metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ido-κN1}iron(II)

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong 250013, People's Republic of China
*Correspondence e-mail: libin_qlnu@yahoo.com.cn

(Received 8 February 2013; accepted 16 February 2013; online 23 February 2013)

In the centrosymmetric title complex, [Fe(C18H12N5)2(H2O)2], the FeII ion, lying on an inversion centre, is coordinated by two N,N′-bidentate 5-(pyridin-2-yl)-3-[4-(pyridin-4-yl)phen­yl]-1H-1,2,4-triazol-1-ide ligands and two water mol­ecules in a trans-FeO2N4 geometry. In the ligand, the triazole ring makes dihedral angles of 5.21 (18) and 6.7 (2)°, respectively, with the adjacent pyridine and benzene rings. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, generating a three-dimensional network.

Related literature

For background to coordination complexes, see: Zhang, Sun et al. (2012[Zhang, X.-T., Sun, D., Li, B., Fan, L.-M., Li, B. & Wei, P.-H. (2012). Cryst. Growth Des. 12, 3845-3848.]); Zhang, Fan et al. (2012[Zhang, X.-T., Fan, L.-M., Zhao, X., Sun, D., Li, D.-C. & Dou, J.-M. (2012). CrystEngComm, 14, 2053-2061.]); Fan et al. (2013[Fan, L. M., Zhang, X.-T., Li, D.-C., Sun, D., Zhang, W. & Dou, J.-M. (2013). CrystEngComm, 15, 349-355.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C18H12N5)2(H2O)2]

  • Mr = 688.53

  • Monoclinic, P 21 /c

  • a = 13.1965 (17) Å

  • b = 12.0279 (16) Å

  • c = 9.9006 (13) Å

  • β = 100.998 (1)°

  • V = 1542.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.958

  • 7711 measured reflections

  • 2722 independent reflections

  • 2214 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.184

  • S = 1.00

  • 2722 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.14 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯N4i 0.81 (4) 1.99 (4) 2.784 (4) 168 (4)
O1—H2W⋯N5ii 0.85 (5) 2.39 (5) 3.165 (6) 152 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of coordination complexes have attracted upsurging research interest not only because of their appealing structural and topological novelty but also owing to their tremendous potential applications in gas storage, microelectronics, ion exchange, chemical separations, nonlinear optics and heterogeneous catalysis (Zhang, Sun et al., 2012; Zhang, Fan et al., 2012; Fan et al., 2013). Here, we report one new compound, [Fe(H2O)2(C18H12N5)2], obtained from the solvothermal reaction of 2-{3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-5-yl}pyridine and iron(II) chloride tetrahydrate.

The asymmetric unit of the title compound consists of a half of Fe(II), one deprotonated 2-{3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-5-}pyridine, and one water molecule. The Fe atom owns a distorted octahedral coordination geometry, completed by four N atoms from two deprotonated 2-{3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-5-yl}pyridine and two O atoms from two water molecules (Fig. 1). The Fe—O distance is 2.205 (3) Å. The Fe—N distances are 2.103 (3) and 2.171 (3) Å. The O—H···N hydrogen bonds (Table 1) in the crystal lead to a consolidation of the structure (Fig. 2) .

Related literature top

For background to coordination complexes, see: Zhang, Sun et al. (2012); Zhang, Fan et al. (2012); Fan et al. (2013).

Experimental top

A mixture of 2-{3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-5-yl}pyridine (0.20 mmol, 0.060 g), iron(II) chloride tetrahydrate (0.40 mmol, 0.078 g), NaOH (0.20 mmol, 0.008 g) and 12 mL H2O was placed in a Teflon-lined stainless steel vessel, heated to 170 °C for 3 days, followed by slow cooling (a descent rate of 10 °C/h) to room temperature. Red crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C36H28FeN10O2: C 62.80, H 4.10, N 20.34%; Found: C 62.72, H 4.03, N 20.18%.

Refinement top

All H atoms bound to C were refined using a riding model with C—H = 0.93 Å, and with Uiso = 1.2Ueq (C). The H atoms of the water molecule were located in a difference Fourier map and were refined with distance restraints of O—H = 0.820 (1) and H···H = 1.380 (1) Å [O—H = 0.81 (4) and 0.85 (5) Å].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. A crystal packing view of the title compound, displayed with hydrogen bonds as dashed lines.
Diaquabis{5-(pyridin-2-yl-κN)-3-[4-(pyridin-4-yl)phenyl]-1H-1,2,4-triazol-1-ido-κN1}iron(II) top
Crystal data top
[Fe(C18H12N5)2(H2O)2]F(000) = 712
Mr = 688.53Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 425 reflections
a = 13.1965 (17) Åθ = 2.3–16.0°
b = 12.0279 (16) ŵ = 0.54 mm1
c = 9.9006 (13) ÅT = 296 K
β = 100.998 (1)°Block, colorless
V = 1542.6 (4) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2722 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1115
Tmin = 0.938, Tmax = 0.958k = 1314
7711 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.120P)2 + 1.3369P]
where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max = 0.007
231 parametersΔρmax = 1.14 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
[Fe(C18H12N5)2(H2O)2]V = 1542.6 (4) Å3
Mr = 688.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.1965 (17) ŵ = 0.54 mm1
b = 12.0279 (16) ÅT = 296 K
c = 9.9006 (13) Å0.12 × 0.10 × 0.08 mm
β = 100.998 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2214 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.958Rint = 0.035
7711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.14 e Å3
2722 reflectionsΔρmin = 0.42 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3747 (3)0.2112 (3)0.1244 (4)0.0363 (8)
H10.34280.16270.19250.044*
C20.3486 (3)0.3216 (3)0.1351 (4)0.0412 (9)
H20.30040.34760.20950.049*
C30.3951 (3)0.3931 (3)0.0334 (4)0.0425 (9)
H30.37860.46830.03830.051*
C40.4663 (3)0.3527 (3)0.0757 (4)0.0377 (9)
H40.49770.40000.14550.045*
C50.4900 (2)0.2410 (3)0.0795 (3)0.0285 (7)
C60.5674 (2)0.1872 (3)0.1860 (3)0.0280 (7)
C70.6842 (3)0.1449 (3)0.3520 (3)0.0310 (8)
C80.7662 (3)0.1451 (3)0.4768 (3)0.0357 (8)
C90.7863 (3)0.2334 (4)0.5670 (4)0.0468 (10)
H90.74650.29760.55070.056*
C100.8648 (3)0.2276 (4)0.6809 (4)0.0512 (11)
H100.87640.28810.74030.061*
C110.9267 (3)0.1348 (4)0.7094 (4)0.0456 (10)
C120.9037 (4)0.0443 (4)0.6214 (5)0.0576 (12)
H120.94210.02070.63950.069*
C130.8253 (4)0.0489 (3)0.5086 (5)0.0557 (12)
H130.81120.01320.45220.067*
C141.0144 (3)0.1269 (4)0.8279 (4)0.0515 (11)
C151.0280 (5)0.1932 (7)0.9391 (6)0.124 (3)
H150.98090.24960.94550.149*
C161.1133 (6)0.1770 (8)1.0451 (6)0.132 (4)
H161.12060.22591.11910.158*
C171.1777 (5)0.0489 (6)0.9320 (7)0.0927 (19)
H171.23190.00180.92290.111*
C181.0973 (5)0.0595 (6)0.8208 (6)0.0885 (19)
H181.09930.02050.74030.106*
Fe10.50000.00000.00000.0319 (3)
N10.4444 (2)0.1702 (2)0.0198 (3)0.0300 (6)
N20.5878 (2)0.0804 (2)0.1719 (3)0.0335 (7)
N30.6647 (2)0.0523 (2)0.2789 (3)0.0371 (7)
N40.6261 (2)0.2328 (2)0.2991 (3)0.0307 (7)
N51.1827 (3)0.1012 (5)1.0503 (4)0.0787 (14)
O10.3849 (2)0.0453 (3)0.1252 (3)0.0406 (6)
H1W0.374 (3)0.110 (4)0.140 (5)0.063 (15)*
H2W0.336 (4)0.002 (3)0.136 (5)0.055 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.0363 (18)0.0265 (18)0.0005 (16)0.0088 (15)0.0023 (15)
C20.044 (2)0.038 (2)0.034 (2)0.0095 (17)0.0115 (16)0.0047 (16)
C30.054 (2)0.0281 (18)0.040 (2)0.0084 (17)0.0064 (17)0.0031 (15)
C40.047 (2)0.0277 (17)0.0325 (19)0.0005 (15)0.0077 (16)0.0042 (15)
C50.0304 (17)0.0278 (16)0.0244 (17)0.0019 (13)0.0024 (13)0.0018 (13)
C60.0319 (17)0.0238 (16)0.0248 (17)0.0027 (13)0.0036 (13)0.0009 (13)
C70.0350 (18)0.0304 (17)0.0234 (17)0.0018 (14)0.0046 (14)0.0003 (14)
C80.0352 (19)0.0381 (19)0.0283 (18)0.0013 (15)0.0077 (14)0.0014 (15)
C90.044 (2)0.051 (2)0.038 (2)0.0121 (18)0.0089 (17)0.0124 (18)
C100.044 (2)0.063 (3)0.039 (2)0.012 (2)0.0115 (17)0.022 (2)
C110.038 (2)0.064 (3)0.0303 (19)0.0060 (19)0.0057 (16)0.0057 (19)
C120.058 (3)0.049 (2)0.054 (3)0.013 (2)0.020 (2)0.000 (2)
C130.062 (3)0.040 (2)0.052 (3)0.007 (2)0.023 (2)0.009 (2)
C140.036 (2)0.075 (3)0.038 (2)0.008 (2)0.0067 (17)0.005 (2)
C150.088 (4)0.196 (8)0.064 (4)0.067 (5)0.048 (3)0.063 (5)
C160.094 (5)0.225 (10)0.056 (4)0.048 (6)0.038 (3)0.061 (5)
C170.063 (4)0.120 (5)0.080 (4)0.018 (4)0.024 (3)0.002 (4)
C180.071 (4)0.107 (5)0.072 (4)0.028 (3)0.025 (3)0.016 (3)
Fe10.0380 (5)0.0226 (4)0.0274 (4)0.0003 (3)0.0131 (3)0.0020 (3)
N10.0311 (15)0.0258 (14)0.0277 (14)0.0008 (11)0.0080 (11)0.0002 (11)
N20.0377 (16)0.0274 (14)0.0278 (15)0.0006 (12)0.0127 (12)0.0005 (12)
N30.0397 (17)0.0308 (15)0.0317 (16)0.0013 (13)0.0158 (13)0.0009 (13)
N40.0320 (15)0.0299 (14)0.0260 (14)0.0000 (12)0.0054 (12)0.0047 (12)
N50.050 (2)0.130 (4)0.045 (2)0.010 (3)0.0188 (18)0.004 (3)
O10.0414 (16)0.0322 (15)0.0438 (15)0.0010 (13)0.0031 (12)0.0047 (13)
Geometric parameters (Å, º) top
C1—N11.341 (4)C11—C121.391 (6)
C1—C21.371 (5)C11—C141.485 (5)
C1—H10.9300C12—C131.371 (6)
C2—C31.376 (5)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.378 (5)C14—C151.344 (7)
C3—H30.9300C14—C181.374 (7)
C4—C51.378 (5)C15—C161.398 (7)
C4—H40.9300C15—H150.9300
C5—N11.352 (4)C16—N51.287 (9)
C5—C61.470 (4)C16—H160.9300
C6—N21.325 (4)C17—N51.320 (8)
C6—N41.350 (4)C17—C181.381 (7)
C7—N31.327 (4)C17—H170.9300
C7—N41.351 (4)C18—H180.9300
C7—C81.479 (4)Fe1—N22.103 (3)
C8—C91.380 (5)Fe1—N12.171 (3)
C8—C131.397 (5)Fe1—O12.205 (3)
C9—C101.380 (5)N2—N31.363 (4)
C9—H90.9300O1—H1W0.81 (4)
C10—C111.381 (6)O1—H2W0.85 (5)
C10—H100.9300
N1—C1—C2122.8 (3)C18—C14—C11120.4 (4)
N1—C1—H1118.6C14—C15—C16119.6 (6)
C2—C1—H1118.6C14—C15—H15120.2
C1—C2—C3118.5 (3)C16—C15—H15120.2
C1—C2—H2120.7N5—C16—C15126.4 (6)
C3—C2—H2120.7N5—C16—H16116.8
C2—C3—C4119.7 (3)C15—C16—H16116.8
C2—C3—H3120.1N5—C17—C18124.3 (6)
C4—C3—H3120.1N5—C17—H17117.8
C5—C4—C3118.9 (3)C18—C17—H17117.8
C5—C4—H4120.6C14—C18—C17120.8 (6)
C3—C4—H4120.6C14—C18—H18119.6
N1—C5—C4121.8 (3)C17—C18—H18119.6
N1—C5—C6113.3 (3)N2—Fe1—N2i180.0 (2)
C4—C5—C6124.9 (3)N2—Fe1—N1i103.68 (10)
N2—C6—N4112.6 (3)N2i—Fe1—N1i76.32 (10)
N2—C6—C5118.6 (3)N2—Fe1—N176.32 (10)
N4—C6—C5128.8 (3)N2i—Fe1—N1103.68 (10)
N3—C7—N4114.1 (3)N1i—Fe1—N1180.00 (14)
N3—C7—C8119.4 (3)N2—Fe1—O1i90.52 (11)
N4—C7—C8126.4 (3)N2i—Fe1—O1i89.48 (11)
C9—C8—C13117.5 (3)N1i—Fe1—O1i91.52 (11)
C9—C8—C7124.1 (3)N1—Fe1—O1i88.48 (11)
C13—C8—C7118.4 (3)N2—Fe1—O189.48 (11)
C10—C9—C8120.7 (4)N2i—Fe1—O190.52 (11)
C10—C9—H9119.6N1i—Fe1—O188.48 (11)
C8—C9—H9119.6N1—Fe1—O191.52 (11)
C9—C10—C11122.1 (4)O1i—Fe1—O1180.00 (19)
C9—C10—H10119.0C1—N1—C5118.3 (3)
C11—C10—H10119.0C1—N1—Fe1125.9 (2)
C10—C11—C12117.0 (3)C5—N1—Fe1115.6 (2)
C10—C11—C14123.7 (4)C6—N2—N3107.2 (3)
C12—C11—C14119.3 (4)C6—N2—Fe1116.1 (2)
C13—C12—C11121.3 (4)N3—N2—Fe1136.7 (2)
C13—C12—H12119.4C7—N3—N2104.7 (3)
C11—C12—H12119.4C6—N4—C7101.4 (3)
C12—C13—C8121.3 (4)C16—N5—C17112.8 (5)
C12—C13—H13119.4Fe1—O1—H1W121 (3)
C8—C13—H13119.4Fe1—O1—H2W123 (3)
C15—C14—C18114.1 (4)H1W—O1—H2W113 (4)
C15—C14—C11124.8 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N4ii0.81 (4)1.99 (4)2.784 (4)168 (4)
O1—H2W···N5iii0.85 (5)2.39 (5)3.165 (6)152 (5)
Symmetry codes: (ii) x+1, y1/2, z+1/2; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Fe(C18H12N5)2(H2O)2]
Mr688.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1965 (17), 12.0279 (16), 9.9006 (13)
β (°) 100.998 (1)
V3)1542.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.938, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7711, 2722, 2214
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.184, 1.00
No. of reflections2722
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.14, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···N4i0.81 (4)1.99 (4)2.784 (4)168 (4)
O1—H2W···N5ii0.85 (5)2.39 (5)3.165 (6)152 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z1.
 

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, L. M., Zhang, X.-T., Li, D.-C., Sun, D., Zhang, W. & Dou, J.-M. (2013). CrystEngComm, 15, 349–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-T., Fan, L.-M., Zhao, X., Sun, D., Li, D.-C. & Dou, J.-M. (2012). CrystEngComm, 14, 2053–2061.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-T., Sun, D., Li, B., Fan, L.-M., Li, B. & Wei, P.-H. (2012). Cryst. Growth Des. 12, 3845–3848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds