organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o319-o320

5-Amino-6-methyl­quinolin-1-ium hydrogen malonate–malonic acid (2/1)

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 20 December 2012; accepted 25 January 2013; online 2 February 2013)

The asymmetric unit of the title compound, 2C10H11N2+·2C3H3O4·C3H4O4, consists of one 5-amino-6-methyl­quinolin-1-ium cation, one hydrogen malonate (2-carb­oxy­acetate) anion and one-half mol­ecule of malonic acid which lies on a twofold rotation axis. The quinoline ring system is essentially planar, with a maximum deviation of 0.062 (2) Å for all non-H atoms. In the anion, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, the components are linked via N—H⋯O and O—H⋯O hydrogen bonds into layers parallel to the ac plane. The crystal structure also features weak C—H⋯O hydrogen bonds and a ππ stacking inter­action with a centroid–centroid distance of 3.8189 (10) Å.

Related literature

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]). For related structures, see: Thanigaimani et al. (2013a[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013a). Acta Cryst. E69, o42-o43.],b[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013b). Acta Cryst. E69, o44.]); Loh et al. (2010[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2357.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H11N2+·2C3H3O4·C3H4O4

  • Mr = 628.59

  • Monoclinic, C 2/c

  • a = 24.701 (2) Å

  • b = 4.8530 (4) Å

  • c = 25.063 (2) Å

  • β = 95.321 (3)°

  • V = 2991.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 297 K

  • 0.35 × 0.24 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.990

  • 25870 measured reflections

  • 3835 independent reflections

  • 2644 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.03

  • 3835 reflections

  • 225 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3 1.00 (2) 1.76 (2) 2.7450 (17) 172.3 (18)
O2—H1O2⋯O4 0.86 (1) 1.64 (1) 2.4630 (18) 159 (2)
C1—H1A⋯O4 0.93 2.44 3.095 (2) 127
N2—H1N2⋯O1i 0.91 (2) 2.11 (2) 3.012 (2) 173.4 (18)
N2—H2N2⋯O5ii 0.90 (2) 2.20 (2) 3.076 (2) 166 (2)
O6—H106⋯O3iii 1.02 (3) 1.60 (3) 2.5927 (19) 164 (2)
C1—H1A⋯O2iv 0.93 2.28 3.106 (2) 148
C3—H3A⋯O1i 0.93 2.34 3.2648 (19) 174
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y-1, z; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Thanigaimani et al., 2013a,b; Loh et al., 2010). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991) and biologically active compounds (Markees et al., 1970). Herein we report the crystal structure and supramolecular patterns of the new compound containing quinoline derivative and malonic acid components.

The asymmetric unit of the title compound (Fig. 1) contains a protonated 5-amino-6-methylquinolin-1-ium cation, a hydrogen malonate anion and a half of the malonic acid molecule. The dihedral angles between the quinoline ring and the planes formed by the malonate and malonic acid molecule are 10.39 (5) and 27.08 (8)°, respectively. The planar malonic acid molecule is located on a two-fold rotation axis. In the malonic acid, the C14—O5 bond distance of 1.1973 (19) Å is much shorter than the C14—O6 bond distance of 1.312 (2) Å indicating that the carboxyl group is not deprotonated in the crystal structure. The 5-amino-6-methylquinolinium cation is essentially planar with a maximum deviation of 0.062 (2) Å for atom C10. In the cation, a wider than normal angle [C1—N1—C9 = 123.32 (13)°] is subtended at the protonated N1 atom. The bond lengths (Allen et al., 1987) and angles are normal. The anion is stabilized by an intramolecular O2—H1O2···O4 hydrogen bond, which forms an S(6) ring motif (Bernstein et al., 1995).

In the crystal packing (Fig. 2), the ion pairs and malonic acid molecules are linked via O6—H1O6···O3iii, N1—H1N1···O3, N2—H2N2···O5ii and N2—H1N2···O1i hydrogen bonds (symmetry codes in Table 1), forming a layer parallel to ac plane. The crystal structure is further stabilized by C1—H1A···O4, C1—H1A···O2iv and C3—H3A···O1i hydrogen bonds (symmetry codes in Table 1) and a ππ stacking interaction between the pyridine rings (N1/C1–C4/C9) and the benzene ring (C4–C9) (x, -1 + y, z and x, 1 + y, z) with a centroid–centroid distance of 3.8189 (10) Å

Related literature top

For background to and the biological activity of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009); Morimoto et al. (1991); Markees et al. (1970). For related structures, see: Thanigaimani et al. (2013a,b); Loh et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

Hot methanol solutions (20 ml) of 5-amino-6-methylquinoline (39 mg, Aldrich) and malonic acid (26 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier map. Atoms H1O6, H1N1, H1N2 and H2N2 were refined freely, while atom H1O2 was refined with a bond restraint O—H = 0.82 (1) Å [refined distance: O6—H1O6 = 1.02 (3) Å, O2—H1O2 = 0.859 (10) Å, N1—H1N1 = 0.99 (2) Å, N2—H1N2 = 0.91 (2) Å and N2—H2N2 = 0.90 (2) Å]. The remaining hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. One outlier (-6 0 10) was omitted in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound. H atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity.
5-Amino-6-methylquinolin-1-ium 2-carboxyacetate–malonic acid (2/1) top
Crystal data top
2C10H11N2+·2C3H3O4·C3H4O4F(000) = 1320
Mr = 628.59Dx = 1.396 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5351 reflections
a = 24.701 (2) Åθ = 3.3–25.6°
b = 4.8530 (4) ŵ = 0.11 mm1
c = 25.063 (2) ÅT = 297 K
β = 95.321 (3)°Block, orange
V = 2991.4 (4) Å30.35 × 0.24 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3835 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 28.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3132
Tmin = 0.962, Tmax = 0.990k = 66
25870 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0604P)2 + 1.0717P]
where P = (Fo2 + 2Fc2)/3
3835 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
2C10H11N2+·2C3H3O4·C3H4O4V = 2991.4 (4) Å3
Mr = 628.59Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.701 (2) ŵ = 0.11 mm1
b = 4.8530 (4) ÅT = 297 K
c = 25.063 (2) Å0.35 × 0.24 × 0.09 mm
β = 95.321 (3)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3835 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2644 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.990Rint = 0.038
25870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
3835 reflectionsΔρmin = 0.20 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13586 (5)0.9772 (3)0.04300 (6)0.0754 (4)
O20.07247 (5)0.7142 (3)0.01501 (6)0.0746 (4)
O30.04562 (4)1.0469 (3)0.11941 (5)0.0646 (3)
O40.02278 (5)0.7599 (3)0.05274 (5)0.0690 (4)
O50.04221 (5)0.5560 (3)0.16694 (5)0.0732 (4)
O60.03881 (5)0.3951 (3)0.19696 (5)0.0709 (4)
N10.14556 (5)0.8482 (3)0.09860 (5)0.0512 (3)
N20.34061 (6)0.9024 (4)0.12530 (7)0.0632 (4)
C10.14687 (6)0.6550 (4)0.06193 (7)0.0565 (4)
H1A0.11440.58440.04560.068*
C20.19582 (6)0.5552 (4)0.04724 (7)0.0565 (4)
H2A0.19660.41720.02160.068*
C30.24305 (6)0.6638 (3)0.07126 (6)0.0513 (4)
H3A0.27620.59970.06140.062*
C40.24260 (5)0.8699 (3)0.11047 (6)0.0444 (3)
C50.29079 (6)0.9876 (3)0.13779 (6)0.0475 (3)
C60.28603 (6)1.1839 (4)0.17747 (6)0.0535 (4)
C70.23408 (7)1.2695 (4)0.18874 (7)0.0577 (4)
H7A0.23141.40350.21490.069*
C80.18716 (6)1.1662 (4)0.16329 (6)0.0546 (4)
H8A0.15341.22920.17160.066*
C90.19147 (6)0.9639 (3)0.12455 (6)0.0456 (3)
C100.33584 (8)1.3009 (5)0.20828 (8)0.0752 (6)
H10A0.35881.38320.18380.113*
H10B0.35531.15610.22780.113*
H10C0.32531.43810.23290.113*
C110.08862 (6)0.9118 (3)0.04500 (6)0.0519 (4)
C120.04600 (6)1.0564 (4)0.08107 (7)0.0542 (4)
H12A0.05781.05640.11690.065*
H12B0.04491.24700.06960.065*
C130.01154 (6)0.9451 (3)0.08464 (7)0.0518 (4)
C140.00419 (6)0.5507 (3)0.20023 (6)0.0508 (4)
C150.00000.7256 (5)0.25000.0577 (6)
H15A0.03180.84310.24970.069*
H1N20.3459 (8)0.782 (5)0.0986 (8)0.076 (6)*
H1N10.1100 (8)0.914 (4)0.1093 (8)0.076 (6)*
H2N20.3720 (10)0.970 (5)0.1407 (9)0.087 (7)*
H1O20.0377 (4)0.708 (5)0.0215 (9)0.101 (8)*
H1060.0359 (11)0.277 (6)0.1633 (11)0.118 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0428 (6)0.0887 (9)0.0941 (9)0.0145 (6)0.0024 (6)0.0245 (8)
O20.0540 (7)0.0738 (8)0.0968 (10)0.0054 (6)0.0106 (7)0.0355 (7)
O30.0419 (6)0.0825 (8)0.0691 (7)0.0156 (6)0.0030 (5)0.0146 (6)
O40.0498 (6)0.0737 (8)0.0849 (8)0.0168 (6)0.0147 (6)0.0213 (7)
O50.0489 (6)0.0961 (10)0.0726 (8)0.0098 (6)0.0045 (6)0.0194 (7)
O60.0606 (7)0.0848 (9)0.0654 (8)0.0233 (7)0.0046 (6)0.0097 (7)
N10.0367 (6)0.0633 (8)0.0538 (7)0.0116 (6)0.0049 (5)0.0025 (6)
N20.0379 (7)0.0767 (10)0.0755 (10)0.0060 (7)0.0072 (7)0.0156 (8)
C10.0425 (8)0.0668 (10)0.0592 (9)0.0066 (7)0.0009 (7)0.0000 (8)
C20.0486 (8)0.0628 (10)0.0578 (9)0.0086 (7)0.0039 (7)0.0074 (8)
C30.0419 (8)0.0590 (9)0.0537 (9)0.0118 (7)0.0084 (6)0.0010 (7)
C40.0382 (7)0.0500 (8)0.0457 (7)0.0089 (6)0.0080 (6)0.0074 (6)
C50.0400 (7)0.0524 (8)0.0507 (8)0.0071 (6)0.0076 (6)0.0063 (7)
C60.0490 (8)0.0601 (9)0.0522 (9)0.0032 (7)0.0084 (6)0.0002 (7)
C70.0597 (10)0.0624 (10)0.0525 (9)0.0095 (8)0.0131 (7)0.0059 (8)
C80.0469 (8)0.0654 (10)0.0530 (9)0.0148 (7)0.0127 (7)0.0013 (7)
C90.0380 (7)0.0535 (8)0.0457 (8)0.0103 (6)0.0068 (6)0.0090 (6)
C100.0613 (11)0.0880 (14)0.0763 (12)0.0041 (10)0.0059 (9)0.0216 (11)
C110.0458 (8)0.0521 (8)0.0588 (9)0.0081 (7)0.0097 (7)0.0027 (7)
C120.0461 (8)0.0580 (9)0.0580 (9)0.0166 (7)0.0023 (7)0.0075 (7)
C130.0422 (8)0.0588 (9)0.0555 (9)0.0132 (7)0.0104 (7)0.0015 (7)
C140.0442 (8)0.0558 (9)0.0529 (8)0.0000 (7)0.0066 (6)0.0047 (7)
C150.0634 (14)0.0508 (12)0.0581 (13)0.0000.0020 (11)0.000
Geometric parameters (Å, º) top
O1—C111.2060 (18)C4—C91.4178 (19)
O2—C111.3037 (19)C4—C51.436 (2)
O2—H1O20.859 (10)C5—C61.390 (2)
O3—C131.2556 (19)C6—C71.402 (2)
O4—C131.2511 (19)C6—C101.502 (2)
O5—C141.1973 (19)C7—C81.365 (2)
O6—C141.3119 (19)C7—H7A0.9300
O6—H1061.02 (3)C8—C91.392 (2)
N1—C11.316 (2)C8—H8A0.9300
N1—C91.374 (2)C10—H10A0.9600
N1—H1N10.99 (2)C10—H10B0.9600
N2—C51.3619 (19)C10—H10C0.9600
N2—H1N20.91 (2)C11—C121.497 (2)
N2—H2N20.90 (2)C12—C131.515 (2)
C1—C21.384 (2)C12—H12A0.9700
C1—H1A0.9300C12—H12B0.9700
C2—C31.368 (2)C14—C151.504 (2)
C2—H2A0.9300C15—C14i1.505 (2)
C3—C41.403 (2)C15—H15A0.9700
C3—H3A0.9300
C11—O2—H1O2105.8 (17)C7—C8—H8A121.0
C14—O6—H106112.4 (15)C9—C8—H8A121.0
C1—N1—C9123.32 (13)N1—C9—C8120.35 (13)
C1—N1—H1N1119.8 (12)N1—C9—C4117.77 (14)
C9—N1—H1N1116.9 (12)C8—C9—C4121.88 (14)
C5—N2—H1N2124.0 (13)C6—C10—H10A109.5
C5—N2—H2N2123.7 (15)C6—C10—H10B109.5
H1N2—N2—H2N2112.1 (19)H10A—C10—H10B109.5
N1—C1—C2120.93 (15)C6—C10—H10C109.5
N1—C1—H1A119.5H10A—C10—H10C109.5
C2—C1—H1A119.5H10B—C10—H10C109.5
C3—C2—C1118.60 (16)O1—C11—O2121.09 (16)
C3—C2—H2A120.7O1—C11—C12121.68 (14)
C1—C2—H2A120.7O2—C11—C12117.22 (13)
C2—C3—C4121.41 (14)C11—C12—C13118.13 (14)
C2—C3—H3A119.3C11—C12—H12A107.8
C4—C3—H3A119.3C13—C12—H12A107.8
C3—C4—C9117.96 (13)C11—C12—H12B107.8
C3—C4—C5123.90 (13)C13—C12—H12B107.8
C9—C4—C5118.13 (14)H12A—C12—H12B107.1
N2—C5—C6120.70 (15)O4—C13—O3123.50 (14)
N2—C5—C4119.77 (15)O4—C13—C12118.75 (15)
C6—C5—C4119.52 (13)O3—C13—C12117.74 (14)
C5—C6—C7119.12 (15)O5—C14—O6123.80 (16)
C5—C6—C10120.49 (15)O5—C14—C15123.69 (14)
C7—C6—C10120.39 (16)O6—C14—C15112.50 (13)
C8—C7—C6123.39 (16)C14—C15—C14i111.30 (19)
C8—C7—H7A118.3C14—C15—H15A109.4
C6—C7—H7A118.3C14i—C15—H15A109.4
C7—C8—C9117.92 (14)
C9—N1—C1—C20.1 (3)C6—C7—C8—C90.6 (3)
N1—C1—C2—C30.7 (3)C1—N1—C9—C8179.50 (15)
C1—C2—C3—C40.7 (3)C1—N1—C9—C40.5 (2)
C2—C3—C4—C90.2 (2)C7—C8—C9—N1178.46 (15)
C2—C3—C4—C5178.70 (15)C7—C8—C9—C41.5 (2)
C3—C4—C5—N21.1 (2)C3—C4—C9—N10.4 (2)
C9—C4—C5—N2179.97 (14)C5—C4—C9—N1179.35 (13)
C3—C4—C5—C6177.67 (14)C3—C4—C9—C8179.55 (14)
C9—C4—C5—C61.2 (2)C5—C4—C9—C80.6 (2)
N2—C5—C6—C7179.13 (16)O1—C11—C12—C13174.80 (16)
C4—C5—C6—C72.1 (2)O2—C11—C12—C136.3 (2)
N2—C5—C6—C101.5 (3)C11—C12—C13—O48.8 (2)
C4—C5—C6—C10177.31 (16)C11—C12—C13—O3171.96 (15)
C5—C6—C7—C81.2 (3)O5—C14—C15—C14i119.16 (18)
C10—C6—C7—C8178.19 (18)O6—C14—C15—C14i61.88 (12)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O31.00 (2)1.76 (2)2.7450 (17)172.3 (18)
O2—H1O2···O40.86 (1)1.64 (1)2.4630 (18)159 (2)
C1—H1A···O40.932.443.095 (2)127
N2—H1N2···O1ii0.91 (2)2.11 (2)3.012 (2)173.4 (18)
N2—H2N2···O5iii0.90 (2)2.20 (2)3.076 (2)166 (2)
O6—H106···O3iv1.02 (3)1.60 (3)2.5927 (19)164 (2)
C1—H1A···O2v0.932.283.106 (2)148
C3—H3A···O1ii0.932.343.2648 (19)174
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C10H11N2+·2C3H3O4·C3H4O4
Mr628.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)24.701 (2), 4.8530 (4), 25.063 (2)
β (°) 95.321 (3)
V3)2991.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.24 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
25870, 3835, 2644
Rint0.038
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.03
No. of reflections3835
No. of parameters225
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O31.00 (2)1.76 (2)2.7450 (17)172.3 (18)
O2—H1O2···O40.860 (11)1.641 (14)2.4630 (18)159 (2)
C1—H1A···O40.932.443.095 (2)127
N2—H1N2···O1i0.91 (2)2.11 (2)3.012 (2)173.4 (18)
N2—H2N2···O5ii0.90 (2)2.20 (2)3.076 (2)166 (2)
O6—H106···O3iii1.02 (3)1.60 (3)2.5927 (19)164 (2)
C1—H1A···O2iv0.932.283.106 (2)148
C3—H3A···O1i0.932.343.2648 (19)174
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y1, z; (iv) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013a). Acta Cryst. E69, o42–o43.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2013b). Acta Cryst. E69, o44.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o319-o320
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds