organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-methyl­pyridinium 3-chloro­benzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 20 December 2012; accepted 25 January 2013; online 2 February 2013)

In the title salt, C6H9N2+·C7H4ClO2, the 3-chloro­benzoate anion shows a whole-mol­ecule disorder over two positions with a refined occupancy ratio of 0.505 (4):0.495 (4). In the crystal, the cations and anions are linked via N—H⋯O hydrogen bonds, forming a centrosymmetric 2 + 2 aggregate with R22(8) and R42(8) ring motifs. The crystal structure also features a ππ stacking inter­action between the pyridinium rings with a centroid–centroid distance of 3.8339 (9) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843-o1844.]); Thanigaimani et al. (2012[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.]); Draguta et al. (2012[Draguta, S., Khrustalev, V. N., Sandhu, B., Antipin, M. Y. & Timofeeva, T. V. (2012). Acta Cryst. E68, o3466.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4ClO2

  • Mr = 264.70

  • Monoclinic, C 2/c

  • a = 22.3118 (15) Å

  • b = 15.2053 (10) Å

  • c = 7.4166 (5) Å

  • β = 100.924 (1)°

  • V = 2470.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100 K

  • 0.36 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.985

  • 24731 measured reflections

  • 3575 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.06

  • 3575 reflections

  • 267 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N2⋯O1 0.94 (2) 1.69 (2) 2.614 (7) 168 (2)
N2—H1N2⋯O2 0.86 (2) 1.98 (3) 2.832 (14) 170 (2)
N2—H1N1⋯O2i 0.88 (2) 2.06 (2) 2.853 (11) 150 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). Related crystal structures of 2-amino-4-methylpyridinium 3-chlorobenzoate (Hemamalini & Fun, 2010) and 2-amino-5-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2012) have been reported. In order to study potential hydrogen bonding interactions the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit (Fig. 1) contains one 2-amino-6-methylpyridinium cation and one 3-chlorobenzoate anion. The proton transfers from the one of the carboxyl group oxygen atom (O1) to atom N1 of 2-amino-5-methylpyrimidine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.93 (13)°, compared to the corresponding angle of 118.43 (9)° in neutral 6-methylpyridin-2-amine (Draguta et al., 2012). The whole 3-chlorobenzoate anion is disordered over two positions with a refined occupancy ratio of 0.505 (4):0.495 (4). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.030 (2) Å for atom C4. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H2N2···O1 and N2—H1N2···O2 hydrogen bonds, forming an R22(8) (Bernstein et al., 1995) ring motif. The motifs are centrosymmetrically paired via intermolecular N2—H1N1···O2i hydrogen bonds between the ions which form R42(8) ring motif, resulting in a DDAA array (where D is a hydrogen-bond donor and A is a hydrogen-bond acceptor) of quadruple hydrogen bonds (symmetry code in Table 1). The crystal structure is further stabilized by a ππ interaction between the pyridinium ring (Cg1 = N1/C1–C5) cations [Cg1···Cg1 = 3.8339 (9) Å; x, 1 - y, -1/2 - z].

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Hemamalini & Fun (2010); Thanigaimani et al. (2012); Draguta et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2-amino-6-methylpyridine (54 mg, Aldrich) and 3-chlorobenzoic acid (39 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely [refined N—H distances: 0.94 (2), 0.88 (2) and 0.86 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating-group model was used for the methyl group. The whole 3-chlorobenzoate anion was disordered over two positions with a refined ratio of 0.505 (4):0.495 (4). For the disordred anion, bond-length restraints [Cl—C = 1.73 (1) Å and O—C = 1.23 (1) Å] and a SAME instruction were applied.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. All disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. Only major disordered component is shown. H atoms not involved in the hydrogen bonds (dashed lines) have been omitted for clarity.
2-Amino-6-methylpyridinium 3-chlorobenzoate top
Crystal data top
C6H9N2+·C7H4ClO2F(000) = 1104
Mr = 264.70Dx = 1.423 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4651 reflections
a = 22.3118 (15) Åθ = 2.7–29.3°
b = 15.2053 (10) ŵ = 0.30 mm1
c = 7.4166 (5) ÅT = 100 K
β = 100.924 (1)°Needle, colourless
V = 2470.5 (3) Å30.36 × 0.06 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3575 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3031
Tmin = 0.898, Tmax = 0.985k = 2121
24731 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0584P)2 + 1.2878P]
where P = (Fo2 + 2Fc2)/3
3575 reflections(Δ/σ)max < 0.001
267 parametersΔρmax = 0.29 e Å3
5 restraintsΔρmin = 0.28 e Å3
Crystal data top
C6H9N2+·C7H4ClO2V = 2470.5 (3) Å3
Mr = 264.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.3118 (15) ŵ = 0.30 mm1
b = 15.2053 (10) ÅT = 100 K
c = 7.4166 (5) Å0.36 × 0.06 × 0.05 mm
β = 100.924 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3575 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2446 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.985Rint = 0.053
24731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0455 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.29 e Å3
3575 reflectionsΔρmin = 0.28 e Å3
267 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.51442 (12)0.09433 (16)0.5251 (4)0.0377 (5)0.505 (4)
O10.3604 (3)0.4344 (4)0.2546 (10)0.0298 (12)0.505 (4)
O20.3335 (7)0.2966 (7)0.1833 (12)0.0279 (16)0.505 (4)
C70.3716 (3)0.3536 (4)0.2547 (8)0.0223 (11)0.505 (4)
C80.43409 (15)0.3242 (2)0.3507 (6)0.0224 (7)0.505 (4)
C90.4472 (5)0.2368 (8)0.3839 (11)0.0217 (13)0.505 (4)
H9A0.41660.19450.33940.026*0.505 (4)
C100.5042 (5)0.2072 (5)0.4815 (14)0.0368 (18)0.505 (4)
C110.54930 (16)0.2695 (3)0.5297 (6)0.0348 (9)0.505 (4)
H11A0.58900.25150.58850.042*0.505 (4)
C120.53779 (14)0.3580 (3)0.4939 (5)0.0345 (9)0.505 (4)
H12A0.56930.40000.53010.041*0.505 (4)
C130.48029 (14)0.3853 (2)0.4052 (5)0.0286 (8)0.505 (4)
H13A0.47250.44600.38160.034*0.505 (4)
Cl1X0.52750 (12)0.11634 (16)0.5138 (4)0.0336 (4)0.495 (4)
O1X0.3491 (3)0.4332 (4)0.3044 (10)0.0294 (11)0.495 (4)
O2X0.3302 (7)0.2910 (8)0.2304 (12)0.0273 (15)0.495 (4)
C7X0.3620 (3)0.3525 (4)0.3103 (9)0.0225 (11)0.495 (4)
C8X0.42352 (17)0.3289 (2)0.4266 (6)0.0222 (8)0.495 (4)
C9X0.4418 (5)0.2415 (8)0.4305 (11)0.0223 (14)0.495 (4)
H9XA0.41520.19630.37480.027*0.495 (4)
C10X0.5005 (5)0.2239 (4)0.5195 (13)0.0314 (16)0.495 (4)
C11X0.53950 (16)0.2854 (3)0.6185 (6)0.0319 (9)0.495 (4)
H11B0.57870.26910.68440.038*0.495 (4)
C12X0.51893 (15)0.3713 (2)0.6175 (5)0.0303 (8)0.495 (4)
H12B0.54450.41550.68200.036*0.495 (4)
C13X0.46134 (15)0.3931 (2)0.5228 (5)0.0272 (8)0.495 (4)
H13B0.44740.45220.52330.033*0.495 (4)
N10.25283 (5)0.49267 (8)0.09853 (17)0.0197 (3)
N20.21460 (7)0.35423 (9)0.0235 (2)0.0337 (4)
C10.20717 (6)0.44124 (10)0.0094 (2)0.0211 (3)
C20.15454 (7)0.48210 (10)0.0898 (2)0.0238 (3)
H2A0.12230.44790.15720.029*
C30.15048 (7)0.57153 (11)0.0877 (2)0.0307 (4)
H3A0.11490.59960.15330.037*
C40.19795 (8)0.62255 (11)0.0095 (3)0.0363 (4)
H4A0.19440.68480.01210.044*
C50.24940 (7)0.58195 (10)0.1006 (2)0.0257 (3)
C60.30466 (8)0.62859 (11)0.2048 (3)0.0372 (4)
H6A0.29550.69130.21360.056*
H6B0.33880.62130.14020.056*
H6C0.31570.60360.32840.056*
H1N10.1883 (11)0.3210 (14)0.050 (3)0.046 (6)*
H2N20.2887 (10)0.4672 (15)0.165 (3)0.050 (6)*
H1N20.2487 (11)0.3311 (14)0.077 (3)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0260 (10)0.0318 (11)0.0523 (8)0.0162 (6)0.0001 (7)0.0009 (8)
O10.016 (2)0.0172 (13)0.051 (4)0.0007 (13)0.0063 (17)0.0018 (18)
O20.020 (2)0.0134 (18)0.043 (4)0.0000 (14)0.014 (3)0.000 (3)
C70.012 (2)0.0175 (16)0.035 (3)0.0021 (13)0.0015 (19)0.0004 (19)
C80.0103 (15)0.0277 (16)0.027 (2)0.0008 (11)0.0011 (13)0.0050 (15)
C90.014 (2)0.0240 (19)0.028 (4)0.0072 (15)0.006 (3)0.005 (3)
C100.013 (2)0.037 (3)0.055 (4)0.016 (2)0.006 (2)0.016 (2)
C110.0138 (16)0.059 (3)0.029 (2)0.0094 (15)0.0032 (14)0.0084 (17)
C120.0134 (15)0.054 (2)0.0331 (19)0.0063 (14)0.0032 (12)0.0057 (15)
C130.0182 (15)0.0351 (17)0.0299 (18)0.0033 (12)0.0019 (12)0.0044 (13)
Cl1X0.0247 (9)0.0289 (10)0.0442 (7)0.0119 (6)0.0011 (6)0.0025 (7)
O1X0.021 (3)0.0190 (14)0.043 (3)0.0005 (14)0.0066 (16)0.0035 (17)
O2X0.0172 (18)0.020 (2)0.038 (4)0.0025 (14)0.011 (3)0.002 (2)
C7X0.013 (2)0.0213 (18)0.032 (3)0.0016 (14)0.0023 (18)0.002 (2)
C8X0.0144 (16)0.0268 (17)0.0247 (19)0.0003 (12)0.0018 (14)0.0018 (15)
C9X0.010 (2)0.035 (3)0.023 (3)0.0040 (18)0.005 (2)0.003 (3)
C10X0.021 (2)0.022 (3)0.051 (4)0.016 (2)0.007 (3)0.001 (3)
C11X0.0132 (15)0.052 (2)0.0276 (19)0.0019 (14)0.0032 (14)0.0008 (17)
C12X0.0193 (15)0.0391 (19)0.0294 (18)0.0090 (13)0.0031 (13)0.0029 (14)
C13X0.0243 (16)0.0254 (16)0.0302 (18)0.0062 (12)0.0011 (13)0.0025 (12)
N10.0155 (6)0.0161 (6)0.0264 (6)0.0011 (4)0.0012 (5)0.0000 (4)
N20.0220 (7)0.0179 (6)0.0526 (9)0.0009 (5)0.0147 (6)0.0074 (6)
C10.0171 (7)0.0200 (7)0.0251 (7)0.0015 (5)0.0012 (5)0.0020 (5)
C20.0165 (7)0.0285 (8)0.0253 (7)0.0031 (6)0.0008 (5)0.0008 (6)
C30.0232 (8)0.0318 (9)0.0356 (9)0.0091 (6)0.0016 (6)0.0068 (7)
C40.0313 (9)0.0191 (7)0.0563 (11)0.0053 (6)0.0030 (8)0.0057 (7)
C50.0231 (8)0.0179 (7)0.0366 (8)0.0001 (6)0.0068 (6)0.0006 (6)
C60.0254 (9)0.0189 (7)0.0652 (12)0.0044 (6)0.0036 (8)0.0039 (7)
Geometric parameters (Å, º) top
Cl1—C101.753 (7)C11X—C12X1.385 (5)
O1—C71.253 (6)C11X—H11B0.9500
O2—C71.258 (14)C12X—C13X1.383 (4)
C7—C81.509 (8)C12X—H12B0.9500
C8—C91.372 (12)C13X—H13B0.9500
C8—C131.390 (5)N1—C11.3530 (18)
C9—C101.413 (16)N1—C51.3599 (19)
C9—H9A0.9500N1—H2N20.94 (2)
C10—C111.379 (11)N2—C11.335 (2)
C11—C121.385 (6)N2—H1N10.88 (2)
C11—H11A0.9500N2—H1N20.86 (2)
C12—C131.390 (4)C1—C21.4067 (19)
C12—H12A0.9500C2—C31.363 (2)
C13—H13A0.9500C2—H2A0.9500
Cl1X—C10X1.747 (6)C3—C41.398 (2)
O1X—C7X1.259 (7)C3—H3A0.9500
O2X—C7X1.253 (14)C4—C51.365 (2)
C7X—C8X1.519 (8)C4—H4A0.9500
C8X—C9X1.389 (13)C5—C61.503 (2)
C8X—C13X1.395 (5)C6—H6A0.9800
C9X—C10X1.377 (17)C6—H6B0.9800
C9X—H9XA0.9500C6—H6C0.9800
C10X—C11X1.388 (12)
O1—C7—O2123.8 (9)C10X—C11X—H11B121.4
O1—C7—C8117.2 (6)C13X—C12X—C11X120.3 (3)
O2—C7—C8118.9 (8)C13X—C12X—H12B119.9
C9—C8—C13118.3 (6)C11X—C12X—H12B119.9
C9—C8—C7121.2 (6)C12X—C13X—C8X120.4 (3)
C13—C8—C7120.5 (4)C12X—C13X—H13B119.8
C8—C9—C10122.8 (10)C8X—C13X—H13B119.8
C8—C9—H9A118.6C1—N1—C5122.95 (13)
C10—C9—H9A118.6C1—N1—H2N2120.4 (14)
C11—C10—C9117.1 (7)C5—N1—H2N2116.7 (14)
C11—C10—Cl1124.2 (7)C1—N2—H1N1117.5 (14)
C9—C10—Cl1118.7 (8)C1—N2—H1N2121.7 (14)
C10—C11—C12121.2 (4)H1N1—N2—H1N2119 (2)
C10—C11—H11A119.4N2—C1—N1117.63 (13)
C12—C11—H11A119.4N2—C1—C2123.89 (14)
C11—C12—C13120.1 (3)N1—C1—C2118.48 (13)
C11—C12—H12A119.9C3—C2—C1119.04 (14)
C13—C12—H12A119.9C3—C2—H2A120.5
C8—C13—C12120.3 (3)C1—C2—H2A120.5
C8—C13—H13A119.8C2—C3—C4120.93 (14)
C12—C13—H13A119.8C2—C3—H3A119.5
O2X—C7X—O1X127.3 (10)C4—C3—H3A119.5
O2X—C7X—C8X117.5 (8)C5—C4—C3119.24 (15)
O1X—C7X—C8X115.2 (7)C5—C4—H4A120.4
C9X—C8X—C13X120.8 (6)C3—C4—H4A120.4
C9X—C8X—C7X117.9 (6)N1—C5—C4119.32 (15)
C13X—C8X—C7X121.3 (4)N1—C5—C6115.76 (13)
C10X—C9X—C8X116.4 (9)C4—C5—C6124.91 (15)
C10X—C9X—H9XA121.8C5—C6—H6A109.5
C8X—C9X—H9XA121.8C5—C6—H6B109.5
C9X—C10X—C11X124.5 (7)H6A—C6—H6B109.5
C9X—C10X—Cl1X118.1 (8)C5—C6—H6C109.5
C11X—C10X—Cl1X117.3 (7)H6A—C6—H6C109.5
C12X—C11X—C10X117.3 (4)H6B—C6—H6C109.5
C12X—C11X—H11B121.4
O1—C7—C8—C9169.3 (5)C7X—C8X—C9X—C10X172.7 (6)
O2—C7—C8—C99.3 (8)C8X—C9X—C10X—C11X6.5 (12)
O1—C7—C8—C1311.7 (7)C8X—C9X—C10X—Cl1X175.4 (5)
O2—C7—C8—C13169.7 (6)C9X—C10X—C11X—C12X4.3 (11)
C13—C8—C9—C104.3 (9)Cl1X—C10X—C11X—C12X177.7 (4)
C7—C8—C9—C10176.7 (6)C10X—C11X—C12X—C13X1.0 (7)
C8—C9—C10—C115.7 (11)C11X—C12X—C13X—C8X0.4 (6)
C8—C9—C10—Cl1177.0 (5)C9X—C8X—C13X—C12X2.8 (7)
C9—C10—C11—C123.9 (10)C7X—C8X—C13X—C12X175.5 (3)
Cl1—C10—C11—C12178.8 (5)C5—N1—C1—N2177.15 (15)
C10—C11—C12—C131.1 (7)C5—N1—C1—C21.9 (2)
C9—C8—C13—C121.2 (6)N2—C1—C2—C3176.80 (16)
C7—C8—C13—C12179.9 (4)N1—C1—C2—C32.2 (2)
C11—C12—C13—C80.4 (6)C1—C2—C3—C40.7 (3)
O2X—C7X—C8X—C9X2.7 (9)C2—C3—C4—C51.2 (3)
O1X—C7X—C8X—C9X176.6 (5)C1—N1—C5—C40.0 (2)
O2X—C7X—C8X—C13X178.9 (6)C1—N1—C5—C6179.36 (14)
O1X—C7X—C8X—C13X1.8 (6)C3—C4—C5—N11.5 (3)
C13X—C8X—C9X—C10X5.7 (9)C3—C4—C5—C6177.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N2···O10.94 (2)1.69 (2)2.614 (7)168 (2)
N2—H1N2···O20.86 (2)1.98 (3)2.832 (14)170 (2)
N2—H1N1···O2i0.88 (2)2.06 (2)2.853 (11)150 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4ClO2
Mr264.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.3118 (15), 15.2053 (10), 7.4166 (5)
β (°) 100.924 (1)
V3)2470.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.36 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.898, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
24731, 3575, 2446
Rint0.053
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.06
No. of reflections3575
No. of parameters267
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2N2···O10.94 (2)1.69 (2)2.614 (7)168 (2)
N2—H1N2···O20.86 (2)1.98 (3)2.832 (14)170 (2)
N2—H1N1···O2i0.88 (2)2.06 (2)2.853 (11)150 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDraguta, S., Khrustalev, V. N., Sandhu, B., Antipin, M. Y. & Timofeeva, T. V. (2012). Acta Cryst. E68, o3466.  CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1843–o1844.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3195.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds