organic compounds
5-Amino-6-methylquinolin-1-ium hydrogen malonate–malonic acid (2/1)
aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my
The 10H11N2+·2C3H3O4−·C3H4O4, consists of one 5-amino-6-methylquinolin-1-ium cation, one hydrogen malonate (2-carboxyacetate) anion and one-half molecule of malonic acid which lies on a twofold rotation axis. The quinoline ring system is essentially planar, with a maximum deviation of 0.062 (2) Å for all non-H atoms. In the anion, an intramolecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the components are linked via N—H⋯O and O—H⋯O hydrogen bonds into layers parallel to the ac plane. The also features weak C—H⋯O hydrogen bonds and a π–π stacking interaction with a centroid–centroid distance of 3.8189 (10) Å.
of the title compound, 2CRelated literature
For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Thanigaimani et al. (2013a,b); Loh et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536813002547/is5233sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002547/is5233Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002547/is5233Isup3.cml
Hot methanol solutions (20 ml) of 5-amino-6-methylquinoline (39 mg, Aldrich) and malonic acid (26 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.
O- and N-bound H atoms were located in a difference Fourier map. Atoms H1O6, H1N1, H1N2 and H2N2 were refined freely, while atom H1O2 was refined with a bond restraint O—H = 0.82 (1) Å [refined distance: O6—H1O6 = 1.02 (3) Å, O2—H1O2 = 0.859 (10) Å, N1—H1N1 = 0.99 (2) Å, N2—H1N2 = 0.91 (2) Å and N2—H2N2 = 0.90 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. One outlier (-6 0 10) was omitted in the final refinement.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. | |
Fig. 2. A crystal packing diagram of the title compound. H atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity. |
2C10H11N2+·2C3H3O4−·C3H4O4 | F(000) = 1320 |
Mr = 628.59 | Dx = 1.396 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 5351 reflections |
a = 24.701 (2) Å | θ = 3.3–25.6° |
b = 4.8530 (4) Å | µ = 0.11 mm−1 |
c = 25.063 (2) Å | T = 297 K |
β = 95.321 (3)° | Block, orange |
V = 2991.4 (4) Å3 | 0.35 × 0.24 × 0.09 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3835 independent reflections |
Radiation source: fine-focus sealed tube | 2644 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ϕ and ω scans | θmax = 28.6°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −31→32 |
Tmin = 0.962, Tmax = 0.990 | k = −6→6 |
25870 measured reflections | l = −33→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0604P)2 + 1.0717P] where P = (Fo2 + 2Fc2)/3 |
3835 reflections | (Δ/σ)max < 0.001 |
225 parameters | Δρmax = 0.18 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
2C10H11N2+·2C3H3O4−·C3H4O4 | V = 2991.4 (4) Å3 |
Mr = 628.59 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.701 (2) Å | µ = 0.11 mm−1 |
b = 4.8530 (4) Å | T = 297 K |
c = 25.063 (2) Å | 0.35 × 0.24 × 0.09 mm |
β = 95.321 (3)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 3835 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2644 reflections with I > 2σ(I) |
Tmin = 0.962, Tmax = 0.990 | Rint = 0.038 |
25870 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 1 restraint |
wR(F2) = 0.130 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.18 e Å−3 |
3835 reflections | Δρmin = −0.20 e Å−3 |
225 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.13586 (5) | 0.9772 (3) | 0.04300 (6) | 0.0754 (4) | |
O2 | −0.07247 (5) | 0.7142 (3) | 0.01501 (6) | 0.0746 (4) | |
O3 | 0.04562 (4) | 1.0469 (3) | 0.11941 (5) | 0.0646 (3) | |
O4 | 0.02278 (5) | 0.7599 (3) | 0.05274 (5) | 0.0690 (4) | |
O5 | −0.04221 (5) | 0.5560 (3) | 0.16694 (5) | 0.0732 (4) | |
O6 | 0.03881 (5) | 0.3951 (3) | 0.19696 (5) | 0.0709 (4) | |
N1 | 0.14556 (5) | 0.8482 (3) | 0.09860 (5) | 0.0512 (3) | |
N2 | 0.34061 (6) | 0.9024 (4) | 0.12530 (7) | 0.0632 (4) | |
C1 | 0.14687 (6) | 0.6550 (4) | 0.06193 (7) | 0.0565 (4) | |
H1A | 0.1144 | 0.5844 | 0.0456 | 0.068* | |
C2 | 0.19582 (6) | 0.5552 (4) | 0.04724 (7) | 0.0565 (4) | |
H2A | 0.1966 | 0.4172 | 0.0216 | 0.068* | |
C3 | 0.24305 (6) | 0.6638 (3) | 0.07126 (6) | 0.0513 (4) | |
H3A | 0.2762 | 0.5997 | 0.0614 | 0.062* | |
C4 | 0.24260 (5) | 0.8699 (3) | 0.11047 (6) | 0.0444 (3) | |
C5 | 0.29079 (6) | 0.9876 (3) | 0.13779 (6) | 0.0475 (3) | |
C6 | 0.28603 (6) | 1.1839 (4) | 0.17747 (6) | 0.0535 (4) | |
C7 | 0.23408 (7) | 1.2695 (4) | 0.18874 (7) | 0.0577 (4) | |
H7A | 0.2314 | 1.4035 | 0.2149 | 0.069* | |
C8 | 0.18716 (6) | 1.1662 (4) | 0.16329 (6) | 0.0546 (4) | |
H8A | 0.1534 | 1.2292 | 0.1716 | 0.066* | |
C9 | 0.19147 (6) | 0.9639 (3) | 0.12455 (6) | 0.0456 (3) | |
C10 | 0.33584 (8) | 1.3009 (5) | 0.20828 (8) | 0.0752 (6) | |
H10A | 0.3588 | 1.3832 | 0.1838 | 0.113* | |
H10B | 0.3553 | 1.1561 | 0.2278 | 0.113* | |
H10C | 0.3253 | 1.4381 | 0.2329 | 0.113* | |
C11 | −0.08862 (6) | 0.9118 (3) | 0.04500 (6) | 0.0519 (4) | |
C12 | −0.04600 (6) | 1.0564 (4) | 0.08107 (7) | 0.0542 (4) | |
H12A | −0.0578 | 1.0564 | 0.1169 | 0.065* | |
H12B | −0.0449 | 1.2470 | 0.0696 | 0.065* | |
C13 | 0.01154 (6) | 0.9451 (3) | 0.08464 (7) | 0.0518 (4) | |
C14 | −0.00419 (6) | 0.5507 (3) | 0.20023 (6) | 0.0508 (4) | |
C15 | 0.0000 | 0.7256 (5) | 0.2500 | 0.0577 (6) | |
H15A | −0.0318 | 0.8431 | 0.2497 | 0.069* | |
H1N2 | 0.3459 (8) | 0.782 (5) | 0.0986 (8) | 0.076 (6)* | |
H1N1 | 0.1100 (8) | 0.914 (4) | 0.1093 (8) | 0.076 (6)* | |
H2N2 | 0.3720 (10) | 0.970 (5) | 0.1407 (9) | 0.087 (7)* | |
H1O2 | −0.0377 (4) | 0.708 (5) | 0.0215 (9) | 0.101 (8)* | |
H106 | 0.0359 (11) | 0.277 (6) | 0.1633 (11) | 0.118 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0428 (6) | 0.0887 (9) | 0.0941 (9) | 0.0145 (6) | 0.0024 (6) | −0.0245 (8) |
O2 | 0.0540 (7) | 0.0738 (8) | 0.0968 (10) | 0.0054 (6) | 0.0106 (7) | −0.0355 (7) |
O3 | 0.0419 (6) | 0.0825 (8) | 0.0691 (7) | 0.0156 (6) | 0.0030 (5) | −0.0146 (6) |
O4 | 0.0498 (6) | 0.0737 (8) | 0.0849 (8) | 0.0168 (6) | 0.0147 (6) | −0.0213 (7) |
O5 | 0.0489 (6) | 0.0961 (10) | 0.0726 (8) | 0.0098 (6) | −0.0045 (6) | −0.0194 (7) |
O6 | 0.0606 (7) | 0.0848 (9) | 0.0654 (8) | 0.0233 (7) | −0.0046 (6) | −0.0097 (7) |
N1 | 0.0367 (6) | 0.0633 (8) | 0.0538 (7) | 0.0116 (6) | 0.0049 (5) | 0.0025 (6) |
N2 | 0.0379 (7) | 0.0767 (10) | 0.0755 (10) | 0.0060 (7) | 0.0072 (7) | −0.0156 (8) |
C1 | 0.0425 (8) | 0.0668 (10) | 0.0592 (9) | 0.0066 (7) | −0.0009 (7) | 0.0000 (8) |
C2 | 0.0486 (8) | 0.0628 (10) | 0.0578 (9) | 0.0086 (7) | 0.0039 (7) | −0.0074 (8) |
C3 | 0.0419 (8) | 0.0590 (9) | 0.0537 (9) | 0.0118 (7) | 0.0084 (6) | −0.0010 (7) |
C4 | 0.0382 (7) | 0.0500 (8) | 0.0457 (7) | 0.0089 (6) | 0.0080 (6) | 0.0074 (6) |
C5 | 0.0400 (7) | 0.0524 (8) | 0.0507 (8) | 0.0071 (6) | 0.0076 (6) | 0.0063 (7) |
C6 | 0.0490 (8) | 0.0601 (9) | 0.0522 (9) | 0.0032 (7) | 0.0084 (6) | 0.0002 (7) |
C7 | 0.0597 (10) | 0.0624 (10) | 0.0525 (9) | 0.0095 (8) | 0.0131 (7) | −0.0059 (8) |
C8 | 0.0469 (8) | 0.0654 (10) | 0.0530 (9) | 0.0148 (7) | 0.0127 (7) | 0.0013 (7) |
C9 | 0.0380 (7) | 0.0535 (8) | 0.0457 (8) | 0.0103 (6) | 0.0068 (6) | 0.0090 (6) |
C10 | 0.0613 (11) | 0.0880 (14) | 0.0763 (12) | −0.0041 (10) | 0.0059 (9) | −0.0216 (11) |
C11 | 0.0458 (8) | 0.0521 (8) | 0.0588 (9) | 0.0081 (7) | 0.0097 (7) | −0.0027 (7) |
C12 | 0.0461 (8) | 0.0580 (9) | 0.0580 (9) | 0.0166 (7) | 0.0023 (7) | −0.0075 (7) |
C13 | 0.0422 (8) | 0.0588 (9) | 0.0555 (9) | 0.0132 (7) | 0.0104 (7) | 0.0015 (7) |
C14 | 0.0442 (8) | 0.0558 (9) | 0.0529 (8) | 0.0000 (7) | 0.0066 (6) | 0.0047 (7) |
C15 | 0.0634 (14) | 0.0508 (12) | 0.0581 (13) | 0.000 | 0.0020 (11) | 0.000 |
O1—C11 | 1.2060 (18) | C4—C9 | 1.4178 (19) |
O2—C11 | 1.3037 (19) | C4—C5 | 1.436 (2) |
O2—H1O2 | 0.859 (10) | C5—C6 | 1.390 (2) |
O3—C13 | 1.2556 (19) | C6—C7 | 1.402 (2) |
O4—C13 | 1.2511 (19) | C6—C10 | 1.502 (2) |
O5—C14 | 1.1973 (19) | C7—C8 | 1.365 (2) |
O6—C14 | 1.3119 (19) | C7—H7A | 0.9300 |
O6—H106 | 1.02 (3) | C8—C9 | 1.392 (2) |
N1—C1 | 1.316 (2) | C8—H8A | 0.9300 |
N1—C9 | 1.374 (2) | C10—H10A | 0.9600 |
N1—H1N1 | 0.99 (2) | C10—H10B | 0.9600 |
N2—C5 | 1.3619 (19) | C10—H10C | 0.9600 |
N2—H1N2 | 0.91 (2) | C11—C12 | 1.497 (2) |
N2—H2N2 | 0.90 (2) | C12—C13 | 1.515 (2) |
C1—C2 | 1.384 (2) | C12—H12A | 0.9700 |
C1—H1A | 0.9300 | C12—H12B | 0.9700 |
C2—C3 | 1.368 (2) | C14—C15 | 1.504 (2) |
C2—H2A | 0.9300 | C15—C14i | 1.505 (2) |
C3—C4 | 1.403 (2) | C15—H15A | 0.9700 |
C3—H3A | 0.9300 | ||
C11—O2—H1O2 | 105.8 (17) | C7—C8—H8A | 121.0 |
C14—O6—H106 | 112.4 (15) | C9—C8—H8A | 121.0 |
C1—N1—C9 | 123.32 (13) | N1—C9—C8 | 120.35 (13) |
C1—N1—H1N1 | 119.8 (12) | N1—C9—C4 | 117.77 (14) |
C9—N1—H1N1 | 116.9 (12) | C8—C9—C4 | 121.88 (14) |
C5—N2—H1N2 | 124.0 (13) | C6—C10—H10A | 109.5 |
C5—N2—H2N2 | 123.7 (15) | C6—C10—H10B | 109.5 |
H1N2—N2—H2N2 | 112.1 (19) | H10A—C10—H10B | 109.5 |
N1—C1—C2 | 120.93 (15) | C6—C10—H10C | 109.5 |
N1—C1—H1A | 119.5 | H10A—C10—H10C | 109.5 |
C2—C1—H1A | 119.5 | H10B—C10—H10C | 109.5 |
C3—C2—C1 | 118.60 (16) | O1—C11—O2 | 121.09 (16) |
C3—C2—H2A | 120.7 | O1—C11—C12 | 121.68 (14) |
C1—C2—H2A | 120.7 | O2—C11—C12 | 117.22 (13) |
C2—C3—C4 | 121.41 (14) | C11—C12—C13 | 118.13 (14) |
C2—C3—H3A | 119.3 | C11—C12—H12A | 107.8 |
C4—C3—H3A | 119.3 | C13—C12—H12A | 107.8 |
C3—C4—C9 | 117.96 (13) | C11—C12—H12B | 107.8 |
C3—C4—C5 | 123.90 (13) | C13—C12—H12B | 107.8 |
C9—C4—C5 | 118.13 (14) | H12A—C12—H12B | 107.1 |
N2—C5—C6 | 120.70 (15) | O4—C13—O3 | 123.50 (14) |
N2—C5—C4 | 119.77 (15) | O4—C13—C12 | 118.75 (15) |
C6—C5—C4 | 119.52 (13) | O3—C13—C12 | 117.74 (14) |
C5—C6—C7 | 119.12 (15) | O5—C14—O6 | 123.80 (16) |
C5—C6—C10 | 120.49 (15) | O5—C14—C15 | 123.69 (14) |
C7—C6—C10 | 120.39 (16) | O6—C14—C15 | 112.50 (13) |
C8—C7—C6 | 123.39 (16) | C14—C15—C14i | 111.30 (19) |
C8—C7—H7A | 118.3 | C14—C15—H15A | 109.4 |
C6—C7—H7A | 118.3 | C14i—C15—H15A | 109.4 |
C7—C8—C9 | 117.92 (14) | ||
C9—N1—C1—C2 | 0.1 (3) | C6—C7—C8—C9 | 0.6 (3) |
N1—C1—C2—C3 | −0.7 (3) | C1—N1—C9—C8 | −179.50 (15) |
C1—C2—C3—C4 | 0.7 (3) | C1—N1—C9—C4 | 0.5 (2) |
C2—C3—C4—C9 | −0.2 (2) | C7—C8—C9—N1 | 178.46 (15) |
C2—C3—C4—C5 | 178.70 (15) | C7—C8—C9—C4 | −1.5 (2) |
C3—C4—C5—N2 | 1.1 (2) | C3—C4—C9—N1 | −0.4 (2) |
C9—C4—C5—N2 | −179.97 (14) | C5—C4—C9—N1 | −179.35 (13) |
C3—C4—C5—C6 | −177.67 (14) | C3—C4—C9—C8 | 179.55 (14) |
C9—C4—C5—C6 | 1.2 (2) | C5—C4—C9—C8 | 0.6 (2) |
N2—C5—C6—C7 | 179.13 (16) | O1—C11—C12—C13 | 174.80 (16) |
C4—C5—C6—C7 | −2.1 (2) | O2—C11—C12—C13 | −6.3 (2) |
N2—C5—C6—C10 | −1.5 (3) | C11—C12—C13—O4 | 8.8 (2) |
C4—C5—C6—C10 | 177.31 (16) | C11—C12—C13—O3 | −171.96 (15) |
C5—C6—C7—C8 | 1.2 (3) | O5—C14—C15—C14i | 119.16 (18) |
C10—C6—C7—C8 | −178.19 (18) | O6—C14—C15—C14i | −61.88 (12) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3 | 1.00 (2) | 1.76 (2) | 2.7450 (17) | 172.3 (18) |
O2—H1O2···O4 | 0.86 (1) | 1.64 (1) | 2.4630 (18) | 159 (2) |
C1—H1A···O4 | 0.93 | 2.44 | 3.095 (2) | 127 |
N2—H1N2···O1ii | 0.91 (2) | 2.11 (2) | 3.012 (2) | 173.4 (18) |
N2—H2N2···O5iii | 0.90 (2) | 2.20 (2) | 3.076 (2) | 166 (2) |
O6—H106···O3iv | 1.02 (3) | 1.60 (3) | 2.5927 (19) | 164 (2) |
C1—H1A···O2v | 0.93 | 2.28 | 3.106 (2) | 148 |
C3—H3A···O1ii | 0.93 | 2.34 | 3.2648 (19) | 174 |
Symmetry codes: (ii) x+1/2, y−1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y−1, z; (v) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | 2C10H11N2+·2C3H3O4−·C3H4O4 |
Mr | 628.59 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 297 |
a, b, c (Å) | 24.701 (2), 4.8530 (4), 25.063 (2) |
β (°) | 95.321 (3) |
V (Å3) | 2991.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.35 × 0.24 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.962, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25870, 3835, 2644 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.130, 1.03 |
No. of reflections | 3835 |
No. of parameters | 225 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3 | 1.00 (2) | 1.76 (2) | 2.7450 (17) | 172.3 (18) |
O2—H1O2···O4 | 0.860 (11) | 1.641 (14) | 2.4630 (18) | 159 (2) |
C1—H1A···O4 | 0.93 | 2.44 | 3.095 (2) | 127 |
N2—H1N2···O1i | 0.91 (2) | 2.11 (2) | 3.012 (2) | 173.4 (18) |
N2—H2N2···O5ii | 0.90 (2) | 2.20 (2) | 3.076 (2) | 166 (2) |
O6—H106···O3iii | 1.02 (3) | 1.60 (3) | 2.5927 (19) | 164 (2) |
C1—H1A···O2iv | 0.93 | 2.28 | 3.106 (2) | 148 |
C3—H3A···O1i | 0.93 | 2.34 | 3.2648 (19) | 174 |
Symmetry codes: (i) x+1/2, y−1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y−1, z; (iv) −x, −y+1, −z. |
Footnotes
‡Thomson Reuters ResearcherID: A-5599-2009.
Acknowledgements
The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447. Web of Science CrossRef PubMed CAS Google Scholar
Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013a). Acta Cryst. E69, o42–o43. CSD CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013b). Acta Cryst. E69, o44. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Thanigaimani et al., 2013a,b; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the crystal structure and supramolecular patterns of the new compound containing quinoline derivative and malonic acid components.
The asymmetric unit of the title compound (Fig. 1) contains a protonated 5-amino-6-methylquinolin-1-ium cation, a hydrogen malonate anion and a half of the malonic acid molecule. The dihedral angles between the quinoline ring and the planes formed by the malonate and malonic acid molecule are 10.39 (5) and 27.08 (8)°, respectively. The planar malonic acid molecule is located on a two-fold rotation axis. In the malonic acid, the C14—O5 bond distance of 1.1973 (19) Å is much shorter than the C14—O6 bond distance of 1.312 (2) Å indicating that the carboxyl group is not deprotonated in the crystal structure. The 5-amino-6-methylquinolinium cation is essentially planar with a maximum deviation of 0.062 (2) Å for atom C10. In the cation, a wider than normal angle [C1—N1—C9 = 123.32 (13)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal. The anion is stabilized by an intramolecular O2—H1O2···O4 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).
In the crystal packing (Fig. 2), the ion pairs and malonic acid molecules are linked via O6—H1O6···O3iii, N1—H1N1···O3, N2—H2N2···O5ii and N2—H1N2···O1i hydrogen bonds (symmetry codes in Table 1), forming a layer parallel to ac plane. The crystal structure is further stabilized by C1—H1A···O4, C1—H1A···O2iv and C3—H3A···O1i hydrogen bonds (symmetry codes in Table 1) and a π–π stacking interaction between the pyridine rings (N1/C1–C4/C9) and the benzene ring (C4–C9) (x, -1 + y, z and x, 1 + y, z) with a centroid–centroid distance of 3.8189 (10) Å