double-dashed lines and π-π stacking as open pink lines.
3-Chloro-4-[2-(4-chlorobenzylidene)hydrazinylidene]-1-methyl-3,4-dihydro-1H-2λ6,1-benzothiazine-2,2-dione top
Crystal data top
C16H13Cl2N3O2SF(000) = 784
Mr = 382.25Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 225 reflections
a = 12.309 (2) Åθ = 3.7–22.3°
b = 17.189 (3) ŵ = 0.52 mm1
c = 8.1837 (13) ÅT = 296 K
β = 101.632 (8)°Block, yellow
V = 1695.9 (5) Å30.28 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3319 independent reflections
Radiation source: fine-focus sealed tube1736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.868, Tmax = 0.931k = 2121
13580 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.047P)2 + 0.7016P]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C16H13Cl2N3O2SV = 1695.9 (5) Å3
Mr = 382.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.309 (2) ŵ = 0.52 mm1
b = 17.189 (3) ÅT = 296 K
c = 8.1837 (13) Å0.28 × 0.16 × 0.14 mm
β = 101.632 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1736 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.931Rint = 0.076
13580 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.42 e Å3
3319 reflectionsΔρmin = 0.33 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2793 (4)0.0825 (2)0.2790 (5)0.0443 (10)
C20.3546 (4)0.0531 (2)0.4159 (5)0.0562 (12)
H20.42910.04960.41030.067*
C30.3216 (5)0.0291 (3)0.5591 (6)0.0754 (16)
H30.37330.01000.64890.090*
C40.2111 (6)0.0339 (3)0.5677 (6)0.0820 (18)
H40.18790.01760.66350.098*
C50.1353 (5)0.0624 (3)0.4352 (7)0.0736 (15)
H50.06090.06520.44210.088*
C60.1678 (4)0.0875 (2)0.2903 (5)0.0534 (11)
C70.0133 (4)0.1564 (3)0.1866 (7)0.0877 (17)
H7A0.06700.11770.20010.132*
H7B0.04350.18920.09360.132*
H7C0.00460.18740.28610.132*
C80.2436 (3)0.1500 (2)0.0046 (5)0.0456 (10)
H80.27030.14450.10900.055*
C90.3205 (3)0.1070 (2)0.1305 (4)0.0402 (9)
C100.5527 (3)0.1066 (2)0.0255 (5)0.0460 (10)
H100.59680.08360.06770.055*
C110.6032 (3)0.1273 (2)0.1647 (5)0.0404 (9)
C120.7137 (3)0.1108 (2)0.1598 (5)0.0511 (11)
H120.75570.08750.06530.061*
C130.7630 (3)0.1285 (2)0.2933 (6)0.0551 (12)
H130.83740.11720.28860.066*
C140.7011 (4)0.1626 (2)0.4315 (5)0.0508 (11)
C150.5919 (4)0.1809 (2)0.4393 (5)0.0550 (11)
H150.55090.20470.53410.066*
C160.5430 (3)0.1640 (2)0.3062 (5)0.0498 (11)
H160.46910.17720.31080.060*
S10.10908 (9)0.10838 (7)0.03153 (14)0.0548 (3)
N10.0871 (3)0.1183 (2)0.1564 (5)0.0598 (10)
N20.4212 (3)0.09167 (19)0.1225 (4)0.0493 (9)
N30.4512 (3)0.11839 (19)0.0247 (4)0.0504 (9)
O10.0296 (2)0.1538 (2)0.1431 (4)0.0787 (10)
O20.1256 (2)0.02920 (17)0.0680 (3)0.0573 (8)
Cl10.23868 (10)0.25052 (6)0.04375 (17)0.0757 (4)
Cl20.76214 (12)0.18282 (8)0.60081 (17)0.0859 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (3)0.038 (2)0.039 (2)0.009 (2)0.015 (2)0.0026 (18)
C20.076 (3)0.053 (3)0.040 (2)0.012 (2)0.013 (2)0.004 (2)
C30.120 (5)0.067 (3)0.039 (3)0.023 (3)0.016 (3)0.000 (2)
C40.151 (6)0.056 (3)0.051 (3)0.026 (4)0.050 (4)0.009 (3)
C50.100 (4)0.058 (3)0.080 (4)0.017 (3)0.057 (3)0.011 (3)
C60.072 (3)0.038 (2)0.057 (3)0.012 (2)0.030 (3)0.011 (2)
C70.062 (3)0.093 (4)0.115 (4)0.006 (3)0.036 (3)0.032 (3)
C80.045 (3)0.046 (2)0.047 (2)0.0027 (19)0.012 (2)0.0048 (19)
C90.048 (3)0.035 (2)0.039 (2)0.006 (2)0.0107 (19)0.0015 (18)
C100.048 (3)0.044 (2)0.046 (2)0.008 (2)0.009 (2)0.0055 (19)
C110.036 (2)0.040 (2)0.045 (2)0.0033 (18)0.0075 (19)0.0003 (18)
C120.041 (2)0.053 (3)0.058 (3)0.005 (2)0.005 (2)0.001 (2)
C130.034 (2)0.051 (3)0.082 (3)0.001 (2)0.016 (2)0.008 (2)
C140.057 (3)0.040 (2)0.061 (3)0.004 (2)0.026 (2)0.001 (2)
C150.055 (3)0.054 (3)0.058 (3)0.004 (2)0.018 (2)0.010 (2)
C160.037 (2)0.055 (3)0.058 (3)0.000 (2)0.012 (2)0.004 (2)
S10.0448 (7)0.0606 (7)0.0593 (7)0.0038 (6)0.0111 (5)0.0011 (6)
N10.053 (2)0.064 (2)0.071 (2)0.002 (2)0.032 (2)0.003 (2)
N20.053 (2)0.058 (2)0.0383 (19)0.0034 (18)0.0119 (17)0.0118 (16)
N30.045 (2)0.063 (2)0.045 (2)0.0035 (18)0.0116 (16)0.0084 (18)
O10.0463 (19)0.094 (3)0.088 (2)0.0067 (18)0.0040 (18)0.017 (2)
O20.0593 (19)0.0633 (19)0.0498 (17)0.0074 (16)0.0119 (15)0.0139 (15)
Cl10.0765 (9)0.0449 (6)0.1015 (10)0.0031 (6)0.0077 (7)0.0103 (6)
Cl20.1003 (11)0.0762 (9)0.1001 (10)0.0026 (8)0.0653 (9)0.0138 (8)
Geometric parameters (Å, º) top
C1—C61.396 (6)C9—N21.281 (5)
C1—C21.397 (5)C10—N31.267 (5)
C1—C91.470 (5)C10—C111.448 (5)
C2—C31.378 (6)C10—H100.9300
C2—H20.9300C11—C121.381 (5)
C3—C41.379 (7)C11—C161.394 (5)
C3—H30.9300C12—C131.387 (6)
C4—C51.371 (7)C12—H120.9300
C4—H40.9300C13—C141.363 (5)
C5—C61.394 (6)C13—H130.9300
C5—H50.9300C14—C151.369 (5)
C6—N11.425 (5)C14—Cl21.739 (4)
C7—N11.464 (5)C15—C161.378 (5)
C7—H7A0.9600C15—H150.9300
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600S1—O21.417 (3)
C8—C91.498 (5)S1—O11.428 (3)
C8—Cl11.776 (4)S1—N11.623 (4)
C8—S11.776 (4)N2—N31.406 (4)
C8—H80.9800
C6—C1—C2118.1 (4)N3—C10—C11123.0 (4)
C6—C1—C9123.0 (4)N3—C10—H10118.5
C2—C1—C9118.9 (4)C11—C10—H10118.5
C3—C2—C1121.9 (5)C12—C11—C16118.2 (4)
C3—C2—H2119.0C12—C11—C10120.2 (4)
C1—C2—H2119.0C16—C11—C10121.6 (4)
C2—C3—C4119.2 (5)C11—C12—C13121.1 (4)
C2—C3—H3120.4C11—C12—H12119.4
C4—C3—H3120.4C13—C12—H12119.4
C5—C4—C3120.1 (5)C14—C13—C12119.2 (4)
C5—C4—H4119.9C14—C13—H13120.4
C3—C4—H4119.9C12—C13—H13120.4
C4—C5—C6121.2 (5)C13—C14—C15121.1 (4)
C4—C5—H5119.4C13—C14—Cl2119.2 (3)
C6—C5—H5119.4C15—C14—Cl2119.6 (4)
C5—C6—C1119.5 (5)C14—C15—C16119.7 (4)
C5—C6—N1119.6 (4)C14—C15—H15120.1
C1—C6—N1120.9 (4)C16—C15—H15120.1
N1—C7—H7A109.5C15—C16—C11120.6 (4)
N1—C7—H7B109.5C15—C16—H16119.7
H7A—C7—H7B109.5C11—C16—H16119.7
N1—C7—H7C109.5O2—S1—O1119.9 (2)
H7A—C7—H7C109.5O2—S1—N1111.05 (18)
H7B—C7—H7C109.5O1—S1—N1108.9 (2)
C9—C8—Cl1111.1 (3)O2—S1—C8104.09 (18)
C9—C8—S1109.1 (3)O1—S1—C8111.11 (19)
Cl1—C8—S1110.3 (2)N1—S1—C899.76 (19)
C9—C8—H8108.7C6—N1—C7121.2 (4)
Cl1—C8—H8108.7C6—N1—S1117.8 (3)
S1—C8—H8108.7C7—N1—S1121.0 (3)
N2—C9—C1118.8 (4)C9—N2—N3113.6 (3)
N2—C9—C8122.5 (3)C10—N3—N2112.4 (3)
C1—C9—C8118.6 (4)
C6—C1—C2—C30.1 (6)C13—C14—C15—C160.6 (6)
C9—C1—C2—C3180.0 (4)Cl2—C14—C15—C16179.1 (3)
C1—C2—C3—C40.3 (7)C14—C15—C16—C111.0 (6)
C2—C3—C4—C50.3 (7)C12—C11—C16—C152.1 (6)
C3—C4—C5—C60.3 (7)C10—C11—C16—C15178.0 (4)
C4—C5—C6—C10.7 (6)C9—C8—S1—O257.3 (3)
C4—C5—C6—N1178.7 (4)Cl1—C8—S1—O2179.68 (19)
C2—C1—C6—C50.6 (6)C9—C8—S1—O1172.3 (3)
C9—C1—C6—C5179.5 (4)Cl1—C8—S1—O149.9 (3)
C2—C1—C6—N1178.8 (3)C9—C8—S1—N157.4 (3)
C9—C1—C6—N11.1 (6)Cl1—C8—S1—N164.9 (2)
C6—C1—C9—N2171.5 (4)C5—C6—N1—C727.6 (6)
C2—C1—C9—N28.6 (5)C1—C6—N1—C7151.8 (4)
C6—C1—C9—C89.5 (5)C5—C6—N1—S1151.3 (3)
C2—C1—C9—C8170.4 (3)C1—C6—N1—S129.3 (5)
Cl1—C8—C9—N296.8 (4)O2—S1—N1—C655.3 (3)
S1—C8—C9—N2141.3 (3)O1—S1—N1—C6170.5 (3)
Cl1—C8—C9—C182.1 (4)C8—S1—N1—C654.0 (3)
S1—C8—C9—C139.7 (4)O2—S1—N1—C7123.6 (4)
N3—C10—C11—C12178.1 (4)O1—S1—N1—C710.6 (4)
N3—C10—C11—C161.9 (6)C8—S1—N1—C7127.1 (4)
C16—C11—C12—C131.6 (6)C1—C9—N2—N3179.5 (3)
C10—C11—C12—C13178.5 (4)C8—C9—N2—N30.6 (5)
C11—C12—C13—C140.0 (6)C11—C10—N3—N2178.6 (3)
C12—C13—C14—C151.2 (6)C9—N2—N3—C10176.2 (4)
C12—C13—C14—Cl2178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.483.356 (6)158
C12—H12···O2ii0.932.593.419 (5)149
C13—H13···O1iii0.932.503.293 (5)143
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13Cl2N3O2S
Mr382.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.309 (2), 17.189 (3), 8.1837 (13)
β (°) 101.632 (8)
V3)1695.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.28 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.868, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
13580, 3319, 1736
Rint0.076
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.00
No. of reflections3319
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.483.356 (6)158
C12—H12···O2ii0.932.593.419 (5)149
C13—H13···O1iii0.932.503.293 (5)143
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

MS acknowledges the HEC Pakistan for providing a PhD fellowship and the UOS, Sargodha, for X-ray diffraction facility.

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010b). J. Chem. Crystallogr. 40, 1188–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010a). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarmata, M., Calkins, N. L., Baughman, R. G. & Barnes, C. L. (2006). J. Org. Chem. 71, 3650–3652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMisu, Y. & Togo, H. (2003). Org. Biomol. Chem. 1, 1342–1346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShafiq, M., Khan, I. U., Arshad, M. N. & Siddiqui, W. A. (2011b). Asian J. Chem. 23, 2101–2106.  CAS Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011c). Acta Cryst. E67, o2038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Tahir, M. N., Harrison, W. T. A., Khan, I. U. & Shafique, S. (2013). Acta Cryst. E69, o165.  CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-Ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011a). J. Chil. Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o422-o423
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds