metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Ferrocenyl-3-[2-(2-hy­dr­oxy­eth­­oxy)phen­yl]prop-2-en-1-one

aPost Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: seshadri_pr@yahoo.com

(Received 28 January 2013; accepted 2 February 2013; online 9 February 2013)

In the title compound, [Fe(C5H5)(C16H15O3)], the cyclo­penta­dienyl rings are in an eclipsed conformation and the benzene ring makes dihedral angles of 10.84 (9) and 12.35 (9)°, respectively, with the substituted and unsubstituted cyclo­penta­dienyl rings. In the crystal, mol­ecules form inversion dimers through pairs of O—H⋯O hydrogen bonds. Weak C—H⋯O hydrogen bonds are observed between the dimers.

Related literature

For the biological activity of ferrocenyl derivatives, see: Jaouen et al. (2004[Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505-2517.]); Fouda et al. (2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]); Biot et al. (2004[Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678-4682.]); Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23-C25.]). For a related structure, see: Zora et al. (2006[Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327-m330.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C16H15O3)]

  • Mr = 376.22

  • Monoclinic, P 21 /c

  • a = 12.5649 (10) Å

  • b = 19.0531 (14) Å

  • c = 7.4930 (6) Å

  • β = 103.932 (3)°

  • V = 1741.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 16289 measured reflections

  • 4310 independent reflections

  • 3510 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.06

  • 4310 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.88 1.98 2.841 (2) 165
C7—H7⋯O3ii 0.93 2.56 3.409 (3) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ferrocenyl derivatives exhibit antitumor (Jaouen et al., 2004), antibacterial (Fouda et al., 2007), antifungal and antimalarial (Biot et al., 2004) activities. It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards et al., 1975). Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

In the title compound, the benzene ring makes dihedral angles of 10.84 (9) and 12.35 (9)°, respectively, with the substituted and unsubstituted cyclopentadienyl (Cp) rings of the ferrocenyl unit. In ferrocenyl unit, the two Cp rings are planar and are parallel to each other with a dihedral angle of 1.56 (9)° between them. The Fe atom lies in the middle of the two planes of Cp rings. The distances of the Fe1 atom from the centroids of the substituted and unsubstituted cyclopentadienyl rings are 1.646 (10) and 1.650 (12) Å, respectively. The Cg1—Fe1—Cg2 angle is 179.21 (5)°, where Cg1 and Cg2 are the centroids of substituted and unsubstituted Cp rings, respectively. The C—C bond distances in the Cp rings range from 1.381 (4) to 1.429 (3) Å, while Fe—C bond lengths range between 2.023 (1) and 2.058 (2) Å and all of which are as expected (Zora et al., 2006). The torsion angles O1—C1—C2—O2 and O3—C11—C12—C13 [56.6 (3)° and -12.5 (3)°, respectively] indicate the bent conformation of the molecule. The crystal packing features O—H···O and weak C—H···O hydrogen bonds (Table 1).

Related literature top

For the biological activity of ferrocenyl derivatives, see: Jaouen et al. (2004); Fouda et al. (2007); Biot et al. (2004); Edwards et al. (1975). For a related structure, see: Zora et al. (2006).

Experimental top

A solution of acetylferrocene (3 g, 1.0 mmol) in ethanol (20 ml) was cooled to 0 °C and a solution of sodium hydroxide (0.48 g, 12.0 mmol) in water (2 ml) was added drop wise under vigorous stirring for 10 minutes. To the above mixture 2-(2-hydroxyethoxy)benzaldehyde (2.0 g, 12.0 mmol) in ethanol (10 ml) was added and stirred for 3 h in room temperature. Then, the reaction mixture was quenched in crushed ice and the solid obtained was filtered using Buchner funnel. The crude product was then subjected to column chromatography using hexane/ethyl acetate mixture (7:3) as eluent.

Refinement top

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and O—H = 0.88 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms, 1.2Ueq(C) for other C-bound H atoms and 1.5Ueq(O) for the hydroxyl H atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 20% probability level.
(E)-1-Ferrocenyl-3-[2-(2-hydroxyethoxy)phenyl]prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C16H15O3)]F(000) = 784
Mr = 376.22Monoclinic
Monoclinic, P21/cDx = 1.435 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.5649 (10) ÅCell parameters from 4310 reflections
b = 19.0531 (14) Åθ = 1.7–28.3°
c = 7.4930 (6) ŵ = 0.88 mm1
β = 103.932 (3)°T = 298 K
V = 1741.1 (2) Å3Block, colourless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3510 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
ω and ϕ scansh = 1316
16289 measured reflectionsk = 2425
4310 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.321P]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Fe(C5H5)(C16H15O3)]V = 1741.1 (2) Å3
Mr = 376.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5649 (10) ŵ = 0.88 mm1
b = 19.0531 (14) ÅT = 298 K
c = 7.4930 (6) Å0.20 × 0.20 × 0.20 mm
β = 103.932 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3510 reflections with I > 2σ(I)
16289 measured reflectionsRint = 0.045
4310 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
4310 reflectionsΔρmin = 0.28 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5017 (2)0.19106 (15)0.1792 (4)0.0844 (8)
H1A0.49270.21070.05710.101*
H1B0.54910.22240.26510.101*
C20.3913 (2)0.18912 (13)0.2245 (3)0.0687 (6)
H2A0.36200.23620.22470.082*
H2B0.34020.16120.13450.082*
C30.32089 (15)0.14956 (9)0.4781 (2)0.0448 (4)
C40.21972 (18)0.18139 (11)0.4123 (3)0.0601 (5)
H40.20760.20920.30750.072*
C50.13711 (18)0.17179 (13)0.5021 (4)0.0689 (6)
H50.06940.19310.45680.083*
C60.15347 (17)0.13110 (14)0.6575 (3)0.0665 (6)
H60.09770.12540.71850.080*
C70.25349 (16)0.09891 (10)0.7221 (3)0.0526 (5)
H70.26420.07120.82710.063*
C80.33932 (14)0.10650 (9)0.6351 (2)0.0399 (4)
C90.44013 (13)0.06738 (9)0.7103 (2)0.0396 (4)
H90.43880.04020.81290.048*
C100.53325 (13)0.06421 (9)0.6567 (2)0.0404 (4)
H100.54160.09110.55720.048*
C110.62388 (14)0.01847 (9)0.7532 (2)0.0402 (4)
C120.72924 (13)0.02332 (9)0.7018 (2)0.0420 (4)
C130.82896 (14)0.00662 (10)0.8068 (3)0.0494 (4)
H130.83580.03560.90870.059*
C140.91522 (16)0.01531 (12)0.7295 (3)0.0582 (5)
H140.98890.00380.77220.070*
C150.86994 (16)0.05775 (14)0.5762 (3)0.0618 (6)
H150.90900.07850.49930.074*
C160.75584 (15)0.06370 (12)0.5579 (2)0.0524 (5)
H160.70690.08920.46860.063*
C170.8640 (3)0.13448 (14)1.0708 (3)0.0789 (8)
H170.87300.10601.17410.095*
C180.7635 (2)0.16178 (13)0.9658 (4)0.0694 (7)
H180.69430.15430.98660.083*
C190.7877 (2)0.20164 (12)0.8261 (4)0.0678 (6)
H190.73700.22600.73660.081*
C200.8997 (2)0.19941 (12)0.8411 (4)0.0699 (6)
H200.93650.22180.76350.084*
C210.9477 (2)0.15830 (14)0.9908 (4)0.0736 (7)
H211.02200.14821.03130.088*
O10.55410 (15)0.12565 (11)0.1848 (3)0.0782 (5)
H10.50470.09270.14740.117*
O20.40793 (11)0.15843 (7)0.40196 (18)0.0548 (3)
O30.61383 (11)0.02233 (8)0.8744 (2)0.0571 (4)
Fe10.836512 (18)0.100494 (12)0.80775 (3)0.03666 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.103 (2)0.0783 (18)0.0778 (16)0.0097 (15)0.0332 (15)0.0336 (14)
C20.0914 (17)0.0574 (13)0.0560 (12)0.0086 (12)0.0153 (11)0.0243 (10)
C30.0480 (10)0.0372 (9)0.0448 (9)0.0023 (7)0.0027 (7)0.0046 (7)
C40.0599 (13)0.0495 (11)0.0606 (12)0.0114 (9)0.0060 (10)0.0000 (9)
C50.0438 (11)0.0668 (14)0.0871 (17)0.0170 (10)0.0018 (11)0.0118 (13)
C60.0416 (11)0.0781 (16)0.0801 (15)0.0070 (10)0.0148 (10)0.0087 (13)
C70.0430 (10)0.0591 (12)0.0563 (11)0.0033 (8)0.0129 (9)0.0027 (9)
C80.0376 (9)0.0397 (9)0.0401 (9)0.0008 (7)0.0049 (7)0.0048 (7)
C90.0403 (9)0.0401 (9)0.0369 (8)0.0001 (7)0.0062 (7)0.0017 (7)
C100.0382 (9)0.0427 (9)0.0391 (8)0.0022 (7)0.0069 (7)0.0030 (7)
C110.0364 (8)0.0406 (9)0.0414 (8)0.0028 (7)0.0050 (7)0.0017 (7)
C120.0357 (8)0.0444 (9)0.0446 (9)0.0029 (7)0.0070 (7)0.0090 (7)
C130.0420 (10)0.0387 (9)0.0651 (12)0.0055 (7)0.0081 (9)0.0057 (8)
C140.0390 (10)0.0648 (13)0.0709 (13)0.0059 (9)0.0136 (9)0.0197 (11)
C150.0453 (11)0.0962 (17)0.0485 (11)0.0104 (11)0.0202 (9)0.0186 (11)
C160.0413 (10)0.0805 (14)0.0345 (9)0.0070 (9)0.0071 (7)0.0078 (9)
C170.136 (3)0.0599 (14)0.0382 (11)0.0018 (15)0.0168 (13)0.0121 (10)
C180.0701 (15)0.0620 (14)0.0872 (16)0.0094 (11)0.0408 (13)0.0304 (12)
C190.0680 (15)0.0461 (12)0.0873 (16)0.0113 (10)0.0148 (12)0.0026 (11)
C200.0710 (15)0.0470 (12)0.0943 (17)0.0173 (11)0.0252 (13)0.0041 (12)
C210.0580 (13)0.0725 (16)0.0782 (16)0.0002 (12)0.0072 (12)0.0310 (13)
O10.0659 (10)0.0967 (13)0.0755 (11)0.0164 (10)0.0240 (9)0.0026 (10)
O20.0587 (8)0.0565 (8)0.0475 (7)0.0058 (6)0.0097 (6)0.0163 (6)
O30.0449 (7)0.0590 (8)0.0663 (8)0.0020 (6)0.0111 (6)0.0228 (7)
Fe10.03431 (14)0.03993 (15)0.03509 (14)0.00033 (9)0.00705 (10)0.00048 (9)
Geometric parameters (Å, º) top
C1—O11.406 (3)C13—C141.409 (3)
C1—C21.505 (4)C13—Fe12.0429 (19)
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—C151.408 (3)
C2—O21.421 (2)C14—Fe12.0579 (19)
C2—H2A0.9700C14—H140.9300
C2—H2B0.9700C15—C161.412 (3)
C3—O21.361 (2)C15—Fe12.0496 (19)
C3—C41.387 (3)C15—H150.9300
C3—C81.406 (3)C16—Fe12.0271 (18)
C4—C51.378 (3)C16—H160.9300
C4—H40.9300C17—C211.405 (4)
C5—C61.373 (4)C17—C181.417 (4)
C5—H50.9300C17—Fe12.024 (2)
C6—C71.377 (3)C17—H170.9300
C6—H60.9300C18—C191.385 (3)
C7—C81.395 (3)C18—Fe12.033 (2)
C7—H70.9300C18—H180.9300
C8—C91.461 (2)C19—C201.385 (4)
C9—C101.327 (2)C19—Fe12.037 (2)
C9—H90.9300C19—H190.9300
C10—C111.477 (2)C20—C211.381 (4)
C10—H100.9300C20—Fe12.037 (2)
C11—O31.225 (2)C20—H200.9300
C11—C121.468 (2)C21—Fe12.030 (2)
C12—C161.428 (3)C21—H210.9300
C12—C131.428 (2)O1—H10.8797
C12—Fe12.0234 (17)
O1—C1—C2115.0 (2)C18—C17—H17126.2
O1—C1—H1A108.5Fe1—C17—H17125.6
C2—C1—H1A108.5C19—C18—C17107.0 (2)
O1—C1—H1B108.5C19—C18—Fe170.27 (13)
C2—C1—H1B108.5C17—C18—Fe169.23 (12)
H1A—C1—H1B107.5C19—C18—H18126.5
O2—C2—C1106.55 (19)C17—C18—H18126.5
O2—C2—H2A110.4Fe1—C18—H18125.6
C1—C2—H2A110.4C20—C19—C18109.0 (2)
O2—C2—H2B110.4C20—C19—Fe170.13 (12)
C1—C2—H2B110.4C18—C19—Fe169.93 (13)
H2A—C2—H2B108.6C20—C19—H19125.5
O2—C3—C4123.84 (18)C18—C19—H19125.5
O2—C3—C8115.86 (15)Fe1—C19—H19126.0
C4—C3—C8120.29 (19)C21—C20—C19108.6 (2)
C5—C4—C3120.1 (2)C21—C20—Fe169.88 (13)
C5—C4—H4119.9C19—C20—Fe170.12 (12)
C3—C4—H4119.9C21—C20—H20125.7
C6—C5—C4120.83 (19)C19—C20—H20125.7
C6—C5—H5119.6Fe1—C20—H20125.9
C4—C5—H5119.6C20—C21—C17107.8 (2)
C5—C6—C7119.1 (2)C20—C21—Fe170.42 (13)
C5—C6—H6120.4C17—C21—Fe169.49 (13)
C7—C6—H6120.4C20—C21—H21126.1
C6—C7—C8122.2 (2)C17—C21—H21126.1
C6—C7—H7118.9Fe1—C21—H21125.6
C8—C7—H7118.9C1—O1—H1109.00
C7—C8—C3117.44 (17)C3—O2—C2119.45 (16)
C7—C8—C9117.55 (16)C12—Fe1—C17123.79 (10)
C3—C8—C9124.98 (16)C12—Fe1—C1641.28 (8)
C10—C9—C8130.69 (16)C17—Fe1—C16160.08 (11)
C10—C9—H9114.7C12—Fe1—C21160.77 (10)
C8—C9—H9114.7C17—Fe1—C2140.55 (11)
C9—C10—C11120.68 (15)C16—Fe1—C21157.08 (11)
C9—C10—H10119.7C12—Fe1—C18107.13 (8)
C11—C10—H10119.7C17—Fe1—C1840.89 (11)
O3—C11—C12119.67 (16)C16—Fe1—C18122.76 (9)
O3—C11—C10122.17 (15)C21—Fe1—C1868.19 (10)
C12—C11—C10118.15 (15)C12—Fe1—C20157.48 (9)
C16—C12—C13107.29 (15)C17—Fe1—C2067.31 (11)
C16—C12—C11128.45 (16)C16—Fe1—C20121.80 (10)
C13—C12—C11123.87 (16)C21—Fe1—C2039.70 (11)
C16—C12—Fe169.50 (10)C18—Fe1—C2067.32 (10)
C13—C12—Fe170.17 (10)C12—Fe1—C19122.09 (9)
C11—C12—Fe1120.02 (11)C17—Fe1—C1967.37 (11)
C14—C13—C12108.35 (18)C16—Fe1—C19107.33 (10)
C14—C13—Fe170.47 (12)C21—Fe1—C1967.07 (10)
C12—C13—Fe168.71 (10)C18—Fe1—C1939.81 (10)
C14—C13—H13125.8C20—Fe1—C1939.75 (10)
C12—C13—H13125.8C12—Fe1—C1341.12 (7)
Fe1—C13—H13126.6C17—Fe1—C13108.66 (9)
C15—C14—C13107.80 (17)C16—Fe1—C1368.82 (8)
C15—C14—Fe169.64 (12)C21—Fe1—C13124.62 (9)
C13—C14—Fe169.33 (11)C18—Fe1—C13123.29 (9)
C15—C14—H14126.1C20—Fe1—C13160.23 (9)
C13—C14—H14126.1C19—Fe1—C13158.58 (9)
Fe1—C14—H14126.5C12—Fe1—C1568.40 (8)
C14—C15—C16109.06 (18)C17—Fe1—C15158.41 (11)
C14—C15—Fe170.27 (11)C16—Fe1—C1540.51 (7)
C16—C15—Fe168.89 (10)C21—Fe1—C15122.65 (10)
C14—C15—H15125.5C18—Fe1—C15159.19 (11)
C16—C15—H15125.5C20—Fe1—C15108.56 (10)
Fe1—C15—H15127.0C19—Fe1—C15124.01 (11)
C15—C16—C12107.48 (18)C13—Fe1—C1567.59 (9)
C15—C16—Fe170.60 (11)C12—Fe1—C1468.62 (7)
C12—C16—Fe169.22 (9)C17—Fe1—C14123.28 (11)
C15—C16—H16126.3C16—Fe1—C1468.40 (9)
C12—C16—H16126.3C21—Fe1—C14108.71 (9)
Fe1—C16—H16125.5C18—Fe1—C14159.13 (11)
C21—C17—C18107.6 (2)C20—Fe1—C14124.38 (9)
C21—C17—Fe169.96 (13)C19—Fe1—C14159.79 (10)
C18—C17—Fe169.88 (12)C13—Fe1—C1440.20 (8)
C21—C17—H17126.2C15—Fe1—C1440.09 (9)
O1—C1—C2—O256.9 (3)C15—C16—Fe1—C1436.56 (14)
O2—C3—C4—C5177.42 (19)C12—C16—Fe1—C1481.76 (12)
C8—C3—C4—C50.9 (3)C20—C21—Fe1—C12159.7 (2)
C3—C4—C5—C60.3 (3)C17—C21—Fe1—C1241.1 (3)
C4—C5—C6—C70.9 (4)C20—C21—Fe1—C17118.6 (2)
C5—C6—C7—C80.3 (3)C20—C21—Fe1—C1643.1 (3)
C6—C7—C8—C30.9 (3)C17—C21—Fe1—C16161.7 (2)
C6—C7—C8—C9177.20 (19)C20—C21—Fe1—C1880.31 (17)
O2—C3—C8—C7177.02 (16)C17—C21—Fe1—C1838.30 (16)
C4—C3—C8—C71.5 (3)C17—C21—Fe1—C20118.6 (2)
O2—C3—C8—C95.1 (3)C20—C21—Fe1—C1937.13 (16)
C4—C3—C8—C9176.43 (17)C17—C21—Fe1—C1981.48 (17)
C7—C8—C9—C10179.68 (19)C20—C21—Fe1—C13163.45 (14)
C3—C8—C9—C101.8 (3)C17—C21—Fe1—C1377.94 (17)
C8—C9—C10—C11178.11 (16)C20—C21—Fe1—C1579.63 (17)
C9—C10—C11—O36.4 (3)C17—C21—Fe1—C15161.76 (16)
C9—C10—C11—C12172.95 (16)C20—C21—Fe1—C14121.70 (15)
O3—C11—C12—C16175.64 (18)C17—C21—Fe1—C14119.69 (16)
C10—C11—C12—C165.0 (3)C19—C18—Fe1—C12119.90 (14)
O3—C11—C12—C1312.5 (3)C17—C18—Fe1—C12122.21 (15)
C10—C11—C12—C13166.86 (16)C19—C18—Fe1—C17117.9 (2)
O3—C11—C12—Fe197.67 (18)C19—C18—Fe1—C1677.36 (17)
C10—C11—C12—Fe181.67 (18)C17—C18—Fe1—C16164.76 (15)
C16—C12—C13—C140.3 (2)C19—C18—Fe1—C2179.90 (17)
C11—C12—C13—C14173.01 (16)C17—C18—Fe1—C2137.99 (16)
Fe1—C12—C13—C1459.52 (14)C19—C18—Fe1—C2036.86 (16)
C16—C12—C13—Fe159.86 (12)C17—C18—Fe1—C2081.03 (17)
C11—C12—C13—Fe1113.49 (16)C17—C18—Fe1—C19117.9 (2)
C12—C13—C14—C150.8 (2)C19—C18—Fe1—C13162.11 (14)
Fe1—C13—C14—C1559.22 (15)C17—C18—Fe1—C1380.01 (17)
C12—C13—C14—Fe158.43 (13)C19—C18—Fe1—C1545.8 (3)
C13—C14—C15—C160.9 (2)C17—C18—Fe1—C15163.6 (2)
Fe1—C14—C15—C1658.08 (15)C19—C18—Fe1—C14165.3 (2)
C13—C14—C15—Fe159.02 (14)C17—C18—Fe1—C1447.4 (3)
C14—C15—C16—C120.7 (2)C21—C20—Fe1—C12162.6 (2)
Fe1—C15—C16—C1259.65 (13)C19—C20—Fe1—C1243.0 (3)
C14—C15—C16—Fe158.92 (15)C21—C20—Fe1—C1738.22 (16)
C13—C12—C16—C150.2 (2)C19—C20—Fe1—C1781.40 (18)
C11—C12—C16—C15173.19 (17)C21—C20—Fe1—C16161.77 (14)
Fe1—C12—C16—C1560.53 (14)C19—C20—Fe1—C1678.61 (18)
C13—C12—C16—Fe160.29 (12)C19—C20—Fe1—C21119.6 (2)
C11—C12—C16—Fe1112.66 (17)C21—C20—Fe1—C1882.71 (17)
C21—C17—C18—C190.4 (3)C19—C20—Fe1—C1836.91 (16)
Fe1—C17—C18—C1960.44 (16)C21—C20—Fe1—C19119.6 (2)
C21—C17—C18—Fe160.05 (15)C21—C20—Fe1—C1343.9 (3)
C17—C18—C19—C200.3 (3)C19—C20—Fe1—C13163.5 (2)
Fe1—C18—C19—C2059.43 (17)C21—C20—Fe1—C15119.11 (16)
C17—C18—C19—Fe159.78 (15)C19—C20—Fe1—C15121.27 (16)
C18—C19—C20—C210.2 (3)C21—C20—Fe1—C1477.54 (18)
Fe1—C19—C20—C2159.47 (16)C19—C20—Fe1—C14162.84 (15)
C18—C19—C20—Fe159.30 (16)C20—C19—Fe1—C12162.04 (15)
C19—C20—C21—C170.1 (3)C18—C19—Fe1—C1277.91 (17)
Fe1—C20—C21—C1759.70 (16)C20—C19—Fe1—C1781.24 (18)
C19—C20—C21—Fe159.62 (16)C18—C19—Fe1—C1738.82 (16)
C18—C17—C21—C200.3 (3)C20—C19—Fe1—C16119.22 (16)
Fe1—C17—C21—C2060.29 (16)C18—C19—Fe1—C16120.73 (15)
C18—C17—C21—Fe160.00 (15)C20—C19—Fe1—C2137.08 (17)
C4—C3—O2—C214.0 (3)C18—C19—Fe1—C2182.97 (17)
C8—C3—O2—C2167.58 (17)C20—C19—Fe1—C18120.1 (2)
C1—C2—O2—C3179.56 (19)C18—C19—Fe1—C20120.1 (2)
C16—C12—Fe1—C17162.26 (14)C20—C19—Fe1—C13164.7 (2)
C13—C12—Fe1—C1779.57 (15)C18—C19—Fe1—C1344.7 (3)
C11—C12—Fe1—C1738.85 (19)C20—C19—Fe1—C1577.83 (18)
C13—C12—Fe1—C16118.17 (15)C18—C19—Fe1—C15162.12 (14)
C11—C12—Fe1—C16123.41 (19)C20—C19—Fe1—C1444.8 (3)
C16—C12—Fe1—C21166.8 (3)C18—C19—Fe1—C14164.9 (2)
C13—C12—Fe1—C2148.6 (3)C14—C13—Fe1—C12119.78 (17)
C11—C12—Fe1—C2169.8 (3)C14—C13—Fe1—C17119.84 (15)
C16—C12—Fe1—C18120.48 (13)C12—C13—Fe1—C17120.38 (14)
C13—C12—Fe1—C18121.35 (13)C14—C13—Fe1—C1681.19 (13)
C11—C12—Fe1—C182.93 (17)C12—C13—Fe1—C1638.59 (10)
C16—C12—Fe1—C2048.6 (3)C14—C13—Fe1—C2177.69 (16)
C13—C12—Fe1—C20166.7 (2)C12—C13—Fe1—C21162.52 (13)
C11—C12—Fe1—C2074.9 (3)C14—C13—Fe1—C18162.72 (14)
C16—C12—Fe1—C1979.55 (14)C12—C13—Fe1—C1877.50 (14)
C13—C12—Fe1—C19162.28 (13)C14—C13—Fe1—C2045.2 (3)
C11—C12—Fe1—C1943.86 (18)C12—C13—Fe1—C20164.9 (3)
C16—C12—Fe1—C13118.17 (15)C14—C13—Fe1—C19164.7 (2)
C11—C12—Fe1—C13118.42 (19)C12—C13—Fe1—C1944.9 (3)
C16—C12—Fe1—C1537.96 (12)C14—C13—Fe1—C1537.43 (12)
C13—C12—Fe1—C1580.21 (12)C12—C13—Fe1—C1582.36 (12)
C11—C12—Fe1—C15161.37 (17)C12—C13—Fe1—C14119.78 (17)
C16—C12—Fe1—C1481.18 (13)C14—C15—Fe1—C1282.03 (13)
C13—C12—Fe1—C1436.99 (12)C16—C15—Fe1—C1238.66 (13)
C11—C12—Fe1—C14155.40 (16)C14—C15—Fe1—C1746.7 (3)
C21—C17—Fe1—C12164.90 (14)C16—C15—Fe1—C17167.3 (3)
C18—C17—Fe1—C1276.62 (16)C14—C15—Fe1—C16120.69 (19)
C21—C17—Fe1—C16158.9 (3)C14—C15—Fe1—C2180.23 (16)
C18—C17—Fe1—C1640.5 (4)C16—C15—Fe1—C21159.08 (15)
C18—C17—Fe1—C21118.5 (2)C14—C15—Fe1—C18163.4 (2)
C21—C17—Fe1—C18118.5 (2)C16—C15—Fe1—C1842.7 (3)
C21—C17—Fe1—C2037.43 (15)C14—C15—Fe1—C20121.75 (14)
C18—C17—Fe1—C2081.05 (16)C16—C15—Fe1—C20117.56 (15)
C21—C17—Fe1—C1980.67 (17)C14—C15—Fe1—C19163.00 (13)
C18—C17—Fe1—C1937.81 (14)C16—C15—Fe1—C1976.31 (17)
C21—C17—Fe1—C13121.85 (15)C14—C15—Fe1—C1337.53 (12)
C18—C17—Fe1—C13119.67 (14)C16—C15—Fe1—C1383.16 (14)
C21—C17—Fe1—C1545.7 (3)C16—C15—Fe1—C14120.69 (19)
C18—C17—Fe1—C15164.2 (2)C15—C14—Fe1—C1281.45 (12)
C21—C17—Fe1—C1479.81 (18)C13—C14—Fe1—C1237.80 (11)
C18—C17—Fe1—C14161.71 (14)C15—C14—Fe1—C17161.33 (14)
C15—C16—Fe1—C12118.31 (19)C13—C14—Fe1—C1779.42 (16)
C15—C16—Fe1—C17166.3 (3)C15—C14—Fe1—C1636.93 (12)
C12—C16—Fe1—C1748.0 (3)C13—C14—Fe1—C1682.33 (12)
C15—C16—Fe1—C2150.5 (3)C15—C14—Fe1—C21118.83 (14)
C12—C16—Fe1—C21168.9 (2)C13—C14—Fe1—C21121.91 (14)
C15—C16—Fe1—C18163.34 (15)C15—C14—Fe1—C18163.5 (2)
C12—C16—Fe1—C1878.34 (15)C13—C14—Fe1—C1844.2 (3)
C15—C16—Fe1—C2081.43 (17)C15—C14—Fe1—C2077.64 (16)
C12—C16—Fe1—C20160.26 (12)C13—C14—Fe1—C20163.10 (13)
C15—C16—Fe1—C19122.47 (15)C15—C14—Fe1—C1944.6 (3)
C12—C16—Fe1—C19119.21 (12)C13—C14—Fe1—C19163.8 (2)
C15—C16—Fe1—C1379.87 (15)C15—C14—Fe1—C13119.25 (17)
C12—C16—Fe1—C1338.44 (10)C13—C14—Fe1—C15119.25 (17)
C12—C16—Fe1—C15118.31 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.881.982.841 (2)165
C7—H7···O3ii0.932.563.409 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C16H15O3)]
Mr376.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.5649 (10), 19.0531 (14), 7.4930 (6)
β (°) 103.932 (3)
V3)1741.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16289, 4310, 3510
Rint0.045
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.06
No. of reflections4310
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.881.982.841 (2)165
C7—H7···O3ii0.932.563.409 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

References

First citationBiot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem. 689, 4678–4682.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23–C25.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationJaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem. 11, 2505–2517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds