organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o410-o411

Stevioside methanol tetra­solvate

aDepartment of Medicinal Chemistry, University of Mississippi, 417 Faser Hall, University, MS 38677, USA, bIronstone Separations, Inc., 147 County Road 245, Etta, Mississippi 38627, USA, and cDepartment of Chemistry and Biochemistry, University of Mississippi, 417 Faser Hall, University, MS 38677, USA
*Correspondence e-mail: jdmcchesney@ironstoneseparations.com

(Received 11 December 2012; accepted 8 February 2013; online 20 February 2013)

Stevioside is a naturally occurring diterpenoid glycoside in Stevia rebaudiana Bertoni. The title compound, C38H60O18·4CH3OH, crystallized as its methanol tetrasolvate. Stevioside consists of an aglycone steviol (a tetra­cyclic diterpene in which the four-fused-ring system consists of three six-membered rings and one five-membered ring) and a sugar part (three glucose units). A weak intra­molecular O—H⋯O hydrogen bond occurs. In the crystal, the methanol mol­ecules participate in a two-dimensional hydrogen-bonded network parallel to b axis with the sugars and together they form a hydrophilic tunnel which encloses the lipophilic part of the molecule.

Related literature

For low-calorie sweeteners, see: Bertoni (1905[Bertoni, M. S. (1905). An. Cientificos Parag. Ser. I, 5, 1-14.]); Kinghorn (2002[Kinghorn, A. D. (2002). In Stevia: The Genus Stevia. New York: Taylor & Francis.]). For the Joint FAO/WHO Expert Committee on Food Additives, see: JECFA (2010[JECFA (2010). Steviol Glycosides In: Compendium of Food Additive Specification (online edition) Food and Agriculture Organization of the United Nations (FAO) Joint FAO/WHO Expert Committee on Food Additives.]). For the US Food and Drug Administration granted regulatory acceptance of Rebaudioside A, see: FDA (2008[FDA (2008). US Food and Drug Administration, Agency Response Letter GRAS Notice No. GRN 000252, December 17, 2008.]) and of mixtures of steviol glycosides, see: FDA (2010[FDA (2010). US Food and Drug Administration Agency Response Letter GRAS Notice No. GRN 000304, March 22, 2010.]). For European Union approved steviol glycosides, see: OJ L (2011[OJ L (2011). L 295/205, 12.11.2011, p. 1.]). For commercilization of glycoside sweeteners from S. rebaudiana, see: Prakash et al. (2008[Prakash, I., DuBois, G. E., Clos, J. F., Wilkens, K. L. & Fosdick, L. E. (2008). Food Chem. Toxicol. 46, 575-582.]); Wölwer-Rieck (2012[Wölwer-Rieck, U. (2012). J. Agric. Food Chem. 60, 886-895.]). For a related structure, see: Prakash & Upreti (2011[Prakash, I. & Upreti, M. (2011). US Patent 8030481 B2.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1357-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C38H60O18·4CH4O

  • Mr = 933.03

  • Monoclinic, P 21

  • a = 15.0413 (2) Å

  • b = 7.7866 (1) Å

  • c = 19.6443 (3) Å

  • β = 96.231 (1)°

  • V = 2287.16 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.92 mm−1

  • T = 100 K

  • 0.42 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.906

  • 29032 measured reflections

  • 7325 independent reflections

  • 7174 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.05

  • 7325 reflections

  • 612 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2830 Friedel pairs

  • Flack parameter: 0.11 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4S—H4OS⋯O13i 0.84 1.90 2.7330 (17) 169
O3S—H3OS⋯O11i 0.84 1.88 2.7115 (19) 170
O2S—H2OS⋯O8ii 0.84 1.90 2.7381 (19) 177
O18—H18O⋯O2Siii 0.84 1.86 2.6857 (19) 167
O15—H15O⋯O10iv 0.84 2.22 3.0000 (19) 154
O14—H14O⋯O18v 0.84 1.91 2.6983 (19) 157
O13—H13O⋯O7iii 0.84 1.91 2.7080 (19) 158
O11—H11O⋯O3Svi 0.84 1.89 2.7248 (17) 169
O10—H10O⋯O16iv 0.84 1.88 2.7217 (18) 177
O7—H7O⋯O1Sv 0.84 1.96 2.777 (2) 166
O1S—H1OS⋯O1 0.84 2.08 2.860 (2) 154
O16—H16O⋯O4S 0.84 1.83 2.6558 (17) 168
O5—H5O⋯O3S 0.84 1.99 2.8081 (17) 166
O4—H4O⋯O15 0.86 2.38 3.2012 (17) 160
O3—H3O⋯O15 0.84 1.94 2.7569 (17) 165
Symmetry codes: (i) x-1, y, z; (ii) x-1, y+1, z; (iii) x+1, y-1, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y+1, z; (vi) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Stevia rebaudiana Bertoni (Asteraceae), first identified in 1905 by the botanist Bertoni, is a perennial bush indigenous to the mountainous regions of Paraguay and Brazil, and is well known to produce a mixture of high-potency sweet compounds that have been in the market since the 1970's as low-calorie sweeteners (Bertoni, 1905; Kinghorn, 2002). Stevioside is one of these low-calorie sweeteners. The native cultures of Paraguay and Brazil have safely used stevia for sweetening for centuries. The Joint FAO/WHO Expert Committee on Food Additives has established a monograph for Steviol Glycosides (JECFA, 2010). The United States Food and Drug Administration granted regulatory acceptance of Rebaudioside A (FDA, 2008) and mixtures of steviol glycosides (FDA, 2010) followed by the European Union approved steviol glycosides for marketing (OJ, 2011). The world demand for Stevia leaves is expected to exceed 6–8 million metric tonnes in the next 10 years. Stevioside and Rebaudioside A, also knownas Rebiana, are the major glycoside sweeteners from S. rebaudiana which have been commercialized for human consumption throughout the world (Prakash et al. 2008; Wölwer-Rieck, 2012).

Stevioside has several different polymorph forms (Prakash & Upreti, 2011). These polymorph forms include methanol or ethanol solvate, hydrate and amorphous. These different polymorphic forms would affect the physical properties like melting point, solubility and density. The powder X-ray patterns of these forms have been documented; however, no single-crystal results have been reported so far. Here we report the structure of stevioside methanol solvate.

The asymmetric unit contains one stevioside and four methanol molecules (Fig. 1). Stevioside has an aglycone portion and a sugar portion. The aglycone is a tetracyclic diterpene in which the four fused ring system consists of three six membered rings and one five membered ring. Rings A, B and C form chair conformations with the puckering parameter (Cremer & Pople, 1975) Q = 0.550 (2)Å, θ = 175.6 (2)° and ϕ= 255 (3)°; Q = 0.5753 (17)Å, θ = 166.72 (17)° and ϕ= 191.3 (8)°; Q = 0.6355 (17)Å, θ = 24.09 (16)° and ϕ= 281.3 (4)°, respectively. The five-membered ring D forms an envelope conformation with the puckering parameter Q = 0.4791 (19)Å, ϕ= 24.6 (2)°. These ring systems form the hydrophobic part of the molecule. The three sugars are all β-D glucopyranoses (E, F, G) and they all form chair conformations with the puckering parameters Q = 0.5660 (17)Å, θ = 9.94 (16)°, ϕ = 4.3 (10)°, Q = 0.6026 (17)Å, θ = 3.01 (16)°, ϕ= 72 (3)° and Q = 0.5861 (19) Å, θ =1.56 (18)°, ϕ= 358 (7)°, respectively. One sugar is attached to the carboxylic acid functional group at C4 while the other two sugars are linked as 2ρightarrow1 and attached to C13. The sugar attached to the carboxylic group at C4 has been shown to be linked on an axial position instead of an equatorial position.

Stevioside and four methanol molecules were stablized by an extensive hydrogen bonding network and a weak O4—H4O···O15 intramolecular interaction (Table 1). These hydrogen bonds and weak interaction further link two adjacent asymmetric units to form a hydrophilic layer. The aglycon part of the stevioside forms a hydrophobic nucleus. This bilayer system acts like an oil in water system (Fig. 2). This is believed to increase the solubility of stevioside.

Related literature top

For low-calorie sweeteners, see: Bertoni (1905); Kinghorn (2002). For the Joint FAO/WHO Expert Committee on Food Additives, see: JECFA (2010). For the US Food and Drug Administration granted regulatory acceptance of Rebaudioside A, see: FDA (2008) and of mixtures of steviol glycosides, see: FDA (2010). For European Union approved steviol glycosides, see: OJ (2011). For commercilization of glycoside sweeteners from S. rebaudiana, see: Prakash et al. (2008); Wölwer-Rieck (2012). For a related structure, see: Prakash & Upreti (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was isolated by selective crystallization from a commercially available extract of Stevia rebaudiana. The composition of the extract was approximately 42% Rebaudioside A, 31% Stevioside, 10% Rebaudioside C by HPLC analysis with the remaining 13% of the extract being minor steviol glycoside components. Stevioside was crystallized from a 90/10 v/v methanol/water mixture containing dissolved extract. The isolated Stevioside was then re-crystallized from methanol to greater than 95% purity, and further re-crystallized to produce crystals suitable for crystallography.

Refinement top

All the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 1.00Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. H atoms on hydroxyl were initially found in the difference map and then constrained to their parent atoms as riding model with Uiso(H) = 1.2Ueq of parent atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of stevioside methanol solvate with displacement ellipsoids at 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Dashed lines indicate O—H···O hydrogen bonds and weak O—H···O intermolecular interactions. Hydrogen atoms not involved in hydrogen bonding have been deleted for clarity.
Stevioside methanol tetrasolvate top
Crystal data top
C38H60O18·4CH4OF(000) = 1008
Mr = 933.03Dx = 1.355 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9008 reflections
a = 15.0413 (2) Åθ = 2.3–68.8°
b = 7.7866 (1) ŵ = 0.92 mm1
c = 19.6443 (3) ÅT = 100 K
β = 96.231 (1)°Block, colourless
V = 2287.16 (5) Å30.42 × 0.14 × 0.11 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
7325 independent reflections
Radiation source: fine-focus sealed tube7174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 69.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1718
Tmin = 0.699, Tmax = 0.906k = 99
29032 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.7153P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.007
7325 reflectionsΔρmax = 0.34 e Å3
612 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 2830 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (9)
Crystal data top
C38H60O18·4CH4OV = 2287.16 (5) Å3
Mr = 933.03Z = 2
Monoclinic, P21Cu Kα radiation
a = 15.0413 (2) ŵ = 0.92 mm1
b = 7.7866 (1) ÅT = 100 K
c = 19.6443 (3) Å0.42 × 0.14 × 0.11 mm
β = 96.231 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7325 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
7174 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.906Rint = 0.031
29032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.34 e Å3
S = 1.05Δρmin = 0.35 e Å3
7325 reflectionsAbsolute structure: Flack (1983), 2830 Friedel pairs
612 parametersAbsolute structure parameter: 0.11 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62491 (8)0.4165 (2)0.08527 (6)0.0244 (3)
O20.68765 (8)0.61200 (18)0.15946 (6)0.0195 (3)
O30.71977 (9)0.48607 (19)0.29267 (6)0.0244 (3)
H3O0.73510.48730.33510.027 (6)*
O40.60558 (8)0.63638 (18)0.39001 (6)0.0210 (3)
H4O0.65310.58980.41050.025*
O50.42495 (8)0.70491 (19)0.32725 (6)0.0211 (3)
H5O0.43980.70480.36970.038 (7)*
O60.55057 (8)0.70459 (18)0.17930 (6)0.0186 (3)
O70.42457 (9)0.98586 (18)0.19277 (6)0.0240 (3)
H7O0.44831.02070.15850.044 (8)*
O81.15787 (7)0.19208 (16)0.27168 (6)0.0155 (2)
O91.09935 (7)0.37255 (16)0.38503 (6)0.0148 (2)
O101.21599 (8)0.29684 (17)0.51152 (6)0.0182 (3)
H10O1.21780.38420.53670.029 (6)*
O111.40099 (7)0.36487 (17)0.48897 (6)0.0173 (3)
H11O1.44520.30340.50270.031 (6)*
O121.29790 (7)0.19179 (17)0.32430 (6)0.0153 (2)
O131.48163 (8)0.19920 (19)0.29735 (6)0.0214 (3)
H13O1.45070.13710.26890.030 (6)*
O140.97163 (8)0.56441 (18)0.44911 (6)0.0199 (3)
H14O0.98220.64940.42490.027 (6)*
O150.79336 (8)0.44608 (17)0.42648 (6)0.0192 (3)
H15O0.80940.54060.44440.037 (7)*
O160.77180 (8)0.08335 (18)0.40865 (6)0.0193 (3)
H16O0.72800.08220.37820.036 (7)*
O170.99938 (7)0.15411 (17)0.36344 (6)0.0168 (2)
O180.97793 (9)0.21387 (18)0.34418 (7)0.0245 (3)
H18O1.02280.17880.32620.034 (7)*
C10.86165 (11)0.2886 (3)0.01423 (9)0.0217 (4)
H1A0.89690.34220.01980.026*
H1B0.87850.16570.01780.026*
C20.76225 (12)0.3018 (3)0.01169 (9)0.0227 (4)
H2A0.75130.24810.05750.027*
H2B0.72660.23900.01980.027*
C30.73284 (12)0.4887 (3)0.01607 (9)0.0216 (4)
H3A0.66820.49350.03210.026*
H3B0.76530.54820.05040.026*
C40.74981 (11)0.5848 (3)0.05294 (8)0.0182 (4)
C50.85041 (11)0.5628 (2)0.08160 (8)0.0160 (3)
H5A0.88370.61960.04640.019*
C60.88173 (11)0.6594 (2)0.14795 (9)0.0170 (3)
H6A0.85360.77440.14720.020*
H6B0.86370.59540.18780.020*
C70.98361 (11)0.6776 (2)0.15429 (9)0.0181 (4)
H7A1.00350.73790.19760.022*
H7B1.00000.75010.11620.022*
C81.03385 (11)0.5064 (2)0.15317 (8)0.0162 (4)
C90.99186 (11)0.3896 (2)0.09413 (8)0.0162 (4)
H91.00660.44880.05160.019*
C100.88693 (11)0.3753 (2)0.08459 (8)0.0159 (4)
C111.04220 (11)0.2157 (3)0.09361 (9)0.0190 (4)
H11A1.00160.13030.06920.023*
H11B1.09380.23050.06690.023*
C121.07688 (11)0.1410 (2)0.16431 (8)0.0172 (4)
H12A1.02670.08800.18540.021*
H12B1.12170.05060.15860.021*
C131.11932 (10)0.2821 (2)0.21134 (8)0.0150 (3)
C141.04629 (11)0.4127 (2)0.22327 (8)0.0157 (3)
H14A1.06630.49270.26100.019*
H14B0.99050.35510.23330.019*
C151.13387 (11)0.5393 (3)0.14351 (9)0.0195 (4)
H15A1.14150.55080.09430.023*
H15B1.15540.64580.16740.023*
C161.18488 (11)0.3854 (2)0.17396 (8)0.0178 (4)
C171.26902 (12)0.3420 (3)0.16766 (9)0.0226 (4)
H17A1.30430.41170.14140.027*
H17B1.29390.24130.18940.027*
C180.72959 (12)0.7763 (3)0.03850 (9)0.0235 (4)
H18A0.66970.78800.01390.035*
H18B0.77390.82350.01050.035*
H18C0.73240.83910.08190.035*
C190.68125 (11)0.5238 (2)0.09989 (9)0.0178 (4)
C200.84897 (11)0.2649 (3)0.13979 (9)0.0185 (4)
H20A0.78510.24480.12680.028*
H20B0.85720.32520.18380.028*
H20C0.88050.15460.14390.028*
C210.61780 (11)0.5849 (3)0.20199 (8)0.0178 (4)
H210.59420.46510.19620.021*
C220.65521 (11)0.6156 (2)0.27567 (9)0.0180 (4)
H220.68380.73160.28050.022*
C230.57712 (11)0.6046 (2)0.31942 (8)0.0173 (4)
H230.55290.48500.31550.021*
C240.50219 (11)0.7268 (2)0.29257 (9)0.0168 (4)
H240.52370.84810.29790.020*
C250.47384 (11)0.6895 (3)0.21689 (8)0.0179 (4)
H250.45100.56890.21250.021*
C260.40226 (12)0.8090 (3)0.18420 (9)0.0219 (4)
H26A0.39170.78320.13460.026*
H26B0.34580.78670.20440.026*
C271.21543 (10)0.2811 (2)0.32032 (8)0.0149 (3)
H271.22280.40310.30610.018*
C281.17908 (10)0.2715 (2)0.39009 (8)0.0139 (3)
H281.16420.14960.40020.017*
C291.24630 (11)0.3407 (2)0.44738 (8)0.0147 (3)
H291.24900.46860.44350.018*
C301.33947 (11)0.2672 (2)0.44328 (8)0.0155 (3)
H301.34060.14480.45880.019*
C311.36540 (10)0.2752 (3)0.37006 (8)0.0159 (3)
H311.37170.39760.35600.019*
C321.45146 (11)0.1791 (3)0.36342 (9)0.0194 (4)
H32A1.49840.22120.39870.023*
H32B1.44210.05540.37200.023*
C331.02608 (11)0.2918 (2)0.40889 (8)0.0151 (3)
H331.04170.24830.45660.018*
C340.94986 (11)0.4208 (2)0.40639 (8)0.0161 (3)
H340.93510.46110.35820.019*
C350.86824 (11)0.3324 (2)0.43006 (8)0.0163 (3)
H350.88280.29290.47840.020*
C360.84391 (10)0.1772 (2)0.38452 (8)0.0156 (3)
H360.82550.21730.33670.019*
C370.92545 (11)0.0596 (2)0.38472 (9)0.0169 (4)
H370.94190.01400.43200.020*
C380.90912 (12)0.0890 (3)0.33518 (9)0.0210 (4)
H38A0.85130.14380.34180.025*
H38B0.90490.04470.28770.025*
O1S0.49100 (10)0.1557 (2)0.08470 (7)0.0325 (3)
H1OS0.52150.24380.09550.058 (9)*
C1S0.53475 (15)0.0556 (4)0.03935 (13)0.0416 (6)
H1S10.52900.11020.00590.062*
H1S20.50770.05900.03570.062*
H1S30.59820.04550.05650.062*
O2S0.13208 (8)0.84829 (18)0.29127 (7)0.0236 (3)
H2OS0.14150.95270.28400.042 (8)*
C2S0.20002 (17)0.7843 (3)0.34007 (16)0.0520 (7)
H2S10.25710.78390.32040.078*
H2S20.18510.66700.35280.078*
H2S30.20490.85770.38080.078*
O3S0.44234 (8)0.69960 (18)0.47101 (6)0.0201 (3)
H3OS0.43260.59350.47240.025 (6)*
C3S0.37019 (12)0.7913 (3)0.49773 (10)0.0241 (4)
H3S10.33970.71480.52730.036*
H3S20.32760.83080.45970.036*
H3S30.39440.89050.52430.036*
O4S0.65006 (8)0.0658 (2)0.30034 (6)0.0234 (3)
H4OS0.60150.11840.30140.031 (6)*
C4S0.67878 (13)0.0804 (3)0.23360 (10)0.0266 (4)
H4S10.69050.20120.22390.040*
H4S20.63190.03640.19950.040*
H4S30.73360.01340.23160.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (6)0.0298 (8)0.0209 (6)0.0046 (6)0.0048 (5)0.0063 (6)
O20.0170 (6)0.0247 (7)0.0173 (6)0.0016 (5)0.0048 (4)0.0035 (5)
O30.0251 (6)0.0284 (8)0.0190 (6)0.0107 (6)0.0008 (5)0.0024 (6)
O40.0218 (6)0.0284 (7)0.0123 (5)0.0056 (5)0.0004 (4)0.0015 (5)
O50.0172 (6)0.0294 (7)0.0170 (6)0.0008 (6)0.0036 (4)0.0005 (6)
O60.0174 (6)0.0236 (7)0.0152 (5)0.0021 (5)0.0030 (4)0.0007 (5)
O70.0308 (7)0.0232 (7)0.0179 (6)0.0057 (6)0.0017 (5)0.0013 (5)
O80.0165 (5)0.0155 (6)0.0138 (5)0.0014 (5)0.0020 (4)0.0007 (5)
O90.0134 (5)0.0139 (6)0.0172 (5)0.0016 (5)0.0021 (4)0.0017 (5)
O100.0227 (6)0.0189 (7)0.0135 (5)0.0007 (5)0.0047 (5)0.0011 (5)
O110.0147 (6)0.0192 (6)0.0172 (6)0.0008 (5)0.0021 (4)0.0032 (5)
O120.0123 (5)0.0173 (6)0.0160 (5)0.0009 (5)0.0000 (4)0.0030 (5)
O130.0181 (6)0.0283 (7)0.0184 (6)0.0009 (6)0.0043 (5)0.0048 (6)
O140.0222 (6)0.0186 (7)0.0190 (6)0.0002 (5)0.0023 (5)0.0041 (5)
O150.0165 (6)0.0192 (7)0.0217 (6)0.0033 (5)0.0013 (5)0.0026 (5)
O160.0146 (6)0.0220 (7)0.0213 (6)0.0027 (5)0.0024 (5)0.0053 (5)
O170.0153 (5)0.0176 (6)0.0181 (5)0.0014 (5)0.0047 (4)0.0008 (5)
O180.0240 (6)0.0163 (7)0.0348 (7)0.0001 (6)0.0106 (5)0.0011 (6)
C10.0192 (8)0.0303 (11)0.0151 (8)0.0038 (8)0.0004 (6)0.0071 (8)
C20.0188 (8)0.0334 (11)0.0154 (8)0.0032 (8)0.0011 (6)0.0079 (8)
C30.0157 (8)0.0351 (11)0.0132 (8)0.0041 (8)0.0018 (6)0.0022 (8)
C40.0155 (8)0.0231 (10)0.0160 (8)0.0036 (7)0.0013 (6)0.0007 (8)
C50.0144 (8)0.0192 (9)0.0145 (8)0.0023 (7)0.0023 (6)0.0014 (7)
C60.0187 (8)0.0159 (9)0.0164 (8)0.0022 (7)0.0016 (6)0.0002 (7)
C70.0194 (8)0.0154 (9)0.0188 (8)0.0008 (7)0.0005 (6)0.0014 (7)
C80.0172 (8)0.0178 (9)0.0136 (8)0.0006 (7)0.0008 (6)0.0007 (7)
C90.0153 (8)0.0211 (9)0.0121 (7)0.0009 (7)0.0010 (6)0.0008 (7)
C100.0153 (8)0.0200 (9)0.0125 (7)0.0021 (7)0.0013 (6)0.0019 (7)
C110.0174 (8)0.0247 (10)0.0145 (8)0.0020 (8)0.0003 (6)0.0044 (8)
C120.0177 (8)0.0174 (9)0.0161 (8)0.0011 (7)0.0007 (6)0.0028 (7)
C130.0148 (7)0.0161 (9)0.0136 (7)0.0005 (7)0.0011 (6)0.0002 (7)
C140.0149 (7)0.0180 (9)0.0141 (7)0.0005 (7)0.0013 (6)0.0002 (7)
C150.0178 (8)0.0213 (10)0.0191 (8)0.0010 (7)0.0009 (6)0.0053 (7)
C160.0183 (8)0.0222 (10)0.0123 (7)0.0032 (8)0.0010 (6)0.0013 (7)
C170.0186 (8)0.0303 (11)0.0189 (8)0.0019 (8)0.0025 (6)0.0043 (8)
C180.0213 (8)0.0266 (10)0.0223 (9)0.0052 (8)0.0009 (7)0.0047 (8)
C190.0149 (8)0.0211 (9)0.0170 (8)0.0054 (7)0.0006 (6)0.0002 (7)
C200.0158 (8)0.0199 (9)0.0193 (8)0.0003 (7)0.0007 (6)0.0004 (7)
C210.0162 (8)0.0194 (9)0.0184 (8)0.0015 (7)0.0039 (6)0.0007 (7)
C220.0161 (8)0.0193 (9)0.0185 (8)0.0012 (7)0.0012 (6)0.0026 (7)
C230.0191 (8)0.0187 (9)0.0140 (8)0.0010 (7)0.0017 (6)0.0005 (7)
C240.0174 (8)0.0167 (9)0.0165 (8)0.0005 (7)0.0034 (6)0.0011 (7)
C250.0162 (8)0.0208 (9)0.0168 (8)0.0019 (8)0.0026 (6)0.0015 (8)
C260.0202 (8)0.0268 (10)0.0181 (8)0.0003 (8)0.0014 (7)0.0004 (8)
C270.0146 (7)0.0138 (8)0.0159 (8)0.0009 (7)0.0002 (6)0.0001 (7)
C280.0133 (7)0.0131 (8)0.0154 (8)0.0010 (7)0.0013 (6)0.0012 (7)
C290.0174 (8)0.0133 (8)0.0136 (8)0.0011 (7)0.0030 (6)0.0011 (7)
C300.0162 (8)0.0143 (8)0.0153 (8)0.0000 (7)0.0013 (6)0.0010 (7)
C310.0147 (8)0.0178 (9)0.0147 (8)0.0014 (7)0.0000 (6)0.0009 (7)
C320.0161 (8)0.0245 (10)0.0176 (8)0.0011 (8)0.0019 (6)0.0026 (8)
C330.0158 (7)0.0173 (9)0.0124 (7)0.0015 (7)0.0027 (6)0.0016 (7)
C340.0166 (8)0.0166 (9)0.0150 (7)0.0005 (7)0.0008 (6)0.0006 (7)
C350.0145 (7)0.0197 (9)0.0148 (7)0.0030 (7)0.0024 (6)0.0013 (7)
C360.0139 (7)0.0179 (9)0.0153 (7)0.0012 (7)0.0023 (6)0.0026 (7)
C370.0148 (8)0.0162 (9)0.0199 (8)0.0010 (7)0.0028 (6)0.0025 (7)
C380.0197 (8)0.0196 (9)0.0241 (9)0.0030 (8)0.0035 (7)0.0018 (8)
O1S0.0334 (7)0.0312 (8)0.0342 (7)0.0064 (7)0.0098 (6)0.0028 (7)
C1S0.0314 (11)0.0397 (14)0.0549 (14)0.0035 (11)0.0113 (10)0.0164 (12)
O2S0.0231 (6)0.0184 (7)0.0285 (7)0.0018 (6)0.0015 (5)0.0021 (6)
C2S0.0395 (13)0.0212 (11)0.087 (2)0.0006 (11)0.0315 (13)0.0035 (13)
O3S0.0184 (6)0.0216 (7)0.0205 (6)0.0016 (6)0.0034 (5)0.0008 (6)
C3S0.0197 (8)0.0247 (10)0.0280 (9)0.0043 (8)0.0034 (7)0.0005 (9)
O4S0.0155 (6)0.0302 (8)0.0243 (6)0.0002 (6)0.0016 (5)0.0002 (6)
C4S0.0249 (9)0.0278 (11)0.0277 (9)0.0022 (9)0.0056 (7)0.0017 (9)
Geometric parameters (Å, º) top
O1—C191.202 (2)C13—C141.533 (2)
O2—C191.351 (2)C14—H14A0.9900
O2—C211.427 (2)C14—H14B0.9900
O3—C221.415 (2)C15—C161.511 (3)
O3—H3O0.8400C15—H15A0.9900
O4—C231.428 (2)C15—H15B0.9900
O4—H4O0.8605C16—C171.328 (3)
O5—C241.419 (2)C17—H17A0.9500
O5—H5O0.8400C17—H17B0.9500
O6—C211.411 (2)C18—H18A0.9800
O6—C251.441 (2)C18—H18B0.9800
O7—C261.423 (2)C18—H18C0.9800
O7—H7O0.8400C20—H20A0.9800
O8—C271.401 (2)C20—H20B0.9800
O8—C131.443 (2)C20—H20C0.9800
O9—C331.393 (2)C21—C221.514 (2)
O9—C281.429 (2)C21—H211.0000
O10—C291.4272 (19)C22—C231.531 (2)
O10—H10O0.8400C22—H221.0000
O11—C301.435 (2)C23—C241.525 (2)
O11—H11O0.8400C23—H231.0000
O12—C271.417 (2)C24—C251.529 (2)
O12—C311.4360 (19)C24—H241.0000
O13—C321.429 (2)C25—C261.513 (2)
O13—H13O0.8400C25—H251.0000
O14—C341.415 (2)C26—H26A0.9900
O14—H14O0.8400C26—H26B0.9900
O15—C351.428 (2)C27—C281.531 (2)
O15—H15O0.8400C27—H271.0000
O16—C361.431 (2)C28—C291.527 (2)
O16—H16O0.8400C28—H281.0000
O17—C331.425 (2)C29—C301.524 (2)
O17—C371.433 (2)C29—H291.0000
O18—C381.417 (2)C30—C311.532 (2)
O18—H18O0.8400C30—H301.0000
C1—C21.530 (2)C31—C321.513 (2)
C1—C101.548 (2)C31—H311.0000
C1—H1A0.9900C32—H32A0.9900
C1—H1B0.9900C32—H32B0.9900
C2—C31.520 (3)C33—C341.521 (2)
C2—H2A0.9900C33—H331.0000
C2—H2B0.9900C34—C351.523 (2)
C3—C41.545 (2)C34—H341.0000
C3—H3A0.9900C35—C361.524 (2)
C3—H3B0.9900C35—H351.0000
C4—C191.532 (2)C36—C371.531 (2)
C4—C181.541 (3)C36—H361.0000
C4—C51.566 (2)C37—C381.515 (3)
C5—C61.534 (2)C37—H371.0000
C5—C101.559 (2)C38—H38A0.9900
C5—H5A1.0000C38—H38B0.9900
C6—C71.530 (2)O1S—C1S1.400 (3)
C6—H6A0.9900O1S—H1OS0.8400
C6—H6B0.9900C1S—H1S10.9800
C7—C81.533 (2)C1S—H1S20.9800
C7—H7A0.9900C1S—H1S30.9800
C7—H7B0.9900O2S—C2S1.414 (3)
C8—C141.551 (2)O2S—H2OS0.8400
C8—C91.553 (2)C2S—H2S10.9800
C8—C151.558 (2)C2S—H2S20.9800
C9—C111.552 (3)C2S—H2S30.9800
C9—C101.573 (2)O3S—C3S1.445 (2)
C9—H91.0000O3S—H3OS0.8400
C10—C201.541 (2)C3S—H3S10.9800
C11—C121.543 (2)C3S—H3S20.9800
C11—H11A0.9900C3S—H3S30.9800
C11—H11B0.9900O4S—C4S1.429 (2)
C12—C131.530 (2)O4S—H4OS0.8400
C12—H12A0.9900C4S—H4S10.9800
C12—H12B0.9900C4S—H4S20.9800
C13—C161.522 (2)C4S—H4S30.9800
C19—O2—C21116.36 (14)O2—C21—H21110.3
C22—O3—H3O109.5C22—C21—H21110.3
C23—O4—H4O121.8O3—C22—C21106.71 (14)
C24—O5—H5O109.5O3—C22—C23112.11 (15)
C21—O6—C25111.74 (13)C21—C22—C23107.43 (13)
C26—O7—H7O109.5O3—C22—H22110.2
C27—O8—C13118.89 (13)C21—C22—H22110.2
C33—O9—C28114.62 (13)C23—C22—H22110.2
C29—O10—H10O109.5O4—C23—C24111.11 (14)
C30—O11—H11O109.5O4—C23—C22111.60 (13)
C27—O12—C31111.60 (13)C24—C23—C22110.75 (14)
C32—O13—H13O109.5O4—C23—H23107.7
C34—O14—H14O109.5C24—C23—H23107.7
C35—O15—H15O109.5C22—C23—H23107.7
C36—O16—H16O109.5O5—C24—C23111.83 (14)
C33—O17—C37112.25 (12)O5—C24—C25106.70 (13)
C38—O18—H18O109.5C23—C24—C25109.58 (14)
C2—C1—C10113.84 (14)O5—C24—H24109.6
C2—C1—H1A108.8C23—C24—H24109.6
C10—C1—H1A108.8C25—C24—H24109.6
C2—C1—H1B108.8O6—C25—C26107.76 (14)
C10—C1—H1B108.8O6—C25—C24109.17 (13)
H1A—C1—H1B107.7C26—C25—C24113.97 (15)
C3—C2—C1110.58 (16)O6—C25—H25108.6
C3—C2—H2A109.5C26—C25—H25108.6
C1—C2—H2A109.5C24—C25—H25108.6
C3—C2—H2B109.5O7—C26—C25113.42 (14)
C1—C2—H2B109.5O7—C26—H26A108.9
H2A—C2—H2B108.1C25—C26—H26A108.9
C2—C3—C4113.25 (15)O7—C26—H26B108.9
C2—C3—H3A108.9C25—C26—H26B108.9
C4—C3—H3A108.9H26A—C26—H26B107.7
C2—C3—H3B108.9O8—C27—O12105.51 (13)
C4—C3—H3B108.9O8—C27—C28109.39 (13)
H3A—C3—H3B107.7O12—C27—C28108.80 (13)
C19—C4—C18106.17 (15)O8—C27—H27111.0
C19—C4—C3108.65 (15)O12—C27—H27111.0
C18—C4—C3107.26 (14)C28—C27—H27111.0
C19—C4—C5115.91 (14)O9—C28—C29109.91 (13)
C18—C4—C5109.64 (15)O9—C28—C27106.83 (13)
C3—C4—C5108.87 (14)C29—C28—C27111.73 (13)
C6—C5—C10110.67 (13)O9—C28—H28109.4
C6—C5—C4116.57 (14)C29—C28—H28109.4
C10—C5—C4116.05 (15)C27—C28—H28109.4
C6—C5—H5A103.9O10—C29—C30109.91 (13)
C10—C5—H5A103.9O10—C29—C28108.48 (13)
C4—C5—H5A103.9C30—C29—C28111.57 (13)
C7—C6—C5109.08 (14)O10—C29—H29108.9
C7—C6—H6A109.9C30—C29—H29108.9
C5—C6—H6A109.9C28—C29—H29108.9
C7—C6—H6B109.9O11—C30—C29107.58 (13)
C5—C6—H6B109.9O11—C30—C31110.68 (14)
H6A—C6—H6B108.3C29—C30—C31111.33 (13)
C6—C7—C8114.15 (15)O11—C30—H30109.1
C6—C7—H7A108.7C29—C30—H30109.1
C8—C7—H7A108.7C31—C30—H30109.1
C6—C7—H7B108.7O12—C31—C32106.02 (14)
C8—C7—H7B108.7O12—C31—C30109.55 (13)
H7A—C7—H7B107.6C32—C31—C30111.61 (14)
C7—C8—C14114.08 (14)O12—C31—H31109.9
C7—C8—C9111.02 (13)C32—C31—H31109.9
C14—C8—C9112.80 (15)C30—C31—H31109.9
C7—C8—C15110.06 (15)O13—C32—C31112.51 (14)
C14—C8—C1599.22 (13)O13—C32—H32A109.1
C9—C8—C15108.96 (13)C31—C32—H32A109.1
C11—C9—C8110.90 (13)O13—C32—H32B109.1
C11—C9—C10114.91 (15)C31—C32—H32B109.1
C8—C9—C10116.87 (14)H32A—C32—H32B107.8
C11—C9—H9104.1O9—C33—O17107.95 (12)
C8—C9—H9104.1O9—C33—C34108.18 (14)
C10—C9—H9104.1O17—C33—C34108.45 (13)
C20—C10—C1108.14 (15)O9—C33—H33110.7
C20—C10—C5113.13 (14)O17—C33—H33110.7
C1—C10—C5108.87 (14)C34—C33—H33110.7
C20—C10—C9113.54 (13)O14—C34—C33112.18 (13)
C1—C10—C9106.46 (13)O14—C34—C35108.56 (13)
C5—C10—C9106.43 (14)C33—C34—C35108.75 (15)
C12—C11—C9116.11 (14)O14—C34—H34109.1
C12—C11—H11A108.3C33—C34—H34109.1
C9—C11—H11A108.3C35—C34—H34109.1
C12—C11—H11B108.3O15—C35—C34111.25 (15)
C9—C11—H11B108.3O15—C35—C36108.94 (13)
H11A—C11—H11B107.4C34—C35—C36109.21 (14)
C13—C12—C11110.56 (15)O15—C35—H35109.1
C13—C12—H12A109.5C34—C35—H35109.1
C11—C12—H12A109.5C36—C35—H35109.1
C13—C12—H12B109.5O16—C36—C35110.68 (14)
C11—C12—H12B109.5O16—C36—C37109.22 (14)
H12A—C12—H12B108.1C35—C36—C37109.37 (13)
O8—C13—C16115.42 (13)O16—C36—H36109.2
O8—C13—C12104.55 (14)C35—C36—H36109.2
C16—C13—C12109.75 (14)C37—C36—H36109.2
O8—C13—C14115.29 (13)O17—C37—C38106.37 (14)
C16—C13—C14103.64 (15)O17—C37—C36109.80 (14)
C12—C13—C14108.04 (13)C38—C37—C36112.43 (14)
C13—C14—C8101.28 (13)O17—C37—H37109.4
C13—C14—H14A111.5C38—C37—H37109.4
C8—C14—H14A111.5C36—C37—H37109.4
C13—C14—H14B111.5O18—C38—C37112.25 (14)
C8—C14—H14B111.5O18—C38—H38A109.2
H14A—C14—H14B109.3C37—C38—H38A109.2
C16—C15—C8106.09 (14)O18—C38—H38B109.2
C16—C15—H15A110.5C37—C38—H38B109.2
C8—C15—H15A110.5H38A—C38—H38B107.9
C16—C15—H15B110.5C1S—O1S—H1OS109.5
C8—C15—H15B110.5O1S—C1S—H1S1109.5
H15A—C15—H15B108.7O1S—C1S—H1S2109.5
C17—C16—C15127.79 (17)H1S1—C1S—H1S2109.5
C17—C16—C13125.76 (18)O1S—C1S—H1S3109.5
C15—C16—C13106.39 (14)H1S1—C1S—H1S3109.5
C16—C17—H17A120.0H1S2—C1S—H1S3109.5
C16—C17—H17B120.0C2S—O2S—H2OS109.5
H17A—C17—H17B120.0O2S—C2S—H2S1109.5
C4—C18—H18A109.5O2S—C2S—H2S2109.5
C4—C18—H18B109.5H2S1—C2S—H2S2109.5
H18A—C18—H18B109.5O2S—C2S—H2S3109.5
C4—C18—H18C109.5H2S1—C2S—H2S3109.5
H18A—C18—H18C109.5H2S2—C2S—H2S3109.5
H18B—C18—H18C109.5C3S—O3S—H3OS109.5
O1—C19—O2122.83 (16)O3S—C3S—H3S1109.5
O1—C19—C4125.09 (16)O3S—C3S—H3S2109.5
O2—C19—C4111.98 (15)H3S1—C3S—H3S2109.5
C10—C20—H20A109.5O3S—C3S—H3S3109.5
C10—C20—H20B109.5H3S1—C3S—H3S3109.5
H20A—C20—H20B109.5H3S2—C3S—H3S3109.5
C10—C20—H20C109.5C4S—O4S—H4OS109.5
H20A—C20—H20C109.5O4S—C4S—H4S1109.5
H20B—C20—H20C109.5O4S—C4S—H4S2109.5
O6—C21—O2105.37 (14)H4S1—C4S—H4S2109.5
O6—C21—C22112.14 (14)O4S—C4S—H4S3109.5
O2—C21—C22108.39 (13)H4S1—C4S—H4S3109.5
O6—C21—H21110.3H4S2—C4S—H4S3109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4S—H4OS···O13i0.841.902.7330 (17)169
O3S—H3OS···O11i0.841.882.7115 (19)170
O2S—H2OS···O8ii0.841.902.7381 (19)177
O18—H18O···O2Siii0.841.862.6857 (19)167
O15—H15O···O10iv0.842.223.0000 (19)154
O14—H14O···O18v0.841.912.6983 (19)157
O13—H13O···O7iii0.841.912.7080 (19)158
O11—H11O···O3Svi0.841.892.7248 (17)169
O10—H10O···O16iv0.841.882.7217 (18)177
O7—H7O···O1Sv0.841.962.777 (2)166
O1S—H1OS···O10.842.082.860 (2)154
O16—H16O···O4S0.841.832.6558 (17)168
O5—H5O···O3S0.841.992.8081 (17)166
O4—H4O···O150.862.383.2012 (17)160
O3—H3O···O150.841.942.7569 (17)165
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+1, y1, z; (iv) x+2, y+1/2, z+1; (v) x, y+1, z; (vi) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC38H60O18·4CH4O
Mr933.03
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)15.0413 (2), 7.7866 (1), 19.6443 (3)
β (°) 96.231 (1)
V3)2287.16 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.92
Crystal size (mm)0.42 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.699, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
29032, 7325, 7174
Rint0.031
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.05
No. of reflections7325
No. of parameters612
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35
Absolute structureFlack (1983), 2830 Friedel pairs
Absolute structure parameter0.11 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4S—H4OS···O13i0.841.902.7330 (17)169.4
O3S—H3OS···O11i0.841.882.7115 (19)170.2
O2S—H2OS···O8ii0.841.902.7381 (19)176.5
O18—H18O···O2Siii0.841.862.6857 (19)166.8
O15—H15O···O10iv0.842.223.0000 (19)153.6
O14—H14O···O18v0.841.912.6983 (19)156.9
O13—H13O···O7iii0.841.912.7080 (19)158.0
O11—H11O···O3Svi0.841.892.7248 (17)169.4
O10—H10O···O16iv0.841.882.7217 (18)176.7
O7—H7O···O1Sv0.841.962.777 (2)165.9
O1S—H1OS···O10.842.082.860 (2)153.7
O16—H16O···O4S0.841.832.6558 (17)168.1
O5—H5O···O3S0.841.992.8081 (17)165.7
O4—H4O···O150.862.383.2012 (17)159.9
O3—H3O···O150.841.942.7569 (17)164.8
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z; (iii) x+1, y1, z; (iv) x+2, y+1/2, z+1; (v) x, y+1, z; (vi) x+2, y1/2, z+1.
 

Acknowledgements

This work was funded through Ironstone Separations, Inc., 147 County Road 245, Etta, Mississippi, USA, 38627.

References

First citationBertoni, M. S. (1905). An. Cientificos Parag. Ser. I, 5, 1–14.  Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1357–1358.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFDA (2008). US Food and Drug Administration, Agency Response Letter GRAS Notice No. GRN 000252, December 17, 2008.  Google Scholar
First citationFDA (2010). US Food and Drug Administration Agency Response Letter GRAS Notice No. GRN 000304, March 22, 2010.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJECFA (2010). Steviol Glycosides In: Compendium of Food Additive Specification (online edition) Food and Agriculture Organization of the United Nations (FAO) Joint FAO/WHO Expert Committee on Food Additives.  Google Scholar
First citationKinghorn, A. D. (2002). In Stevia: The Genus Stevia. New York: Taylor & Francis.  Google Scholar
First citationOJ L (2011). L 295/205, 12.11.2011, p. 1.  Google Scholar
First citationPrakash, I., DuBois, G. E., Clos, J. F., Wilkens, K. L. & Fosdick, L. E. (2008). Food Chem. Toxicol. 46, 575–582.  Web of Science CrossRef PubMed Google Scholar
First citationPrakash, I. & Upreti, M. (2011). US Patent 8030481 B2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWölwer-Rieck, U. (2012). J. Agric. Food Chem. 60, 886–895.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o410-o411
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds