organic compounds
1-(2-Furoyl)-3-(2-methoxy-4-nitrophenyl)thiourea
aDepartment of Chemistry, M. M. V., Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The 13H11N3O5S, contains two independent molecules, which are linked by a pair of intermolecular N—H⋯S hydrogen bonds, forming an R22(8) ring motif. The central thiourea core forms dihedral angles of 3.02 (12) and 14.00 (10)° with the essentially planar furoyl groups [maximum deviations = 0.030 (2) and 0.057 (2) Å] in the two molecules and dihedral angles of 2.43 (13) and 8.03 (12)° with the benzene rings. The dihedral angles between the furoyl and benzene rings in the two molecules are 3.97 (10) and 5.98 (9)°. The trans–cis geometry of the thiourea group is stabilized by three intramolecular N—H⋯O hydrogen bonds involving carbonyl and methoxy O atoms with the H atom of the cis-thioamide group and between furan O atom and the other thioamide H atom. There is also a weak intramolecular C—H⋯S interaction in each molecule.
of the title compound, CRelated literature
For background to anion receptors, see: Doyle & Jacobsen (2007); Gale et al. (2008); Svetlana (2007). For aroyl thioureas as ionophores, see: Wilson et al. (2010); Pérez et al. (2008) and as catalysts, see: Yang et al. (2004); Dai et al. (2004). For related structures, see: Koch (2001); Pérez et al. (2008); Singh et al. (2012a,b,c). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536813002894/lh5568sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813002894/lh5568Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813002894/lh5568Isup3.cml
A solution of 2-furoyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added drop wise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was heated to reflux for 50 minutes. After cooling to room temperature, a solution of 2-methoxy-4-nitroaniline (0.01 mol) in dry acetone (25 ml) was added slowly and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The resulting solid product was crystallized from dimethyl sulphoxide yielding light yellow X-ray quality single crystals. Yield: 82%; M.P.: 451–453 K. Anal. Calc. for C13H11N3O5S (%): C, 48.59; H, 3.45; N, 13.07. Found: C, 48.40; H, 3.48; N, 12.96.
All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.95-0.98 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···O and intermolecular N—H···S hydrogen bonds. |
C13H11N3O5S | Z = 4 |
Mr = 321.31 | F(000) = 664 |
Triclinic, P1 | Dx = 1.581 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54184 Å |
a = 7.9474 (6) Å | Cell parameters from 2786 reflections |
b = 13.0122 (10) Å | θ = 3.4–75.6° |
c = 13.4215 (11) Å | µ = 2.43 mm−1 |
α = 87.734 (6)° | T = 123 K |
β = 77.014 (7)° | Long plate, colorless |
γ = 86.945 (7)° | 0.69 × 0.21 × 0.04 mm |
V = 1350.00 (18) Å3 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5400 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4064 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.8°, θmin = 3.4° |
ω scans | h = −6→9 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | k = −15→16 |
Tmin = 0.441, Tmax = 0.909 | l = −15→16 |
9239 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0713P)2] where P = (Fo2 + 2Fc2)/3 |
5400 reflections | (Δ/σ)max < 0.001 |
399 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C13H11N3O5S | γ = 86.945 (7)° |
Mr = 321.31 | V = 1350.00 (18) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.9474 (6) Å | Cu Kα radiation |
b = 13.0122 (10) Å | µ = 2.43 mm−1 |
c = 13.4215 (11) Å | T = 123 K |
α = 87.734 (6)° | 0.69 × 0.21 × 0.04 mm |
β = 77.014 (7)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 5400 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | 4064 reflections with I > 2σ(I) |
Tmin = 0.441, Tmax = 0.909 | Rint = 0.042 |
9239 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.134 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.36 e Å−3 |
5400 reflections | Δρmin = −0.34 e Å−3 |
399 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1A | 0.36097 (8) | 0.11036 (4) | 0.27285 (4) | 0.03539 (16) | |
S1B | 0.59249 (8) | 0.38403 (4) | 0.24534 (4) | 0.03632 (16) | |
O1A | 0.5944 (2) | 0.35328 (11) | 0.46572 (13) | 0.0332 (3) | |
O2A | 0.3761 (2) | 0.14473 (12) | 0.60923 (13) | 0.0352 (4) | |
O3A | 0.1883 (2) | −0.06917 (12) | 0.63465 (12) | 0.0338 (3) | |
O4A | −0.1054 (3) | −0.37579 (13) | 0.55069 (14) | 0.0421 (4) | |
O5A | −0.0861 (3) | −0.36147 (13) | 0.38735 (14) | 0.0407 (4) | |
O1B | 0.3641 (2) | 0.14072 (11) | 0.04830 (12) | 0.0324 (3) | |
O2B | 0.6346 (2) | 0.32954 (12) | −0.09340 (13) | 0.0357 (4) | |
O3B | 0.8303 (2) | 0.54209 (12) | −0.11942 (12) | 0.0347 (4) | |
O4B | 1.0361 (2) | 0.85635 (13) | 0.13539 (13) | 0.0387 (4) | |
O5B | 1.1180 (2) | 0.84800 (13) | −0.02921 (13) | 0.0398 (4) | |
N1A | 0.4231 (2) | 0.18859 (14) | 0.43709 (14) | 0.0298 (4) | |
H1AA | 0.4660 | 0.2370 | 0.3924 | 0.036* | |
N2A | 0.2838 (2) | 0.03587 (13) | 0.46879 (14) | 0.0283 (4) | |
H2AA | 0.2932 | 0.0474 | 0.5314 | 0.034* | |
N3A | −0.0598 (2) | −0.33027 (13) | 0.46753 (15) | 0.0304 (4) | |
N1B | 0.5391 (2) | 0.30242 (13) | 0.08037 (14) | 0.0299 (4) | |
H1BA | 0.4777 | 0.2607 | 0.1260 | 0.036* | |
N2B | 0.6826 (2) | 0.45407 (13) | 0.04855 (14) | 0.0285 (4) | |
H2BA | 0.6776 | 0.4411 | −0.0146 | 0.034* | |
N3B | 1.0386 (2) | 0.81488 (14) | 0.05402 (15) | 0.0308 (4) | |
C1A | 0.6737 (3) | 0.43079 (16) | 0.49908 (19) | 0.0344 (5) | |
H1AB | 0.7340 | 0.4830 | 0.4563 | 0.041* | |
C2A | 0.6548 (3) | 0.42318 (17) | 0.6015 (2) | 0.0357 (5) | |
H2AB | 0.6978 | 0.4684 | 0.6428 | 0.043* | |
C3A | 0.5584 (3) | 0.33487 (18) | 0.63570 (19) | 0.0344 (5) | |
H3AA | 0.5245 | 0.3090 | 0.7041 | 0.041* | |
C4A | 0.5245 (3) | 0.29491 (16) | 0.55114 (17) | 0.0297 (4) | |
C5A | 0.4348 (3) | 0.20312 (16) | 0.53730 (17) | 0.0288 (4) | |
C6A | 0.3526 (3) | 0.10763 (16) | 0.39819 (17) | 0.0285 (4) | |
C7A | 0.1995 (3) | −0.05422 (15) | 0.45914 (17) | 0.0269 (4) | |
C8A | 0.1628 (3) | −0.09002 (16) | 0.37023 (16) | 0.0295 (4) | |
H8AA | 0.1967 | −0.0521 | 0.3076 | 0.035* | |
C9A | 0.0774 (3) | −0.18036 (16) | 0.37248 (17) | 0.0302 (4) | |
H9AA | 0.0520 | −0.2049 | 0.3120 | 0.036* | |
C10A | 0.0297 (3) | −0.23418 (15) | 0.46458 (17) | 0.0276 (4) | |
C11A | 0.0633 (3) | −0.20163 (16) | 0.55529 (17) | 0.0288 (4) | |
H11A | 0.0289 | −0.2404 | 0.6174 | 0.035* | |
C12A | 0.1482 (3) | −0.11100 (16) | 0.55243 (16) | 0.0274 (4) | |
C13A | 0.1296 (3) | −0.1174 (2) | 0.73323 (18) | 0.0393 (5) | |
H13A | 0.1554 | −0.0746 | 0.7859 | 0.059* | |
H13B | 0.1887 | −0.1853 | 0.7353 | 0.059* | |
H13C | 0.0046 | −0.1254 | 0.7460 | 0.059* | |
C1B | 0.2969 (3) | 0.05868 (16) | 0.01333 (19) | 0.0340 (5) | |
H1BB | 0.2204 | 0.0125 | 0.0550 | 0.041* | |
C2B | 0.3542 (3) | 0.05241 (17) | −0.0883 (2) | 0.0361 (5) | |
H2BB | 0.3257 | 0.0021 | −0.1304 | 0.043* | |
C3B | 0.4655 (3) | 0.13491 (18) | −0.12144 (19) | 0.0358 (5) | |
H3BA | 0.5265 | 0.1504 | −0.1893 | 0.043* | |
C4B | 0.4665 (3) | 0.18683 (16) | −0.03598 (18) | 0.0303 (4) | |
C5B | 0.5544 (3) | 0.27857 (16) | −0.02133 (17) | 0.0298 (4) | |
C6B | 0.6086 (3) | 0.38421 (15) | 0.11951 (17) | 0.0281 (4) | |
C7B | 0.7665 (3) | 0.54421 (15) | 0.05886 (17) | 0.0266 (4) | |
C8B | 0.7740 (3) | 0.58953 (16) | 0.15028 (17) | 0.0311 (4) | |
H8BA | 0.7187 | 0.5587 | 0.2137 | 0.037* | |
C9B | 0.8613 (3) | 0.67881 (16) | 0.14927 (17) | 0.0313 (4) | |
H9BA | 0.8652 | 0.7101 | 0.2114 | 0.038* | |
C10B | 0.9425 (3) | 0.72156 (15) | 0.05632 (17) | 0.0290 (4) | |
C11B | 0.9372 (3) | 0.67978 (16) | −0.03685 (17) | 0.0295 (4) | |
H11B | 0.9934 | 0.7112 | −0.0997 | 0.035* | |
C12B | 0.8477 (3) | 0.59132 (16) | −0.03526 (17) | 0.0284 (4) | |
C13B | 0.9012 (3) | 0.5872 (2) | −0.21823 (18) | 0.0390 (5) | |
H13D | 0.8889 | 0.5406 | −0.2715 | 0.058* | |
H13E | 1.0239 | 0.5989 | −0.2242 | 0.058* | |
H13F | 0.8392 | 0.6530 | −0.2265 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1A | 0.0491 (3) | 0.0307 (3) | 0.0268 (3) | −0.0122 (2) | −0.0068 (2) | −0.0023 (2) |
S1B | 0.0523 (3) | 0.0293 (3) | 0.0280 (3) | −0.0125 (2) | −0.0078 (2) | −0.0018 (2) |
O1A | 0.0408 (8) | 0.0242 (7) | 0.0361 (8) | −0.0058 (6) | −0.0108 (7) | −0.0012 (6) |
O2A | 0.0453 (9) | 0.0306 (8) | 0.0303 (8) | −0.0094 (7) | −0.0080 (7) | −0.0025 (6) |
O3A | 0.0459 (9) | 0.0298 (8) | 0.0283 (8) | −0.0098 (6) | −0.0120 (7) | −0.0016 (6) |
O4A | 0.0576 (11) | 0.0345 (9) | 0.0336 (9) | −0.0177 (7) | −0.0058 (8) | 0.0015 (7) |
O5A | 0.0594 (11) | 0.0308 (8) | 0.0373 (9) | −0.0141 (7) | −0.0190 (8) | −0.0030 (7) |
O1B | 0.0398 (8) | 0.0245 (7) | 0.0338 (8) | −0.0050 (6) | −0.0089 (7) | −0.0034 (6) |
O2B | 0.0456 (9) | 0.0313 (8) | 0.0304 (8) | −0.0090 (7) | −0.0064 (7) | −0.0042 (6) |
O3B | 0.0462 (9) | 0.0331 (8) | 0.0259 (8) | −0.0107 (7) | −0.0078 (7) | −0.0036 (6) |
O4B | 0.0550 (10) | 0.0313 (8) | 0.0334 (8) | −0.0120 (7) | −0.0142 (8) | −0.0050 (6) |
O5B | 0.0488 (10) | 0.0351 (9) | 0.0348 (9) | −0.0139 (7) | −0.0054 (7) | −0.0014 (7) |
N1A | 0.0375 (10) | 0.0244 (8) | 0.0278 (9) | −0.0058 (7) | −0.0070 (7) | −0.0010 (7) |
N2A | 0.0377 (9) | 0.0239 (8) | 0.0247 (8) | −0.0047 (7) | −0.0085 (7) | −0.0045 (6) |
N3A | 0.0342 (9) | 0.0237 (8) | 0.0337 (10) | −0.0043 (7) | −0.0073 (8) | −0.0035 (7) |
N1B | 0.0373 (9) | 0.0221 (8) | 0.0301 (9) | −0.0049 (7) | −0.0060 (7) | −0.0026 (7) |
N2B | 0.0364 (9) | 0.0235 (8) | 0.0272 (8) | −0.0034 (7) | −0.0092 (7) | −0.0048 (7) |
N3B | 0.0345 (9) | 0.0266 (9) | 0.0330 (9) | −0.0040 (7) | −0.0106 (8) | −0.0018 (7) |
C1A | 0.0383 (12) | 0.0236 (10) | 0.0436 (13) | −0.0042 (8) | −0.0129 (10) | −0.0041 (9) |
C2A | 0.0397 (12) | 0.0258 (10) | 0.0433 (13) | −0.0013 (9) | −0.0117 (10) | −0.0096 (9) |
C3A | 0.0372 (11) | 0.0333 (11) | 0.0339 (11) | −0.0010 (9) | −0.0090 (9) | −0.0089 (9) |
C4A | 0.0323 (10) | 0.0247 (10) | 0.0323 (11) | −0.0014 (8) | −0.0072 (9) | −0.0024 (8) |
C5A | 0.0302 (10) | 0.0250 (10) | 0.0319 (11) | −0.0010 (8) | −0.0074 (8) | −0.0064 (8) |
C6A | 0.0319 (10) | 0.0238 (9) | 0.0301 (10) | −0.0016 (8) | −0.0066 (8) | −0.0045 (8) |
C7A | 0.0307 (10) | 0.0204 (9) | 0.0297 (10) | −0.0021 (7) | −0.0067 (8) | −0.0033 (8) |
C8A | 0.0386 (11) | 0.0232 (10) | 0.0259 (10) | −0.0022 (8) | −0.0054 (8) | −0.0020 (7) |
C9A | 0.0389 (11) | 0.0252 (10) | 0.0281 (10) | −0.0037 (8) | −0.0098 (9) | −0.0038 (8) |
C10A | 0.0298 (10) | 0.0213 (9) | 0.0319 (11) | −0.0033 (7) | −0.0064 (8) | −0.0043 (8) |
C11A | 0.0329 (10) | 0.0243 (10) | 0.0286 (10) | −0.0031 (8) | −0.0051 (8) | −0.0019 (8) |
C12A | 0.0310 (10) | 0.0253 (10) | 0.0268 (10) | −0.0006 (8) | −0.0078 (8) | −0.0050 (8) |
C13A | 0.0498 (14) | 0.0432 (13) | 0.0276 (11) | −0.0134 (11) | −0.0119 (10) | 0.0004 (9) |
C1B | 0.0388 (12) | 0.0235 (10) | 0.0425 (13) | −0.0049 (8) | −0.0135 (10) | −0.0031 (9) |
C2B | 0.0419 (12) | 0.0285 (11) | 0.0417 (12) | −0.0011 (9) | −0.0162 (10) | −0.0073 (9) |
C3B | 0.0431 (12) | 0.0306 (11) | 0.0348 (11) | 0.0012 (9) | −0.0109 (10) | −0.0069 (9) |
C4B | 0.0347 (11) | 0.0234 (10) | 0.0333 (11) | 0.0005 (8) | −0.0088 (9) | −0.0036 (8) |
C5B | 0.0343 (11) | 0.0249 (10) | 0.0313 (10) | 0.0003 (8) | −0.0093 (9) | −0.0056 (8) |
C6B | 0.0320 (10) | 0.0224 (9) | 0.0298 (10) | −0.0011 (8) | −0.0065 (8) | −0.0039 (8) |
C7B | 0.0294 (10) | 0.0213 (9) | 0.0297 (10) | −0.0013 (7) | −0.0076 (8) | −0.0028 (8) |
C8B | 0.0415 (12) | 0.0253 (10) | 0.0262 (10) | −0.0035 (8) | −0.0061 (9) | −0.0007 (8) |
C9B | 0.0418 (12) | 0.0270 (10) | 0.0266 (10) | −0.0031 (9) | −0.0101 (9) | −0.0038 (8) |
C10B | 0.0322 (10) | 0.0209 (9) | 0.0351 (11) | −0.0021 (8) | −0.0096 (9) | −0.0020 (8) |
C11B | 0.0329 (10) | 0.0255 (10) | 0.0299 (10) | −0.0038 (8) | −0.0065 (8) | 0.0008 (8) |
C12B | 0.0323 (10) | 0.0254 (10) | 0.0280 (10) | 0.0007 (8) | −0.0075 (8) | −0.0055 (8) |
C13B | 0.0496 (14) | 0.0418 (13) | 0.0260 (11) | −0.0118 (10) | −0.0070 (10) | −0.0017 (9) |
S1A—C6A | 1.668 (2) | C3A—C4A | 1.353 (3) |
S1B—C6B | 1.665 (2) | C3A—H3AA | 0.9500 |
O1A—C1A | 1.358 (3) | C4A—C5A | 1.462 (3) |
O1A—C4A | 1.375 (3) | C7A—C8A | 1.393 (3) |
O2A—C5A | 1.226 (3) | C7A—C12A | 1.417 (3) |
O3A—C12A | 1.356 (3) | C8A—C9A | 1.385 (3) |
O3A—C13A | 1.432 (3) | C8A—H8AA | 0.9500 |
O4A—N3A | 1.231 (3) | C9A—C10A | 1.382 (3) |
O5A—N3A | 1.229 (3) | C9A—H9AA | 0.9500 |
O1B—C1B | 1.363 (3) | C10A—C11A | 1.390 (3) |
O1B—C4B | 1.373 (3) | C11A—C12A | 1.385 (3) |
O2B—C5B | 1.224 (3) | C11A—H11A | 0.9500 |
O3B—C12B | 1.357 (3) | C13A—H13A | 0.9800 |
O3B—C13B | 1.435 (3) | C13A—H13B | 0.9800 |
O4B—N3B | 1.233 (3) | C13A—H13C | 0.9800 |
O5B—N3B | 1.227 (3) | C1B—C2B | 1.341 (4) |
N1A—C5A | 1.390 (3) | C1B—H1BB | 0.9500 |
N1A—C6A | 1.391 (3) | C2B—C3B | 1.421 (3) |
N1A—H1AA | 0.8800 | C2B—H2BB | 0.9500 |
N2A—C6A | 1.349 (3) | C3B—C4B | 1.356 (3) |
N2A—C7A | 1.405 (3) | C3B—H3BA | 0.9500 |
N2A—H2AA | 0.8800 | C4B—C5B | 1.456 (3) |
N3A—C10A | 1.466 (3) | C7B—C8B | 1.397 (3) |
N1B—C5B | 1.389 (3) | C7B—C12B | 1.415 (3) |
N1B—C6B | 1.397 (3) | C8B—C9B | 1.383 (3) |
N1B—H1BA | 0.8800 | C8B—H8BA | 0.9500 |
N2B—C6B | 1.348 (3) | C9B—C10B | 1.380 (3) |
N2B—C7B | 1.406 (3) | C9B—H9BA | 0.9500 |
N2B—H2BA | 0.8800 | C10B—C11B | 1.393 (3) |
N3B—C10B | 1.464 (3) | C11B—C12B | 1.382 (3) |
C1A—C2A | 1.349 (4) | C11B—H11B | 0.9500 |
C1A—H1AB | 0.9500 | C13B—H13D | 0.9800 |
C2A—C3A | 1.418 (3) | C13B—H13E | 0.9800 |
C2A—H2AB | 0.9500 | C13B—H13F | 0.9800 |
C1A—O1A—C4A | 106.15 (18) | C12A—C11A—H11A | 121.0 |
C12A—O3A—C13A | 118.46 (17) | C10A—C11A—H11A | 121.0 |
C1B—O1B—C4B | 106.16 (18) | O3A—C12A—C11A | 124.7 (2) |
C12B—O3B—C13B | 118.39 (18) | O3A—C12A—C7A | 114.87 (18) |
C5A—N1A—C6A | 128.54 (19) | C11A—C12A—C7A | 120.42 (19) |
C5A—N1A—H1AA | 115.7 | O3A—C13A—H13A | 109.5 |
C6A—N1A—H1AA | 115.7 | O3A—C13A—H13B | 109.5 |
C6A—N2A—C7A | 130.85 (19) | H13A—C13A—H13B | 109.5 |
C6A—N2A—H2AA | 114.6 | O3A—C13A—H13C | 109.5 |
C7A—N2A—H2AA | 114.6 | H13A—C13A—H13C | 109.5 |
O5A—N3A—O4A | 123.17 (19) | H13B—C13A—H13C | 109.5 |
O5A—N3A—C10A | 118.71 (19) | C2B—C1B—O1B | 110.3 (2) |
O4A—N3A—C10A | 118.12 (18) | C2B—C1B—H1BB | 124.8 |
C5B—N1B—C6B | 128.25 (19) | O1B—C1B—H1BB | 124.8 |
C5B—N1B—H1BA | 115.9 | C1B—C2B—C3B | 107.5 (2) |
C6B—N1B—H1BA | 115.9 | C1B—C2B—H2BB | 126.3 |
C6B—N2B—C7B | 130.55 (19) | C3B—C2B—H2BB | 126.3 |
C6B—N2B—H2BA | 114.7 | C4B—C3B—C2B | 105.6 (2) |
C7B—N2B—H2BA | 114.7 | C4B—C3B—H3BA | 127.2 |
O5B—N3B—O4B | 123.18 (19) | C2B—C3B—H3BA | 127.2 |
O5B—N3B—C10B | 118.14 (19) | C3B—C4B—O1B | 110.5 (2) |
O4B—N3B—C10B | 118.68 (19) | C3B—C4B—C5B | 131.3 (2) |
C2A—C1A—O1A | 110.5 (2) | O1B—C4B—C5B | 118.24 (19) |
C2A—C1A—H1AB | 124.7 | O2B—C5B—N1B | 123.56 (19) |
O1A—C1A—H1AB | 124.7 | O2B—C5B—C4B | 122.1 (2) |
C1A—C2A—C3A | 106.9 (2) | N1B—C5B—C4B | 114.33 (19) |
C1A—C2A—H2AB | 126.5 | N2B—C6B—N1B | 114.56 (19) |
C3A—C2A—H2AB | 126.5 | N2B—C6B—S1B | 127.98 (16) |
C4A—C3A—C2A | 106.0 (2) | N1B—C6B—S1B | 117.46 (16) |
C4A—C3A—H3AA | 127.0 | C8B—C7B—N2B | 126.6 (2) |
C2A—C3A—H3AA | 127.0 | C8B—C7B—C12B | 119.26 (19) |
C3A—C4A—O1A | 110.37 (19) | N2B—C7B—C12B | 114.10 (19) |
C3A—C4A—C5A | 131.5 (2) | C9B—C8B—C7B | 120.6 (2) |
O1A—C4A—C5A | 118.06 (19) | C9B—C8B—H8BA | 119.7 |
O2A—C5A—N1A | 123.84 (19) | C7B—C8B—H8BA | 119.7 |
O2A—C5A—C4A | 121.8 (2) | C10B—C9B—C8B | 118.8 (2) |
N1A—C5A—C4A | 114.39 (19) | C10B—C9B—H9BA | 120.6 |
N2A—C6A—N1A | 114.52 (19) | C8B—C9B—H9BA | 120.6 |
N2A—C6A—S1A | 127.94 (16) | C9B—C10B—C11B | 122.7 (2) |
N1A—C6A—S1A | 117.54 (16) | C9B—C10B—N3B | 119.4 (2) |
C8A—C7A—N2A | 126.9 (2) | C11B—C10B—N3B | 117.8 (2) |
C8A—C7A—C12A | 119.44 (19) | C12B—C11B—C10B | 118.2 (2) |
N2A—C7A—C12A | 113.62 (18) | C12B—C11B—H11B | 120.9 |
C9A—C8A—C7A | 120.5 (2) | C10B—C11B—H11B | 120.9 |
C9A—C8A—H8AA | 119.7 | O3B—C12B—C11B | 125.0 (2) |
C7A—C8A—H8AA | 119.7 | O3B—C12B—C7B | 114.55 (18) |
C10A—C9A—C8A | 118.63 (19) | C11B—C12B—C7B | 120.5 (2) |
C10A—C9A—H9AA | 120.7 | O3B—C13B—H13D | 109.5 |
C8A—C9A—H9AA | 120.7 | O3B—C13B—H13E | 109.5 |
C9A—C10A—C11A | 123.01 (19) | H13D—C13B—H13E | 109.5 |
C9A—C10A—N3A | 118.99 (19) | O3B—C13B—H13F | 109.5 |
C11A—C10A—N3A | 118.00 (19) | H13D—C13B—H13F | 109.5 |
C12A—C11A—C10A | 118.0 (2) | H13E—C13B—H13F | 109.5 |
C4A—O1A—C1A—C2A | −0.4 (3) | C4B—O1B—C1B—C2B | 0.3 (3) |
O1A—C1A—C2A—C3A | 0.4 (3) | O1B—C1B—C2B—C3B | 0.2 (3) |
C1A—C2A—C3A—C4A | −0.3 (3) | C1B—C2B—C3B—C4B | −0.5 (3) |
C2A—C3A—C4A—O1A | 0.0 (3) | C2B—C3B—C4B—O1B | 0.7 (3) |
C2A—C3A—C4A—C5A | 178.1 (2) | C2B—C3B—C4B—C5B | −179.2 (2) |
C1A—O1A—C4A—C3A | 0.2 (3) | C1B—O1B—C4B—C3B | −0.6 (2) |
C1A—O1A—C4A—C5A | −178.12 (19) | C1B—O1B—C4B—C5B | 179.31 (19) |
C6A—N1A—C5A—O2A | −2.6 (4) | C6B—N1B—C5B—O2B | −0.4 (4) |
C6A—N1A—C5A—C4A | 177.3 (2) | C6B—N1B—C5B—C4B | 179.5 (2) |
C3A—C4A—C5A—O2A | −1.4 (4) | C3B—C4B—C5B—O2B | 6.9 (4) |
O1A—C4A—C5A—O2A | 176.6 (2) | O1B—C4B—C5B—O2B | −173.0 (2) |
C3A—C4A—C5A—N1A | 178.8 (2) | C3B—C4B—C5B—N1B | −173.1 (2) |
O1A—C4A—C5A—N1A | −3.2 (3) | O1B—C4B—C5B—N1B | 7.0 (3) |
C7A—N2A—C6A—N1A | 178.6 (2) | C7B—N2B—C6B—N1B | −179.1 (2) |
C7A—N2A—C6A—S1A | −0.9 (4) | C7B—N2B—C6B—S1B | 0.4 (4) |
C5A—N1A—C6A—N2A | 1.7 (3) | C5B—N1B—C6B—N2B | 8.1 (3) |
C5A—N1A—C6A—S1A | −178.79 (18) | C5B—N1B—C6B—S1B | −171.41 (18) |
C6A—N2A—C7A—C8A | −1.7 (4) | C6B—N2B—C7B—C8B | −8.5 (4) |
C6A—N2A—C7A—C12A | 178.8 (2) | C6B—N2B—C7B—C12B | 172.3 (2) |
N2A—C7A—C8A—C9A | −179.6 (2) | N2B—C7B—C8B—C9B | −179.9 (2) |
C12A—C7A—C8A—C9A | −0.2 (3) | C12B—C7B—C8B—C9B | −0.7 (3) |
C7A—C8A—C9A—C10A | −0.1 (3) | C7B—C8B—C9B—C10B | −0.8 (3) |
C8A—C9A—C10A—C11A | 0.2 (3) | C8B—C9B—C10B—C11B | 1.5 (4) |
C8A—C9A—C10A—N3A | −179.6 (2) | C8B—C9B—C10B—N3B | −178.69 (19) |
O5A—N3A—C10A—C9A | 1.8 (3) | O5B—N3B—C10B—C9B | 175.9 (2) |
O4A—N3A—C10A—C9A | −178.1 (2) | O4B—N3B—C10B—C9B | −4.1 (3) |
O5A—N3A—C10A—C11A | −178.0 (2) | O5B—N3B—C10B—C11B | −4.3 (3) |
O4A—N3A—C10A—C11A | 2.1 (3) | O4B—N3B—C10B—C11B | 175.7 (2) |
C9A—C10A—C11A—C12A | 0.1 (3) | C9B—C10B—C11B—C12B | −0.6 (3) |
N3A—C10A—C11A—C12A | 179.86 (19) | N3B—C10B—C11B—C12B | 179.55 (19) |
C13A—O3A—C12A—C11A | −4.4 (3) | C13B—O3B—C12B—C11B | −3.6 (3) |
C13A—O3A—C12A—C7A | 175.4 (2) | C13B—O3B—C12B—C7B | 176.9 (2) |
C10A—C11A—C12A—O3A | 179.4 (2) | C10B—C11B—C12B—O3B | 179.6 (2) |
C10A—C11A—C12A—C7A | −0.3 (3) | C10B—C11B—C12B—C7B | −0.9 (3) |
C8A—C7A—C12A—O3A | −179.34 (19) | C8B—C7B—C12B—O3B | −178.96 (19) |
N2A—C7A—C12A—O3A | 0.1 (3) | N2B—C7B—C12B—O3B | 0.4 (3) |
C8A—C7A—C12A—C11A | 0.4 (3) | C8B—C7B—C12B—C11B | 1.5 (3) |
N2A—C7A—C12A—C11A | 179.88 (19) | N2B—C7B—C12B—C11B | −179.13 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O1A | 0.88 | 2.24 | 2.684 (2) | 111 |
N2A—H2AA···O2A | 0.88 | 1.91 | 2.654 (2) | 142 |
N2A—H2AA···O3A | 0.88 | 2.09 | 2.552 (2) | 112 |
N1B—H1BA···O1B | 0.88 | 2.25 | 2.683 (2) | 111 |
N2B—H2BA···O2B | 0.88 | 1.92 | 2.653 (2) | 140 |
N2B—H2BA···O3B | 0.88 | 2.11 | 2.554 (2) | 111 |
C8A—H8AA···S1A | 0.95 | 2.52 | 3.198 (2) | 129 |
C8B—H8BA···S1B | 0.95 | 2.52 | 3.189 (2) | 128 |
Experimental details
Crystal data | |
Chemical formula | C13H11N3O5S |
Mr | 321.31 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 123 |
a, b, c (Å) | 7.9474 (6), 13.0122 (10), 13.4215 (11) |
α, β, γ (°) | 87.734 (6), 77.014 (7), 86.945 (7) |
V (Å3) | 1350.00 (18) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.43 |
Crystal size (mm) | 0.69 × 0.21 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur (Ruby, Gemini) diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.441, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9239, 5400, 4064 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.629 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.134, 1.03 |
No. of reflections | 5400 |
No. of parameters | 399 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.34 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1AA···O1A | 0.88 | 2.24 | 2.684 (2) | 110.7 |
N2A—H2AA···O2A | 0.88 | 1.91 | 2.654 (2) | 141.9 |
N2A—H2AA···O3A | 0.88 | 2.09 | 2.552 (2) | 111.8 |
N1B—H1BA···O1B | 0.88 | 2.25 | 2.683 (2) | 110.5 |
N2B—H2BA···O2B | 0.88 | 1.92 | 2.653 (2) | 139.8 |
N2B—H2BA···O3B | 0.88 | 2.11 | 2.554 (2) | 110.8 |
C8A—H8AA···S1A | 0.95 | 2.52 | 3.198 (2) | 128.7 |
C8B—H8BA···S1B | 0.95 | 2.52 | 3.189 (2) | 128.0 |
Acknowledgements
SP and DPS are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dai, M., Liang, B., Wang, C., Chen, J. & Yang, Z. (2004). Org. Lett. 6, 221–224. Web of Science CrossRef PubMed CAS Google Scholar
Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743. Web of Science CrossRef PubMed CAS Google Scholar
Gale, P. A., García-Garrido, S. E. & Garric, J. (2008). Chem. Soc. Rev. 37, 151–190. Web of Science CrossRef PubMed CAS Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012a). Acta Cryst. E68, o2882–o2883. CSD CrossRef IUCr Journals Google Scholar
Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012c). Acta Cryst. E68, o3300–o3301. CSD CrossRef IUCr Journals Google Scholar
Singh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012b). Acta Cryst. E68, o3295. CSD CrossRef IUCr Journals Google Scholar
Svetlana, B. T. (2007). Eur. J. Org. Chem. 2007, 1701–1716. Google Scholar
Wilson, D., Ángeles Arada, M. de los, Alegret, S. & Valle, M. del (2010). J. Hazard. Mater. 181, 140–146. Web of Science CrossRef CAS PubMed Google Scholar
Yang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577–1580. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is a growing interest in the synthesis of new substituted thiourea derivatives owing to their diverse applicability in the pharmaceutical industry, material science and analytical chemistry. The hydrogen-bonding ability of the thiourea moiety has extensively been used in construction of anion receptors (Doyle & Jacobsen, 2007; Gale et al., 2008; Svetlana 2007). Further, aroyl thioureas have been successfully used in environmental control, as ionophores in ion-selective electrodes (Wilson et al.,2010; Pérez et al., 2008). Recently, these compounds have been employed successfully as catalysts in the palladium-catalyzed Suzuki and Heck reactions (Yang et al., 2004; Dai et al., 2004). In view of the above and in continuation of our work on thiourea derivatives (Singh et al., 2012a,b,c), the crystal structure of 1-(2-furoyl)-3-(2-methoxy- 4-nitrophenyl)thiourea has been determined (Fig.1).
The asymmetric unit of the structure contains two molecules, which are linked by a pair of intermolecular N—H···S hydrogen bonds forming an R22(8) motif. The main bond lengths are within the ranges obtained for similar compounds (Koch 2001; Pérez et al., 2008, Singh et al. 2012c). The C6A—S1A [1.667 (2) Å], C6B—S1B [1.665 (2) Å] and C5A—O2A [1.226 (3) Å], C5B—O2B [1.224 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C5A—N1A [1.390 (3) Å], C6A—N1A [1.391 (3) Å], C6A—N2A [1.349 (3) Å], C7A—N2A [1.405 (3) Å] and C5B—N1B [1.389 (3) Å], C6B—N1B [1.397 (3) Å], C6B—N2B [1.348 (3) Å], C7B—N2B [1.406 (3) Å] are shorter than the normal C—N single-bond length of about 1.48 Å (Allen et al., 1987). These results can be explained by the existence of resonance in this part of the molecule. The essentially planar furoyl groups (C1A-C5A/O1A/O2A with maxixum deviation of 0.030 (2)Å for O2A) and (C1B-C5B/O1B/O2B with maximum deviation of 0.057 (2)Å for O2B) groups are inclined at angles of 3.02 (12)° and 14.00 (10)° with respect to the plane formed by the thiourea group (N1/N3/C6/S1), whereas the benzene (C7A-C12A and C7B-C12B) rings are inclined at angles of 2.43 (13)° and 8.03 (12)° with the thiourea plane, respectively. The dihedral angles in two independent molecules between the furoyl groups and benzene rings are 3.97 (10)° and 5.98 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by three intramolecular N—H···O hydrogen bonds involving carbonyl (O2A/O2B) and methoxy (O3A/O3B) O atoms with the H atom of the cis-thioamide group and between furan (O1A/O1B) O atom and the other thioamide H atom (Table 1). In addition, an intramolecular C—H···S interaction is also observed in each molecule (Table 1).