organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(4-Oxo-4H-thio­chromen-3-yl)meth­yl]-4H-thio­chromen-4-one

aDepartment of Chemistry, Annamalai University, Annamalai Nagar, Chidambaram, India, and bShasun Reaearch Centre, 27 Vandaloor Kelambakkam Road, Keezhakottaiyur, Meelakottaiyur Post, Chennai, India
*Correspondence e-mail: soma78@gmail.com

(Received 30 October 2012; accepted 18 January 2013; online 9 February 2013)

The title mol­ecule, C19H12S2O2, lies on a twofold rotation axis. The thio­chromonone unit is essentially planar, with a maximum deviation of 0.0491 (14) Å. The dihedral angle between the thio­chromenone ring systems is 64.48 (4)°. In the crystal, there are weak ππ stacking inter­actions, with a centroid–centroid distance of 3.7147 (9) Å.

Related literature

For backgound to bis-chromonones, see: Santhosh & Balasubramanian (1991[Santhosh, K. C. & Balasubramanian, K. K. (1991). Tetrahedron Lett. 32, 7727-7730.]); Panja et al. (2009[Panja, S. K., Maiti, S., Drew, M. G. B. & Bandyopadhyay, Ch. (2009). Tetrahedron, 65, 1276-1280.]). For related structures, see: Ambartsumyan et al. (2012[Ambartsumyan, A. A., Vasiléva, T. T., Chakhovskaya, O. V., Mysova, N. E., Tuskaev, V. A., Khrustalev, V. N. & Kochetkov, K. A. (2012). Russ. J. Org. Chem. 48, 451-455.]); Nyburg et al. (1986[Nyburg, S. C., Prasad, L., Leong, T. S. & Still, I. W. J. (1986). Acta Cryst. C42, 816-821.]); Li et al. (2010[Li, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12O2S2

  • Mr = 336.41

  • Monoclinic, C 2/c

  • a = 11.9480 (5) Å

  • b = 11.8649 (5) Å

  • c = 11.1416 (5) Å

  • β = 108.918 (2)°

  • V = 1494.14 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.38 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.875, Tmax = 0.931

  • 5040 measured reflections

  • 1631 independent reflections

  • 1410 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.118

  • S = 0.88

  • 1631 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Jmol (Hanson, 2010[Hanson, R. M. (2010). J. Appl. Cryst. 43, 1250-1260.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Bis-chromonones linked at position 3 are biologically important motifs (Santhosh & Balasubramanian, 1991; Panja, et al., 2009). Analogues of these compounds prepared by replacing the oxygen atom in the heterocyclic core with sulfur are considered to be chemically inportant. Herein, we report the structure determination of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The molecule lies on a twofold rotation axis. The unique thiochromonone unit is essentially planar with a maximum deviation of 0.0491 (14) Å for atom C6. The planarity of this unit can be attributed to the sp2 hybridized nature of the aromatic benzene unit and the fused olefinic thiopyranone unit. This is similar to the case of a methylene bridged chromenone example found in the literature (Ambartsumyan et al., 2012). The dihedral angle between the two thiochromenone ring systems is 64.48 (4)°. The torsion angles about the methylene carbon C10 are 93.05 (13) Å for C8—C7—C10—C7i (symmetry code: (i) -x+1, y, -z+1/2) and -87.80 (11) Å for C6—C7—C10—C7i. The angle subtended at the bridging methylene carbon C10 by the olefinic carbons [C7—C10—C7i = 113.66 (17)°] and the olefinic bond length [C7—C8 = 1.344 (2) Å] are close to the respective values in known chromanone systems (Ambartsumyan et al., 2012). Examaples of thiochromone structures already appear in the literature (Nyburg et al., 1986; Li et al., 2010). In the crystal, there are weak ππ stacking interactions (Fig .2) with Cg1···Cg2ii = 3.7147 (9)Å where Cg1 and cg2 are the centroids of the S1/C8/C7/C6/C5/C9 and C1-C5/C9 rings (symmetry code: (ii) 3/2-x, 1/2-y, -z).

Related literature top

For backgound to bis-chromonones, see: Santhosh & Balasubramanian (1991); Panja et al. (2009). For related structures, see: Ambartsumyan et al. (2012); Nyburg et al. (1986); Li et al. (2010).

Experimental top

To a stirred solution of 4-chloro-2H-thiochromene-3-carbaldehyde (0.5 g, 0.0025 mol) in freshly dried DMSO (6.0 mL) was added dried potassium fluoride (0.3 g, 0.005 mol) and then heated to 343-353K. After completion of the reaction by TLC, the reaction mass was cooled to 303-308K and then quenched with 50 ml of water. The mixture was extracted with ethyl acetate (2 x 30 ml). The combined organic portion was washed with water (2 x 25 mL), dried over anhydrous sodium sulphate and then concentrated under reduced pressure to yield a brown paste. Purification of the crude product by column chromatography yielded the title bis methylene chromanone. 50 mg of the title compound was dissolved in 2 ml of methanol, and warmed to 323K for complete dissolution, then filtered, and the clear solution was stored at room temperature. After 2 days, pale yellow crystals were formed.

Refinement top

H atoms bonded to sp2 C atoms were placed in calculated positions with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C). The unique H atom conded to C10 was refined independently with an isotropic displacement factor.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Jmol (Hanson, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (1-x, y, -z+1/2).
[Figure 2] Fig. 2. Part of the crystal structure illustrating the π..π stacking interactions.
3-[(4-Oxo-4H-thiochromen-3-yl)methyl]-4H-thiochromen-4-one top
Crystal data top
C19H12O2S2F(000) = 696
Mr = 336.41Dx = 1.495 Mg m3
Monoclinic, C2/cMelting point = 489–493 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 11.9480 (5) ÅCell parameters from 2970 reflections
b = 11.8649 (5) Åθ = 2.5–28.2°
c = 11.1416 (5) ŵ = 0.36 mm1
β = 108.918 (2)°T = 298 K
V = 1494.14 (11) Å3Block, yellow
Z = 40.38 × 0.28 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
1631 independent reflections
Radiation source: fine-focus sealed tube1410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.875, Tmax = 0.931k = 1515
5040 measured reflectionsl = 814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4829P]
where P = (Fo2 + 2Fc2)/3
1631 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H12O2S2V = 1494.14 (11) Å3
Mr = 336.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.9480 (5) ŵ = 0.36 mm1
b = 11.8649 (5) ÅT = 298 K
c = 11.1416 (5) Å0.38 × 0.28 × 0.20 mm
β = 108.918 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1410 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.931Rint = 0.019
5040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.27 e Å3
1631 reflectionsΔρmin = 0.22 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68093 (16)0.04971 (13)0.09101 (16)0.0468 (4)
H10.63210.02310.16890.056*
C20.79824 (17)0.02577 (14)0.05263 (17)0.0510 (4)
H20.82910.01740.10410.061*
C30.87278 (15)0.06556 (14)0.06363 (17)0.0481 (4)
H30.95350.05090.08870.058*
C40.82636 (14)0.12635 (14)0.14060 (15)0.0408 (4)
H40.87630.15170.21860.049*
C50.70544 (14)0.15121 (11)0.10466 (13)0.0324 (3)
C60.66133 (13)0.21467 (12)0.19414 (13)0.0340 (3)
C70.53715 (13)0.24814 (11)0.15575 (13)0.0331 (3)
C80.45826 (13)0.22113 (13)0.04278 (13)0.0364 (4)
H80.38140.24670.02780.044*
C90.63250 (13)0.11413 (12)0.01442 (13)0.0345 (3)
C100.50000.31787 (18)0.25000.0384 (5)
H180.4303 (16)0.3692 (14)0.2050 (18)0.043 (5)*
O10.72943 (11)0.23896 (11)0.29985 (11)0.0513 (3)
S10.48288 (3)0.14521 (3)0.07650 (3)0.04148 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0538 (12)0.0488 (8)0.0385 (8)0.0005 (7)0.0159 (7)0.0020 (6)
C20.0548 (12)0.0519 (9)0.0530 (9)0.0107 (8)0.0265 (8)0.0016 (7)
C30.0365 (10)0.0540 (9)0.0568 (10)0.0096 (7)0.0190 (8)0.0131 (8)
C40.0316 (10)0.0500 (8)0.0374 (8)0.0021 (6)0.0066 (7)0.0101 (6)
C50.0314 (9)0.0372 (7)0.0278 (7)0.0021 (5)0.0083 (6)0.0080 (5)
C60.0290 (8)0.0439 (7)0.0273 (6)0.0050 (6)0.0068 (6)0.0054 (5)
C70.0316 (9)0.0382 (7)0.0299 (6)0.0017 (6)0.0103 (6)0.0062 (5)
C80.0269 (9)0.0492 (8)0.0319 (7)0.0002 (6)0.0079 (6)0.0060 (5)
C90.0340 (9)0.0386 (7)0.0297 (7)0.0019 (6)0.0089 (6)0.0054 (5)
C100.0396 (14)0.0384 (10)0.0384 (10)0.0000.0140 (9)0.000
O10.0351 (7)0.0820 (8)0.0311 (6)0.0044 (5)0.0027 (5)0.0081 (5)
S10.0317 (4)0.0602 (3)0.0272 (2)0.00364 (15)0.00220 (19)0.00228 (14)
Geometric parameters (Å, º) top
C1—C21.356 (3)C5—C61.476 (2)
C1—C91.403 (2)C6—O11.2291 (18)
C1—H10.9300C6—C71.460 (2)
C2—C31.395 (3)C7—C81.344 (2)
C2—H20.9300C7—C101.5120 (18)
C3—C41.368 (2)C8—S11.7082 (15)
C3—H30.9300C8—H80.9300
C4—C51.400 (2)C9—S11.7344 (15)
C4—H40.9300C10—C7i1.5120 (18)
C5—C91.401 (2)C10—H181.022 (18)
C2—C1—C9120.69 (16)O1—C6—C5119.75 (14)
C2—C1—H1119.7C7—C6—C5119.50 (12)
C9—C1—H1119.7C8—C7—C6123.18 (13)
C1—C2—C3120.35 (16)C8—C7—C10120.42 (12)
C1—C2—H2119.8C6—C7—C10116.40 (11)
C3—C2—H2119.8C7—C8—S1127.52 (12)
C4—C3—C2119.60 (15)C7—C8—H8116.2
C4—C3—H3120.2S1—C8—H8116.2
C2—C3—H3120.2C5—C9—C1119.64 (15)
C3—C4—C5121.49 (15)C5—C9—S1123.71 (12)
C3—C4—H4119.3C1—C9—S1116.64 (12)
C5—C4—H4119.3C7—C10—C7i113.66 (17)
C4—C5—C9118.16 (14)C7—C10—H18111.2 (10)
C4—C5—C6118.40 (13)C7i—C10—H18106.9 (10)
C9—C5—C6123.43 (14)C8—S1—C9102.54 (7)
O1—C6—C7120.75 (14)
C9—C1—C2—C30.4 (3)C6—C7—C8—S10.0 (2)
C1—C2—C3—C41.8 (3)C10—C7—C8—S1179.14 (11)
C2—C3—C4—C50.9 (2)C4—C5—C9—C12.8 (2)
C3—C4—C5—C91.4 (2)C6—C5—C9—C1176.99 (12)
C3—C4—C5—C6178.43 (13)C4—C5—C9—S1176.06 (10)
C4—C5—C6—O13.8 (2)C6—C5—C9—S14.2 (2)
C9—C5—C6—O1175.94 (13)C2—C1—C9—C52.0 (2)
C4—C5—C6—C7175.98 (12)C2—C1—C9—S1176.96 (13)
C9—C5—C6—C74.2 (2)C8—C7—C10—C7i93.05 (13)
O1—C6—C7—C8178.10 (14)C6—C7—C10—C7i87.80 (11)
C5—C6—C7—C82.1 (2)C7—C8—S1—C90.25 (16)
O1—C6—C7—C102.8 (2)C5—C9—S1—C81.80 (14)
C5—C6—C7—C10177.05 (12)C1—C9—S1—C8179.31 (11)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H12O2S2
Mr336.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)11.9480 (5), 11.8649 (5), 11.1416 (5)
β (°) 108.918 (2)
V3)1494.14 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.38 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.875, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
5040, 1631, 1410
Rint0.019
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.118, 0.88
No. of reflections1631
No. of parameters109
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Jmol (Hanson, 2010), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the University Grants Commission, New Delhi, India, for financial support in the form of a Major Research Project. In addition, they express their thanks to Dr Jai Anand Garg for his valuable support in the preparation of this structure report.

References

First citationAmbartsumyan, A. A., Vasiléva, T. T., Chakhovskaya, O. V., Mysova, N. E., Tuskaev, V. A., Khrustalev, V. N. & Kochetkov, K. A. (2012). Russ. J. Org. Chem. 48, 451–455.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHanson, R. M. (2010). J. Appl. Cryst. 43, 1250–1260.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y., Xiao, T., Liu, D. & Yu, G. (2010). Acta Cryst. E66, o694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNyburg, S. C., Prasad, L., Leong, T. S. & Still, I. W. J. (1986). Acta Cryst. C42, 816–821.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPanja, S. K., Maiti, S., Drew, M. G. B. & Bandyopadhyay, Ch. (2009). Tetrahedron, 65, 1276–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanthosh, K. C. & Balasubramanian, K. K. (1991). Tetrahedron Lett. 32, 7727–7730.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds