organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-(4-meth­­oxy­phen­yl)-1,3-benzo­thia­zole

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 12 January 2013; accepted 19 January 2013; online 9 February 2013)

In the title compound, C14H10ClNOS, the dihedral angle between the benzothia­zole ring system and the meth­oxy-substituted benzene ring is 8.76 (16)°. In the crystal, mol­ecules are stacked in columns along the c axis and no significant inter­molecular inter­actions are observed.

Related literature

For the biological activity of benzothia­zole compounds, see: Chohan et al. (2003[Chohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308-313.]); Khan et al. (2011[Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer-ul-Haq, Mesaik, M. A. & Choudhary, M. I., (2011). Bioorg. Med. Chem. 19, 4286-4294.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]); Burger & Sawhney (1968[Burger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270-273.]); Palmer et al. (1971[Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248-251.]). For related structures, see: Yousuf et al. (2012a[Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, o2877.],b[Yousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012b). Acta Cryst. E68, o3057.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNOS

  • Mr = 275.74

  • Orthorhombic, P b c n

  • a = 29.0274 (16) Å

  • b = 14.5512 (8) Å

  • c = 5.8686 (3) Å

  • V = 2478.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 273 K

  • 0.37 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.848, Tmax = 0.955

  • 13397 measured reflections

  • 2299 independent reflections

  • 1965 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.208

  • S = 1.15

  • 2299 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1996[Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzothiazole is a well known class of organic compounds with a diverse range of biological activities (Khan et al., 2011; Chohan et al., 2003, Hutchinson et al., 2002; Burger & Sawhney, 1968; Palmer et al., 1971). The title compound is a methoxy phenyl derivative of benzothiazole synthesized as a part of our ongoing project to synthesize bioactive hetereocyclic compounds.

The crystal structure of title compound (Fig. 1), C16H14ClNOS, is similar to that our previously published 5-chloro-2-(3,4,5-trimethoxyphenyl)-1,3-benzothiazole (Yousuf et al., 2012b) with the difference that the 3,4,5-trimethoxyphenyl ring is replaced by the 4-methoxyphenyl phenyl ring. The dihedral angle between planner benzothiazole (S1/N1/C1–C7) and methoxy phenyl rings (C8–C13) is 8.76 (16)°. The bond lengths and angle are similar as in previously published benzothiazole compounds (Yousuf et al., 2012a,b). In the crystal structure the molecules having plane of mirror are arranged in a two-diminesional manner along a and c axes (Fig. 2).

Related literature top

For the biological activity of benzothiazole compounds, see: Chohan et al. (2003); Khan et al. (2011); Hutchinson et al. (2002); Burger & Sawhney (1968); Palmer et al. (1971). For related structures, see: Yousuf et al. (2012a,b).

Experimental top

A mixture of 2-amino-4-cholorobenzenethiol (0.159 g, 1 mmol), 4-methoxybenzaldehyde (0.136 g, 1 mmol), sodium metabisulfite (0.2 g) and N,N-dimethylformamide (10 ml) was refluxed for 2 hrs in a round-bottomed flask. The completion of reaction was monitored by TLC and cool to room temperature followed by addition of cold water to obtain white precipitates. Crystallization from ethanol afforded pure crystal of 5-chloro-2-(4-methoxyphenyl) benzothiazole (yield 0.223 g, 81.1%) found suitable for X-ray diffraction studies.

Refinement top

H atoms of phenyl and methyl groups were positioned geometrically with C—H = 0.93 and 0.96 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(Cphenyl) and 1.5Ueq(Cmethyl). A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1996) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the c axis.
5-Chloro-2-(4-methoxyphenyl)-1,3-benzothiazole top
Crystal data top
C14H10ClNOSF(000) = 1136
Mr = 275.74Dx = 1.478 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3307 reflections
a = 29.0274 (16) Åθ = 2.5–26.3°
b = 14.5512 (8) ŵ = 0.46 mm1
c = 5.8686 (3) ÅT = 273 K
V = 2478.8 (2) Å3Block, colorles
Z = 80.37 × 0.22 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2299 independent reflections
Radiation source: fine-focus sealed tube1965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scanθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3434
Tmin = 0.848, Tmax = 0.955k = 1717
13397 measured reflectionsl = 67
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0983P)2 + 3.3682P]
where P = (Fo2 + 2Fc2)/3
2299 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H10ClNOSV = 2478.8 (2) Å3
Mr = 275.74Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 29.0274 (16) ŵ = 0.46 mm1
b = 14.5512 (8) ÅT = 273 K
c = 5.8686 (3) Å0.37 × 0.22 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2299 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1965 reflections with I > 2σ(I)
Tmin = 0.848, Tmax = 0.955Rint = 0.052
13397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.15Δρmax = 0.63 e Å3
2299 reflectionsΔρmin = 0.37 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04504 (4)0.17240 (11)0.0360 (2)0.0787 (5)
S10.21904 (4)0.08514 (7)0.52664 (16)0.0494 (4)
O10.43838 (11)0.1057 (2)0.1916 (6)0.0656 (9)
N10.21907 (12)0.1613 (2)0.1301 (5)0.0437 (8)
C10.16642 (15)0.1048 (2)0.4009 (6)0.0450 (9)
C20.12234 (17)0.0857 (3)0.4807 (7)0.0502 (10)
H2A0.11790.05920.62310.060*
C30.08560 (16)0.1072 (3)0.3433 (7)0.0556 (11)
H3A0.05580.09460.39270.067*
C40.09246 (15)0.1475 (3)0.1304 (8)0.0530 (10)
C50.13595 (15)0.1688 (3)0.0488 (7)0.0471 (9)
H5A0.14000.19680.09220.057*
C60.17346 (14)0.1466 (2)0.1872 (6)0.0420 (9)
C70.24620 (14)0.1318 (2)0.2888 (6)0.0409 (9)
C80.29667 (14)0.1305 (2)0.2692 (6)0.0420 (9)
C90.32493 (16)0.0941 (3)0.4380 (7)0.0511 (10)
H9A0.31180.07300.57270.061*
C100.37175 (16)0.0885 (3)0.4104 (7)0.0535 (11)
H10A0.39010.06460.52610.064*
C110.39169 (15)0.1187 (3)0.2077 (7)0.0487 (10)
C120.36468 (15)0.1576 (3)0.0376 (7)0.0479 (9)
H12A0.37800.17950.09590.057*
C130.31762 (15)0.1631 (2)0.0709 (7)0.0461 (9)
H13A0.29940.18930.04210.055*
C140.46063 (17)0.1316 (4)0.0114 (9)0.0717 (14)
H14A0.49260.11490.00320.108*
H14B0.45800.19690.03160.108*
H14C0.44650.10070.13790.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0538 (7)0.1036 (11)0.0787 (9)0.0116 (7)0.0019 (6)0.0106 (7)
S10.0692 (7)0.0454 (6)0.0336 (5)0.0036 (5)0.0005 (4)0.0084 (4)
O10.0598 (19)0.072 (2)0.065 (2)0.0054 (15)0.0097 (16)0.0031 (16)
N10.058 (2)0.0384 (16)0.0347 (16)0.0028 (14)0.0022 (15)0.0019 (13)
C10.069 (3)0.0347 (18)0.0308 (18)0.0014 (17)0.0019 (18)0.0005 (14)
C20.068 (3)0.044 (2)0.039 (2)0.0038 (19)0.0129 (19)0.0029 (16)
C30.066 (3)0.051 (2)0.050 (2)0.004 (2)0.020 (2)0.0059 (19)
C40.061 (3)0.046 (2)0.052 (2)0.0044 (18)0.007 (2)0.0042 (18)
C50.061 (2)0.0386 (19)0.042 (2)0.0006 (17)0.0043 (19)0.0007 (16)
C60.061 (2)0.0313 (16)0.0334 (18)0.0018 (16)0.0071 (17)0.0023 (14)
C70.064 (2)0.0315 (17)0.0269 (17)0.0024 (16)0.0010 (17)0.0002 (14)
C80.065 (2)0.0298 (16)0.0314 (18)0.0007 (15)0.0052 (17)0.0006 (14)
C90.072 (3)0.045 (2)0.036 (2)0.0032 (19)0.0038 (19)0.0056 (16)
C100.071 (3)0.047 (2)0.043 (2)0.0017 (19)0.016 (2)0.0052 (17)
C110.056 (2)0.043 (2)0.047 (2)0.0021 (17)0.0078 (19)0.0040 (17)
C120.059 (2)0.042 (2)0.043 (2)0.0012 (18)0.0009 (18)0.0047 (16)
C130.061 (2)0.0376 (19)0.040 (2)0.0003 (17)0.0088 (18)0.0040 (15)
C140.055 (3)0.092 (4)0.068 (3)0.007 (3)0.001 (2)0.004 (3)
Geometric parameters (Å, º) top
Cl1—C41.726 (5)C5—H5A0.9300
S1—C11.720 (4)C7—C81.470 (6)
S1—C71.741 (4)C8—C91.391 (5)
O1—C111.372 (5)C8—C131.396 (5)
O1—C141.407 (5)C9—C101.371 (7)
N1—C71.293 (5)C9—H9A0.9300
N1—C61.382 (5)C10—C111.394 (6)
C1—C21.391 (6)C10—H10A0.9300
C1—C61.409 (5)C11—C121.390 (5)
C2—C31.373 (7)C12—C131.382 (6)
C2—H2A0.9300C12—H12A0.9300
C3—C41.394 (6)C13—H13A0.9300
C3—H3A0.9300C14—H14A0.9600
C4—C51.386 (6)C14—H14B0.9600
C5—C61.396 (6)C14—H14C0.9600
C1—S1—C789.62 (18)C9—C8—C13117.8 (4)
C11—O1—C14118.4 (4)C9—C8—C7122.5 (4)
C7—N1—C6110.9 (3)C13—C8—C7119.7 (3)
C2—C1—C6121.3 (4)C10—C9—C8121.5 (4)
C2—C1—S1129.8 (3)C10—C9—H9A119.2
C6—C1—S1109.0 (3)C8—C9—H9A119.2
C3—C2—C1118.2 (4)C9—C10—C11119.6 (4)
C3—C2—H2A120.9C9—C10—H10A120.2
C1—C2—H2A120.9C11—C10—H10A120.2
C2—C3—C4120.7 (4)O1—C11—C12124.4 (4)
C2—C3—H3A119.6O1—C11—C10115.2 (4)
C4—C3—H3A119.6C12—C11—C10120.5 (4)
C5—C4—C3122.3 (4)C13—C12—C11118.7 (4)
C5—C4—Cl1118.9 (3)C13—C12—H12A120.7
C3—C4—Cl1118.8 (3)C11—C12—H12A120.7
C4—C5—C6117.2 (4)C12—C13—C8121.9 (4)
C4—C5—H5A121.4C12—C13—H13A119.0
C6—C5—H5A121.4C8—C13—H13A119.0
N1—C6—C5124.7 (3)O1—C14—H14A109.5
N1—C6—C1114.9 (4)O1—C14—H14B109.5
C5—C6—C1120.3 (4)H14A—C14—H14B109.5
N1—C7—C8123.7 (3)O1—C14—H14C109.5
N1—C7—S1115.5 (3)H14A—C14—H14C109.5
C8—C7—S1120.6 (3)H14B—C14—H14C109.5
C7—S1—C1—C2179.4 (4)C1—S1—C7—N11.1 (3)
C7—S1—C1—C60.7 (3)C1—S1—C7—C8174.8 (3)
C6—C1—C2—C31.2 (6)N1—C7—C8—C9176.7 (3)
S1—C1—C2—C3178.9 (3)S1—C7—C8—C91.1 (5)
C1—C2—C3—C40.4 (6)N1—C7—C8—C130.5 (5)
C2—C3—C4—C50.9 (6)S1—C7—C8—C13176.0 (3)
C2—C3—C4—Cl1179.6 (3)C13—C8—C9—C101.2 (6)
C3—C4—C5—C61.3 (6)C7—C8—C9—C10176.0 (4)
Cl1—C4—C5—C6179.2 (3)C8—C9—C10—C110.9 (6)
C7—N1—C6—C5178.4 (3)C14—O1—C11—C121.3 (6)
C7—N1—C6—C10.7 (4)C14—O1—C11—C10177.8 (4)
C4—C5—C6—N1178.6 (3)C9—C10—C11—O1176.6 (4)
C4—C5—C6—C10.4 (5)C9—C10—C11—C122.5 (6)
C2—C1—C6—N1179.9 (3)O1—C11—C12—C13177.1 (4)
S1—C1—C6—N10.2 (4)C10—C11—C12—C131.9 (6)
C2—C1—C6—C50.8 (5)C11—C12—C13—C80.2 (6)
S1—C1—C6—C5179.3 (3)C9—C8—C13—C121.8 (5)
C6—N1—C7—C8174.5 (3)C7—C8—C13—C12175.5 (3)
C6—N1—C7—S11.2 (4)

Experimental details

Crystal data
Chemical formulaC14H10ClNOS
Mr275.74
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)273
a, b, c (Å)29.0274 (16), 14.5512 (8), 5.8686 (3)
V3)2478.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.37 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.848, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
13397, 2299, 1965
Rint0.052
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.208, 1.15
No. of reflections2299
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1996) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are thankful to the OPCW, Netherland, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for their financial support.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurger, A. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270–273.  CrossRef PubMed Web of Science Google Scholar
First citationChohan, Z. H., Pervez, H., Scozzafava, A. & Supuran, C. T. (2003). J. Chem. Soc. Pak. 25, 308–313.  CAS Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Wetsell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer-ul-Haq, Mesaik, M. A. & Choudhary, M. I., (2011). Bioorg. Med. Chem. 19, 4286–4294.  Google Scholar
First citationNardelli, M. (1996). J. Appl. Cryst. 29, 296–300.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPalmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012a). Acta Cryst. E68, o2877.  CSD CrossRef IUCr Journals Google Scholar
First citationYousuf, S., Shah, S., Ambreen, N., Khan, K. M. & Ahmad, S. (2012b). Acta Cryst. E68, o3057.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds