organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o330-o331

1-(2-Furo­yl)-3-(2-meth­­oxy-4-nitro­phen­yl)thio­urea

aDepartment of Chemistry, M. M. V., Banaras Hindu University, Varanasi 221 005, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 5 December 2012; accepted 28 January 2013; online 2 February 2013)

The asymmetric unit of the title compound, C13H11N3O5S, contains two independent mol­ecules, which are linked by a pair of inter­molecular N—H⋯S hydrogen bonds, forming an R22(8) ring motif. The central thio­urea core forms dihedral angles of 3.02 (12) and 14.00 (10)° with the essentially planar furoyl groups [maximum deviations = 0.030 (2) and 0.057 (2) Å] in the two mol­ecules and dihedral angles of 2.43 (13) and 8.03 (12)° with the benzene rings. The dihedral angles between the furoyl and benzene rings in the two mol­ecules are 3.97 (10) and 5.98 (9)°. The trans–cis geometry of the thio­urea group is stabilized by three intra­molecular N—H⋯O hydrogen bonds involving carbonyl and meth­oxy O atoms with the H atom of the cis-thio­amide group and between furan O atom and the other thio­amide H atom. There is also a weak intra­molecular C—H⋯S inter­action in each mol­ecule.

Related literature

For background to anion receptors, see: Doyle & Jacobsen (2007[Doyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713-5743.]); Gale et al. (2008[Gale, P. A., García-Garrido, S. E. & Garric, J. (2008). Chem. Soc. Rev. 37, 151-190.]); Svetlana (2007[Svetlana, B. T. (2007). Eur. J. Org. Chem. 2007, 1701-1716.]). For aroyl thio­ureas as ionophores, see: Wilson et al. (2010[Wilson, D., Ángeles Arada, M. de los, Alegret, S. & Valle, M. del (2010). J. Hazard. Mater. 181, 140-146.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695.]) and as catalysts, see: Yang et al. (2004[Yang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577-1580.]); Dai et al. (2004[Dai, M., Liang, B., Wang, C., Chen, J. & Yang, Z. (2004). Org. Lett. 6, 221-224.]). For related structures, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695.]); Singh et al. (2012a[Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012a). Acta Cryst. E68, o2882-o2883.],b[Singh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012b). Acta Cryst. E68, o3295.],c[Singh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012c). Acta Cryst. E68, o3300-o3301.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N3O5S

  • Mr = 321.31

  • Triclinic, [P \overline 1]

  • a = 7.9474 (6) Å

  • b = 13.0122 (10) Å

  • c = 13.4215 (11) Å

  • α = 87.734 (6)°

  • β = 77.014 (7)°

  • γ = 86.945 (7)°

  • V = 1350.00 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.43 mm−1

  • T = 123 K

  • 0.69 × 0.21 × 0.04 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.441, Tmax = 0.909

  • 9239 measured reflections

  • 5400 independent reflections

  • 4064 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 1.03

  • 5400 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A 0.88 2.24 2.684 (2) 111
N2A—H2AA⋯O2A 0.88 1.91 2.654 (2) 142
N2A—H2AA⋯O3A 0.88 2.09 2.552 (2) 112
N1B—H1BA⋯O1B 0.88 2.25 2.683 (2) 111
N2B—H2BA⋯O2B 0.88 1.92 2.653 (2) 140
N2B—H2BA⋯O3B 0.88 2.11 2.554 (2) 111
C8A—H8AA⋯S1A 0.95 2.52 3.198 (2) 129
C8B—H8BA⋯S1B 0.95 2.52 3.189 (2) 128

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There is a growing interest in the synthesis of new substituted thiourea derivatives owing to their diverse applicability in the pharmaceutical industry, material science and analytical chemistry. The hydrogen-bonding ability of the thiourea moiety has extensively been used in construction of anion receptors (Doyle & Jacobsen, 2007; Gale et al., 2008; Svetlana 2007). Further, aroyl thioureas have been successfully used in environmental control, as ionophores in ion-selective electrodes (Wilson et al.,2010; Pérez et al., 2008). Recently, these compounds have been employed successfully as catalysts in the palladium-catalyzed Suzuki and Heck reactions (Yang et al., 2004; Dai et al., 2004). In view of the above and in continuation of our work on thiourea derivatives (Singh et al., 2012a,b,c), the crystal structure of 1-(2-furoyl)-3-(2-methoxy- 4-nitrophenyl)thiourea has been determined (Fig.1).

The asymmetric unit of the structure contains two molecules, which are linked by a pair of intermolecular N—H···S hydrogen bonds forming an R22(8) motif. The main bond lengths are within the ranges obtained for similar compounds (Koch 2001; Pérez et al., 2008, Singh et al. 2012c). The C6A—S1A [1.667 (2) Å], C6B—S1B [1.665 (2) Å] and C5A—O2A [1.226 (3) Å], C5B—O2B [1.224 (3) Å] bonds show typical double-bond character. However, the C—N bond lengths, C5A—N1A [1.390 (3) Å], C6A—N1A [1.391 (3) Å], C6A—N2A [1.349 (3) Å], C7A—N2A [1.405 (3) Å] and C5B—N1B [1.389 (3) Å], C6B—N1B [1.397 (3) Å], C6B—N2B [1.348 (3) Å], C7B—N2B [1.406 (3) Å] are shorter than the normal C—N single-bond length of about 1.48 Å (Allen et al., 1987). These results can be explained by the existence of resonance in this part of the molecule. The essentially planar furoyl groups (C1A-C5A/O1A/O2A with maxixum deviation of 0.030 (2)Å for O2A) and (C1B-C5B/O1B/O2B with maximum deviation of 0.057 (2)Å for O2B) groups are inclined at angles of 3.02 (12)° and 14.00 (10)° with respect to the plane formed by the thiourea group (N1/N3/C6/S1), whereas the benzene (C7A-C12A and C7B-C12B) rings are inclined at angles of 2.43 (13)° and 8.03 (12)° with the thiourea plane, respectively. The dihedral angles in two independent molecules between the furoyl groups and benzene rings are 3.97 (10)° and 5.98 (9)°, respectively. The trans-cis geometry in the thiourea moiety is stabilized by three intramolecular N—H···O hydrogen bonds involving carbonyl (O2A/O2B) and methoxy (O3A/O3B) O atoms with the H atom of the cis-thioamide group and between furan (O1A/O1B) O atom and the other thioamide H atom (Table 1). In addition, an intramolecular C—H···S interaction is also observed in each molecule (Table 1).

Related literature top

For background to anion receptors, see: Doyle & Jacobsen (2007); Gale et al. (2008); Svetlana (2007). For aroyl thioureas as ionophores, see: Wilson et al. (2010); Pérez et al. (2008) and as catalysts, see: Yang et al. (2004); Dai et al. (2004). For related structures, see: Koch (2001); Pérez et al. (2008); Singh et al. (2012a,b,c). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of 2-furoyl chloride (0.01 mol) in anhydrous acetone (80 ml) was added drop wise to a suspension of ammonium thiocyanate (0.01 mol) in anhydrous acetone (50 ml) and the reaction mixture was heated to reflux for 50 minutes. After cooling to room temperature, a solution of 2-methoxy-4-nitroaniline (0.01 mol) in dry acetone (25 ml) was added slowly and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The resulting solid product was crystallized from dimethyl sulphoxide yielding light yellow X-ray quality single crystals. Yield: 82%; M.P.: 451–453 K. Anal. Calc. for C13H11N3O5S (%): C, 48.59; H, 3.45; N, 13.07. Found: C, 48.40; H, 3.48; N, 12.96.

Refinement top

All H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.95-0.98 Å, N—H = 0.88 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids. Dashed lines indicate an intramolecular N—H···O and intermolecular N—H···S hydrogen bonds.
1-(2-Furoyl)-3-(2-methoxy-4-nitrophenyl)thiourea top
Crystal data top
C13H11N3O5SZ = 4
Mr = 321.31F(000) = 664
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 7.9474 (6) ÅCell parameters from 2786 reflections
b = 13.0122 (10) Åθ = 3.4–75.6°
c = 13.4215 (11) ŵ = 2.43 mm1
α = 87.734 (6)°T = 123 K
β = 77.014 (7)°Long plate, colorless
γ = 86.945 (7)°0.69 × 0.21 × 0.04 mm
V = 1350.00 (18) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5400 independent reflections
Radiation source: Enhance (Cu) X-ray Source4064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.5081 pixels mm-1θmax = 75.8°, θmin = 3.4°
ω scansh = 69
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1516
Tmin = 0.441, Tmax = 0.909l = 1516
9239 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
5400 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H11N3O5Sγ = 86.945 (7)°
Mr = 321.31V = 1350.00 (18) Å3
Triclinic, P1Z = 4
a = 7.9474 (6) ÅCu Kα radiation
b = 13.0122 (10) ŵ = 2.43 mm1
c = 13.4215 (11) ÅT = 123 K
α = 87.734 (6)°0.69 × 0.21 × 0.04 mm
β = 77.014 (7)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
5400 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
4064 reflections with I > 2σ(I)
Tmin = 0.441, Tmax = 0.909Rint = 0.042
9239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
5400 reflectionsΔρmin = 0.34 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.36097 (8)0.11036 (4)0.27285 (4)0.03539 (16)
S1B0.59249 (8)0.38403 (4)0.24534 (4)0.03632 (16)
O1A0.5944 (2)0.35328 (11)0.46572 (13)0.0332 (3)
O2A0.3761 (2)0.14473 (12)0.60923 (13)0.0352 (4)
O3A0.1883 (2)0.06917 (12)0.63465 (12)0.0338 (3)
O4A0.1054 (3)0.37579 (13)0.55069 (14)0.0421 (4)
O5A0.0861 (3)0.36147 (13)0.38735 (14)0.0407 (4)
O1B0.3641 (2)0.14072 (11)0.04830 (12)0.0324 (3)
O2B0.6346 (2)0.32954 (12)0.09340 (13)0.0357 (4)
O3B0.8303 (2)0.54209 (12)0.11942 (12)0.0347 (4)
O4B1.0361 (2)0.85635 (13)0.13539 (13)0.0387 (4)
O5B1.1180 (2)0.84800 (13)0.02921 (13)0.0398 (4)
N1A0.4231 (2)0.18859 (14)0.43709 (14)0.0298 (4)
H1AA0.46600.23700.39240.036*
N2A0.2838 (2)0.03587 (13)0.46879 (14)0.0283 (4)
H2AA0.29320.04740.53140.034*
N3A0.0598 (2)0.33027 (13)0.46753 (15)0.0304 (4)
N1B0.5391 (2)0.30242 (13)0.08037 (14)0.0299 (4)
H1BA0.47770.26070.12600.036*
N2B0.6826 (2)0.45407 (13)0.04855 (14)0.0285 (4)
H2BA0.67760.44110.01460.034*
N3B1.0386 (2)0.81488 (14)0.05402 (15)0.0308 (4)
C1A0.6737 (3)0.43079 (16)0.49908 (19)0.0344 (5)
H1AB0.73400.48300.45630.041*
C2A0.6548 (3)0.42318 (17)0.6015 (2)0.0357 (5)
H2AB0.69780.46840.64280.043*
C3A0.5584 (3)0.33487 (18)0.63570 (19)0.0344 (5)
H3AA0.52450.30900.70410.041*
C4A0.5245 (3)0.29491 (16)0.55114 (17)0.0297 (4)
C5A0.4348 (3)0.20312 (16)0.53730 (17)0.0288 (4)
C6A0.3526 (3)0.10763 (16)0.39819 (17)0.0285 (4)
C7A0.1995 (3)0.05422 (15)0.45914 (17)0.0269 (4)
C8A0.1628 (3)0.09002 (16)0.37023 (16)0.0295 (4)
H8AA0.19670.05210.30760.035*
C9A0.0774 (3)0.18036 (16)0.37248 (17)0.0302 (4)
H9AA0.05200.20490.31200.036*
C10A0.0297 (3)0.23418 (15)0.46458 (17)0.0276 (4)
C11A0.0633 (3)0.20163 (16)0.55529 (17)0.0288 (4)
H11A0.02890.24040.61740.035*
C12A0.1482 (3)0.11100 (16)0.55243 (16)0.0274 (4)
C13A0.1296 (3)0.1174 (2)0.73323 (18)0.0393 (5)
H13A0.15540.07460.78590.059*
H13B0.18870.18530.73530.059*
H13C0.00460.12540.74600.059*
C1B0.2969 (3)0.05868 (16)0.01333 (19)0.0340 (5)
H1BB0.22040.01250.05500.041*
C2B0.3542 (3)0.05241 (17)0.0883 (2)0.0361 (5)
H2BB0.32570.00210.13040.043*
C3B0.4655 (3)0.13491 (18)0.12144 (19)0.0358 (5)
H3BA0.52650.15040.18930.043*
C4B0.4665 (3)0.18683 (16)0.03598 (18)0.0303 (4)
C5B0.5544 (3)0.27857 (16)0.02133 (17)0.0298 (4)
C6B0.6086 (3)0.38421 (15)0.11951 (17)0.0281 (4)
C7B0.7665 (3)0.54421 (15)0.05886 (17)0.0266 (4)
C8B0.7740 (3)0.58953 (16)0.15028 (17)0.0311 (4)
H8BA0.71870.55870.21370.037*
C9B0.8613 (3)0.67881 (16)0.14927 (17)0.0313 (4)
H9BA0.86520.71010.21140.038*
C10B0.9425 (3)0.72156 (15)0.05632 (17)0.0290 (4)
C11B0.9372 (3)0.67978 (16)0.03685 (17)0.0295 (4)
H11B0.99340.71120.09970.035*
C12B0.8477 (3)0.59132 (16)0.03526 (17)0.0284 (4)
C13B0.9012 (3)0.5872 (2)0.21823 (18)0.0390 (5)
H13D0.88890.54060.27150.058*
H13E1.02390.59890.22420.058*
H13F0.83920.65300.22650.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0491 (3)0.0307 (3)0.0268 (3)0.0122 (2)0.0068 (2)0.0023 (2)
S1B0.0523 (3)0.0293 (3)0.0280 (3)0.0125 (2)0.0078 (2)0.0018 (2)
O1A0.0408 (8)0.0242 (7)0.0361 (8)0.0058 (6)0.0108 (7)0.0012 (6)
O2A0.0453 (9)0.0306 (8)0.0303 (8)0.0094 (7)0.0080 (7)0.0025 (6)
O3A0.0459 (9)0.0298 (8)0.0283 (8)0.0098 (6)0.0120 (7)0.0016 (6)
O4A0.0576 (11)0.0345 (9)0.0336 (9)0.0177 (7)0.0058 (8)0.0015 (7)
O5A0.0594 (11)0.0308 (8)0.0373 (9)0.0141 (7)0.0190 (8)0.0030 (7)
O1B0.0398 (8)0.0245 (7)0.0338 (8)0.0050 (6)0.0089 (7)0.0034 (6)
O2B0.0456 (9)0.0313 (8)0.0304 (8)0.0090 (7)0.0064 (7)0.0042 (6)
O3B0.0462 (9)0.0331 (8)0.0259 (8)0.0107 (7)0.0078 (7)0.0036 (6)
O4B0.0550 (10)0.0313 (8)0.0334 (8)0.0120 (7)0.0142 (8)0.0050 (6)
O5B0.0488 (10)0.0351 (9)0.0348 (9)0.0139 (7)0.0054 (7)0.0014 (7)
N1A0.0375 (10)0.0244 (8)0.0278 (9)0.0058 (7)0.0070 (7)0.0010 (7)
N2A0.0377 (9)0.0239 (8)0.0247 (8)0.0047 (7)0.0085 (7)0.0045 (6)
N3A0.0342 (9)0.0237 (8)0.0337 (10)0.0043 (7)0.0073 (8)0.0035 (7)
N1B0.0373 (9)0.0221 (8)0.0301 (9)0.0049 (7)0.0060 (7)0.0026 (7)
N2B0.0364 (9)0.0235 (8)0.0272 (8)0.0034 (7)0.0092 (7)0.0048 (7)
N3B0.0345 (9)0.0266 (9)0.0330 (9)0.0040 (7)0.0106 (8)0.0018 (7)
C1A0.0383 (12)0.0236 (10)0.0436 (13)0.0042 (8)0.0129 (10)0.0041 (9)
C2A0.0397 (12)0.0258 (10)0.0433 (13)0.0013 (9)0.0117 (10)0.0096 (9)
C3A0.0372 (11)0.0333 (11)0.0339 (11)0.0010 (9)0.0090 (9)0.0089 (9)
C4A0.0323 (10)0.0247 (10)0.0323 (11)0.0014 (8)0.0072 (9)0.0024 (8)
C5A0.0302 (10)0.0250 (10)0.0319 (11)0.0010 (8)0.0074 (8)0.0064 (8)
C6A0.0319 (10)0.0238 (9)0.0301 (10)0.0016 (8)0.0066 (8)0.0045 (8)
C7A0.0307 (10)0.0204 (9)0.0297 (10)0.0021 (7)0.0067 (8)0.0033 (8)
C8A0.0386 (11)0.0232 (10)0.0259 (10)0.0022 (8)0.0054 (8)0.0020 (7)
C9A0.0389 (11)0.0252 (10)0.0281 (10)0.0037 (8)0.0098 (9)0.0038 (8)
C10A0.0298 (10)0.0213 (9)0.0319 (11)0.0033 (7)0.0064 (8)0.0043 (8)
C11A0.0329 (10)0.0243 (10)0.0286 (10)0.0031 (8)0.0051 (8)0.0019 (8)
C12A0.0310 (10)0.0253 (10)0.0268 (10)0.0006 (8)0.0078 (8)0.0050 (8)
C13A0.0498 (14)0.0432 (13)0.0276 (11)0.0134 (11)0.0119 (10)0.0004 (9)
C1B0.0388 (12)0.0235 (10)0.0425 (13)0.0049 (8)0.0135 (10)0.0031 (9)
C2B0.0419 (12)0.0285 (11)0.0417 (12)0.0011 (9)0.0162 (10)0.0073 (9)
C3B0.0431 (12)0.0306 (11)0.0348 (11)0.0012 (9)0.0109 (10)0.0069 (9)
C4B0.0347 (11)0.0234 (10)0.0333 (11)0.0005 (8)0.0088 (9)0.0036 (8)
C5B0.0343 (11)0.0249 (10)0.0313 (10)0.0003 (8)0.0093 (9)0.0056 (8)
C6B0.0320 (10)0.0224 (9)0.0298 (10)0.0011 (8)0.0065 (8)0.0039 (8)
C7B0.0294 (10)0.0213 (9)0.0297 (10)0.0013 (7)0.0076 (8)0.0028 (8)
C8B0.0415 (12)0.0253 (10)0.0262 (10)0.0035 (8)0.0061 (9)0.0007 (8)
C9B0.0418 (12)0.0270 (10)0.0266 (10)0.0031 (9)0.0101 (9)0.0038 (8)
C10B0.0322 (10)0.0209 (9)0.0351 (11)0.0021 (8)0.0096 (9)0.0020 (8)
C11B0.0329 (10)0.0255 (10)0.0299 (10)0.0038 (8)0.0065 (8)0.0008 (8)
C12B0.0323 (10)0.0254 (10)0.0280 (10)0.0007 (8)0.0075 (8)0.0055 (8)
C13B0.0496 (14)0.0418 (13)0.0260 (11)0.0118 (10)0.0070 (10)0.0017 (9)
Geometric parameters (Å, º) top
S1A—C6A1.668 (2)C3A—C4A1.353 (3)
S1B—C6B1.665 (2)C3A—H3AA0.9500
O1A—C1A1.358 (3)C4A—C5A1.462 (3)
O1A—C4A1.375 (3)C7A—C8A1.393 (3)
O2A—C5A1.226 (3)C7A—C12A1.417 (3)
O3A—C12A1.356 (3)C8A—C9A1.385 (3)
O3A—C13A1.432 (3)C8A—H8AA0.9500
O4A—N3A1.231 (3)C9A—C10A1.382 (3)
O5A—N3A1.229 (3)C9A—H9AA0.9500
O1B—C1B1.363 (3)C10A—C11A1.390 (3)
O1B—C4B1.373 (3)C11A—C12A1.385 (3)
O2B—C5B1.224 (3)C11A—H11A0.9500
O3B—C12B1.357 (3)C13A—H13A0.9800
O3B—C13B1.435 (3)C13A—H13B0.9800
O4B—N3B1.233 (3)C13A—H13C0.9800
O5B—N3B1.227 (3)C1B—C2B1.341 (4)
N1A—C5A1.390 (3)C1B—H1BB0.9500
N1A—C6A1.391 (3)C2B—C3B1.421 (3)
N1A—H1AA0.8800C2B—H2BB0.9500
N2A—C6A1.349 (3)C3B—C4B1.356 (3)
N2A—C7A1.405 (3)C3B—H3BA0.9500
N2A—H2AA0.8800C4B—C5B1.456 (3)
N3A—C10A1.466 (3)C7B—C8B1.397 (3)
N1B—C5B1.389 (3)C7B—C12B1.415 (3)
N1B—C6B1.397 (3)C8B—C9B1.383 (3)
N1B—H1BA0.8800C8B—H8BA0.9500
N2B—C6B1.348 (3)C9B—C10B1.380 (3)
N2B—C7B1.406 (3)C9B—H9BA0.9500
N2B—H2BA0.8800C10B—C11B1.393 (3)
N3B—C10B1.464 (3)C11B—C12B1.382 (3)
C1A—C2A1.349 (4)C11B—H11B0.9500
C1A—H1AB0.9500C13B—H13D0.9800
C2A—C3A1.418 (3)C13B—H13E0.9800
C2A—H2AB0.9500C13B—H13F0.9800
C1A—O1A—C4A106.15 (18)C12A—C11A—H11A121.0
C12A—O3A—C13A118.46 (17)C10A—C11A—H11A121.0
C1B—O1B—C4B106.16 (18)O3A—C12A—C11A124.7 (2)
C12B—O3B—C13B118.39 (18)O3A—C12A—C7A114.87 (18)
C5A—N1A—C6A128.54 (19)C11A—C12A—C7A120.42 (19)
C5A—N1A—H1AA115.7O3A—C13A—H13A109.5
C6A—N1A—H1AA115.7O3A—C13A—H13B109.5
C6A—N2A—C7A130.85 (19)H13A—C13A—H13B109.5
C6A—N2A—H2AA114.6O3A—C13A—H13C109.5
C7A—N2A—H2AA114.6H13A—C13A—H13C109.5
O5A—N3A—O4A123.17 (19)H13B—C13A—H13C109.5
O5A—N3A—C10A118.71 (19)C2B—C1B—O1B110.3 (2)
O4A—N3A—C10A118.12 (18)C2B—C1B—H1BB124.8
C5B—N1B—C6B128.25 (19)O1B—C1B—H1BB124.8
C5B—N1B—H1BA115.9C1B—C2B—C3B107.5 (2)
C6B—N1B—H1BA115.9C1B—C2B—H2BB126.3
C6B—N2B—C7B130.55 (19)C3B—C2B—H2BB126.3
C6B—N2B—H2BA114.7C4B—C3B—C2B105.6 (2)
C7B—N2B—H2BA114.7C4B—C3B—H3BA127.2
O5B—N3B—O4B123.18 (19)C2B—C3B—H3BA127.2
O5B—N3B—C10B118.14 (19)C3B—C4B—O1B110.5 (2)
O4B—N3B—C10B118.68 (19)C3B—C4B—C5B131.3 (2)
C2A—C1A—O1A110.5 (2)O1B—C4B—C5B118.24 (19)
C2A—C1A—H1AB124.7O2B—C5B—N1B123.56 (19)
O1A—C1A—H1AB124.7O2B—C5B—C4B122.1 (2)
C1A—C2A—C3A106.9 (2)N1B—C5B—C4B114.33 (19)
C1A—C2A—H2AB126.5N2B—C6B—N1B114.56 (19)
C3A—C2A—H2AB126.5N2B—C6B—S1B127.98 (16)
C4A—C3A—C2A106.0 (2)N1B—C6B—S1B117.46 (16)
C4A—C3A—H3AA127.0C8B—C7B—N2B126.6 (2)
C2A—C3A—H3AA127.0C8B—C7B—C12B119.26 (19)
C3A—C4A—O1A110.37 (19)N2B—C7B—C12B114.10 (19)
C3A—C4A—C5A131.5 (2)C9B—C8B—C7B120.6 (2)
O1A—C4A—C5A118.06 (19)C9B—C8B—H8BA119.7
O2A—C5A—N1A123.84 (19)C7B—C8B—H8BA119.7
O2A—C5A—C4A121.8 (2)C10B—C9B—C8B118.8 (2)
N1A—C5A—C4A114.39 (19)C10B—C9B—H9BA120.6
N2A—C6A—N1A114.52 (19)C8B—C9B—H9BA120.6
N2A—C6A—S1A127.94 (16)C9B—C10B—C11B122.7 (2)
N1A—C6A—S1A117.54 (16)C9B—C10B—N3B119.4 (2)
C8A—C7A—N2A126.9 (2)C11B—C10B—N3B117.8 (2)
C8A—C7A—C12A119.44 (19)C12B—C11B—C10B118.2 (2)
N2A—C7A—C12A113.62 (18)C12B—C11B—H11B120.9
C9A—C8A—C7A120.5 (2)C10B—C11B—H11B120.9
C9A—C8A—H8AA119.7O3B—C12B—C11B125.0 (2)
C7A—C8A—H8AA119.7O3B—C12B—C7B114.55 (18)
C10A—C9A—C8A118.63 (19)C11B—C12B—C7B120.5 (2)
C10A—C9A—H9AA120.7O3B—C13B—H13D109.5
C8A—C9A—H9AA120.7O3B—C13B—H13E109.5
C9A—C10A—C11A123.01 (19)H13D—C13B—H13E109.5
C9A—C10A—N3A118.99 (19)O3B—C13B—H13F109.5
C11A—C10A—N3A118.00 (19)H13D—C13B—H13F109.5
C12A—C11A—C10A118.0 (2)H13E—C13B—H13F109.5
C4A—O1A—C1A—C2A0.4 (3)C4B—O1B—C1B—C2B0.3 (3)
O1A—C1A—C2A—C3A0.4 (3)O1B—C1B—C2B—C3B0.2 (3)
C1A—C2A—C3A—C4A0.3 (3)C1B—C2B—C3B—C4B0.5 (3)
C2A—C3A—C4A—O1A0.0 (3)C2B—C3B—C4B—O1B0.7 (3)
C2A—C3A—C4A—C5A178.1 (2)C2B—C3B—C4B—C5B179.2 (2)
C1A—O1A—C4A—C3A0.2 (3)C1B—O1B—C4B—C3B0.6 (2)
C1A—O1A—C4A—C5A178.12 (19)C1B—O1B—C4B—C5B179.31 (19)
C6A—N1A—C5A—O2A2.6 (4)C6B—N1B—C5B—O2B0.4 (4)
C6A—N1A—C5A—C4A177.3 (2)C6B—N1B—C5B—C4B179.5 (2)
C3A—C4A—C5A—O2A1.4 (4)C3B—C4B—C5B—O2B6.9 (4)
O1A—C4A—C5A—O2A176.6 (2)O1B—C4B—C5B—O2B173.0 (2)
C3A—C4A—C5A—N1A178.8 (2)C3B—C4B—C5B—N1B173.1 (2)
O1A—C4A—C5A—N1A3.2 (3)O1B—C4B—C5B—N1B7.0 (3)
C7A—N2A—C6A—N1A178.6 (2)C7B—N2B—C6B—N1B179.1 (2)
C7A—N2A—C6A—S1A0.9 (4)C7B—N2B—C6B—S1B0.4 (4)
C5A—N1A—C6A—N2A1.7 (3)C5B—N1B—C6B—N2B8.1 (3)
C5A—N1A—C6A—S1A178.79 (18)C5B—N1B—C6B—S1B171.41 (18)
C6A—N2A—C7A—C8A1.7 (4)C6B—N2B—C7B—C8B8.5 (4)
C6A—N2A—C7A—C12A178.8 (2)C6B—N2B—C7B—C12B172.3 (2)
N2A—C7A—C8A—C9A179.6 (2)N2B—C7B—C8B—C9B179.9 (2)
C12A—C7A—C8A—C9A0.2 (3)C12B—C7B—C8B—C9B0.7 (3)
C7A—C8A—C9A—C10A0.1 (3)C7B—C8B—C9B—C10B0.8 (3)
C8A—C9A—C10A—C11A0.2 (3)C8B—C9B—C10B—C11B1.5 (4)
C8A—C9A—C10A—N3A179.6 (2)C8B—C9B—C10B—N3B178.69 (19)
O5A—N3A—C10A—C9A1.8 (3)O5B—N3B—C10B—C9B175.9 (2)
O4A—N3A—C10A—C9A178.1 (2)O4B—N3B—C10B—C9B4.1 (3)
O5A—N3A—C10A—C11A178.0 (2)O5B—N3B—C10B—C11B4.3 (3)
O4A—N3A—C10A—C11A2.1 (3)O4B—N3B—C10B—C11B175.7 (2)
C9A—C10A—C11A—C12A0.1 (3)C9B—C10B—C11B—C12B0.6 (3)
N3A—C10A—C11A—C12A179.86 (19)N3B—C10B—C11B—C12B179.55 (19)
C13A—O3A—C12A—C11A4.4 (3)C13B—O3B—C12B—C11B3.6 (3)
C13A—O3A—C12A—C7A175.4 (2)C13B—O3B—C12B—C7B176.9 (2)
C10A—C11A—C12A—O3A179.4 (2)C10B—C11B—C12B—O3B179.6 (2)
C10A—C11A—C12A—C7A0.3 (3)C10B—C11B—C12B—C7B0.9 (3)
C8A—C7A—C12A—O3A179.34 (19)C8B—C7B—C12B—O3B178.96 (19)
N2A—C7A—C12A—O3A0.1 (3)N2B—C7B—C12B—O3B0.4 (3)
C8A—C7A—C12A—C11A0.4 (3)C8B—C7B—C12B—C11B1.5 (3)
N2A—C7A—C12A—C11A179.88 (19)N2B—C7B—C12B—C11B179.13 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.882.242.684 (2)111
N2A—H2AA···O2A0.881.912.654 (2)142
N2A—H2AA···O3A0.882.092.552 (2)112
N1B—H1BA···O1B0.882.252.683 (2)111
N2B—H2BA···O2B0.881.922.653 (2)140
N2B—H2BA···O3B0.882.112.554 (2)111
C8A—H8AA···S1A0.952.523.198 (2)129
C8B—H8BA···S1B0.952.523.189 (2)128

Experimental details

Crystal data
Chemical formulaC13H11N3O5S
Mr321.31
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.9474 (6), 13.0122 (10), 13.4215 (11)
α, β, γ (°)87.734 (6), 77.014 (7), 86.945 (7)
V3)1350.00 (18)
Z4
Radiation typeCu Kα
µ (mm1)2.43
Crystal size (mm)0.69 × 0.21 × 0.04
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.441, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
9239, 5400, 4064
Rint0.042
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 1.03
No. of reflections5400
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.882.242.684 (2)110.7
N2A—H2AA···O2A0.881.912.654 (2)141.9
N2A—H2AA···O3A0.882.092.552 (2)111.8
N1B—H1BA···O1B0.882.252.683 (2)110.5
N2B—H2BA···O2B0.881.922.653 (2)139.8
N2B—H2BA···O3B0.882.112.554 (2)110.8
C8A—H8AA···S1A0.952.523.198 (2)128.7
C8B—H8BA···S1B0.952.523.189 (2)128.0
 

Acknowledgements

SP and DPS are grateful to Banaras Hindu University, Varanasi, for financial support. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDai, M., Liang, B., Wang, C., Chen, J. & Yang, Z. (2004). Org. Lett. 6, 221–224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoyle, A. G. & Jacobsen, E. N. (2007). Chem. Rev. 107, 5713–5743.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGale, P. A., García-Garrido, S. E. & Garric, J. (2008). Chem. Soc. Rev. 37, 151–190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos Jr, S. & Duque, J. (2008). Acta Cryst. E64, o695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012a). Acta Cryst. E68, o2882–o2883.  CSD CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Pratap, S., Gupta, S. K. & Butcher, R. J. (2012c). Acta Cryst. E68, o3300–o3301.  CSD CrossRef IUCr Journals Google Scholar
First citationSingh, D. P., Pratap, S., Yildirim, S. Ö. & Butcher, R. J. (2012b). Acta Cryst. E68, o3295.  CSD CrossRef IUCr Journals Google Scholar
First citationSvetlana, B. T. (2007). Eur. J. Org. Chem. 2007, 1701–1716.  Google Scholar
First citationWilson, D., Ángeles Arada, M. de los, Alegret, S. & Valle, M. del (2010). J. Hazard. Mater. 181, 140–146.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577–1580.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 3| March 2013| Pages o330-o331
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds